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The 6 degrees-of-freedom range
of motion of the L1–S1 vertebrae
in young and middle-aged
asymptomatic people
Fei Xu1,2,3,4†, Siyu Zhou1,3,4†, Zhuofu Li1,2,3,4†, Shuai Jiang1,3,4,
Ze Chen1,2,4, Zhuoran Sun1,3,4 and Weishi Li1,3,4*
1Orthopaedic Department, Peking University Third Hospital, Beijing, China, 2Peking University Health
Science Center, Beijing, China, 3Beijing Key Laboratory of Spinal Disease Research, Beijing, China,
4Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China

Study design: Controlled laboratory study.
Objective: Todetermine the6degreesof freedomof lumbar vertebra in vivoduring
different functional activities in young and middle-aged asymptomatic subjects.
Methods: A total of 26 asymptomatic subjects (M/F, 15/11; age, 20–55 years) were
recruited in this study. They were divided into two groups: young group (number:
14; age: 20–30 years old) and middle-aged group (number: 12; age: 45–55 years
old). The lumbar segment of each subject was scanned by computed
tomography for the construction of three-dimensional (3D) models of the
vertebra from L1 to S1. The lumbar spine was imaged by using a dual fluoroscopic
system when the subjects performed different trunk postures. The 3D models of
vertebrae were matched to two fluoroscopic images simultaneously in software.
The range of motion (ROM) of vertebrae in the young and middle-aged groups
was compared by using multiway analysis of variance, respectively.
Results: During the supine to the upright posture, vertebral rotation of the L1–S1
occurred mainly around the mediolateral axis (mean: 3.9 ± 2.9°). Along the
mediolateral axis, vertebral translation was significantly lower at L1–2 (7.7 ±
2.4 mm) and L2–3 (8.0 ± 3.5 mm) than at L3–4 (1.6 ± 1.2 mm), L4–5 (3.3 ±
2.6 mm), and L5–S1 (2.6 ± 1.9 mm). At the L4–5 level, the young group had a
higher rotational ROM than the middle-aged group around all three axes during
left–right bending. Along the anteroposterior axis, the young group had a lower
translational ROM at L4–5 than the middle-aged group during left–right bending
(4.6 ± 3.3 vs. 7.6 ± 4.8 mm; P < 0.05). At L5–S1, the young group had a lower
translational ROM than the middle-aged group during flexion–extension, left–
right bending, and left–right torsion.
Conclusion:This studyexplored the lumbar vertebral ROMat L1–S1 duringdifferent
functional postures in both young and middle-aged volunteers. There were higher
coupled translations at L3–4 and L4–5 than at the upper lumbar segments during
supine to upright. The vertebral rotation decreased with age. In addition, the older
subjects had a higher anteroposterior translation at the L4–5 segment and higher
mediolateral translation at the L5–S1 segment than the young group. These data
might provide basic data to be compared with spinal pathology.
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Introduction

Lumbar degenerative disc disease (DDD) always occurs at

the lower lumbar levels, and the incidence of various

pathological changes is segment-dependent. For example,

lumbar degenerative spondylolisthesis is more likely to occur

at L4–5 (1, 2) and more lumbar disc herniation is observed at

L5–S1 (3). Vertebral segment motion is important for

maintaining spinal stability. Altered vertebral motion is

known to change spinal biomechanics, which is related to

spinal pathology (4–8).

Most studies have focused on the range of motion (ROM) of

the vertebrae in vitro instead of in vivo (9–14). Some in vivo

experiments have reported the motion of the lumbar segments

using imaging techniques to capture the lumbar vertebral

positions in different postures (5, 15, 16). Recently, a three-

dimensional (3D) fluoroscopic imaging technique has been

applied to investigate the degree of freedom (DOF) of the

lumbar vertebrae during various weight-bearing end-range

postures and dynamic motion of the trunk in subjects aged

over 40 years (17–19). However, there are still no data on the

comparison of L1–S1 vertebral kinematics between different

age groups. The 6DOF of the L1–S1 vertebral segments

in vivo from the supine to the upright posture has not been

previously reported.

This study aimed to determine the 6DOF of the L1–S1

vertebral segments in young and middle-aged asymptomatic

human subjects during supine to upright, flexion, extension,

left–right bending, and left–right torsion. We hypothesized

that the segmental kinematics of primary motion and coupled

motion was different in the young and middle-aged groups

and that the segmental kinematics was different at different

levels from a supine to an upright posture.
FIGURE 1

Two fluoroscopes were positioned with their image intensifiers kept
perpendicular to each other.
Materials and methods

Characters of participants

In this study, we enrolled 26 asymptomatic subjects aged

between 20 and 55 years. There were 15 males and 11

females. Patients were divided into two groups: 14 subjects in

the young group [median, 24.9 ± 2.1 (range, 20–30) years] and

12 subjects in the middle-aged group [median, 52.1 ± 3.2

(range, 45–55) years]. The institutional review board of the

authors’ hospital approved the experimental design before

starting the study. Participants were evaluated for the presence

or absence of lower back pain and other spinal disorders. The

exclusion criteria were as follows: (1) current or prior serious

back pain; (2) history of spinal surgery; (3) diagnosis of

disease or anatomical anomaly in the spine; (4) prior
Frontiers in Surgery 02
radiation within a year; and (5) pregnancy. Before testing,

each volunteer signed an informed consent form.
3D anatomical vertebral model and dual
fluoroscopic imaging system

Each subject underwent a computed tomography (CT) scan

(Sensation; Siemens, Erlangen, Germany). Parallel digital

images with a thickness of 0.625 mm without a gap were

obtained. Following CT scanning, two fluoroscopes (BV

Pulsera, Phillips, Bothell, WA, United States) were positioned,

with their image intensifiers kept perpendicular to each other

(Figure 1). Accordingly, we captured images of the lumbar

spine simultaneously in two different directions: upright

posture, 45° flexion of the trunk, maximal extension, maximal

left–right bending, and maximal left–right twisting. The

patients were in different functional postures for both

fluoroscopes. The CT images of the spinal segments were

imported into Mimics version 21.0 (Materialize, Leuven,

Belgium) to construct 3D anatomical vertebral models of the

L1, L2, L3, L4, L5, and S1 segments. The 3D models of the

vertebrae were subsequently created from contour lines

(Figures 2A,B). Thereafter, these models were imported into

a virtual dual orthogonal environment (Rhinoceros, Robert

McNeel & Associates, Seattle, WA, United States). The

repeatability of the method in reproducing in vivo human
frontiersin.org
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FIGURE 2

(A) A typical CT scan of a human lumbar spine in the sagittal plane. (B) Three-dimensional anatomic vertebral model constructed from computed
tomography. (C) Anatomic coordinate systems were established at the endplates to measure the kinematics of the vertebrae.

FIGURE 3

Virtual reproduction of the dual fluoroscopic system and the
vertebral positions.
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spine 6DOF kinematics was <0.3 mm in translation and <0.7° in

orientation (20). The positions of the vertebrae at different

postures of the trunk under physiological loads were

reproduced in Rhinoceros software using the 3D models of

the vertebrae and orthogonal fluoroscopic images. The models

could be independently translated and rotated in 6DOF until

their outlines matched the two orthogonal fluoroscopic images

simultaneously (Figure 3) (20).

After reproducing the in vivo vertebral positions in the dual

fluoroscopic image system, the relative motion of the vertebrae

was analyzed using the right-hand Cartesian coordinate systems

constructed at the geometric center of the vertebral endplates

(Figure 2C). The x-axis was set in the frontal plane to

represent the mediolateral direction and pointed to the left.

The y-axis was set in the sagittal plane and pointed

posteriorly. The z-axis was set perpendicular to the x-y plane

representing the cephalad–caudad direction and pointed

cranially. The relative motion of the proximal endplates with

respect to the distal endplates was calculated at five levels: L1–

2, L2–3, L3–4, L4–5, and L5–S1. The ROM data included

both primary rotations and translation, coupled translations,

and rotations in all 6DOFs.
Statistical analysis

A two-way repeated measures ANOVA was used to

compare the ROM of the vertebrae at the L1–L2, L2–L3, L3–

L4, L4–L5, and L5–S1 levels. Kinematics was the dependent

variable, and vertebral level and activity were the independent

variables. A P-value <0.05 was considered statistically

significant. Another multiway analysis of variance was used to

compare the kinematics between the young and the middle-
Frontiers in Surgery 03
aged subjects. The participant group was the categorical

factor, and the levels and activities were the independent

variables. A Newman–Keuls post hoc test was performed

when a statistically significant difference was detected.

Statistical analysis was performed using SPSS version 23 (IBM

Corp.) and Prism 9 software version 5.01 (GraphPad Software

Inc., CA, United States).
Results

Rotated and translated vertebral motions
from supine to upright posture

From the supine posture to the upright posture, vertebral

rotation occurred mainly around the mediolateral axis (mean:
frontiersin.org
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FIGURE 4

Ranges of vertebral rotations of asymptotic volunteers (A) standing up and along three principal axes under (B) flexion–extension, (C) bending, and (D)
torsion of the trunk. The symbols (*, +, x, #, −) represent statistical significance on between-level comparison (P < 0.05).
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3.9 ± 2.9°) (Figure 4A). The vertebral rotations were not

significantly different between different levels around the

mediolateral axis (L1–2, 3.6° ± 3.0°; L2–3, 3.5° ± 2.0°; L3–4,

3.3° ± 2.7°; L4–5, 4.8° ± 3.4°; and L5–S1, 4.6° ± 2.7°)

(Figure 4A). There were coupled translations in all three

directions. The coupled translations along the craniocaudal

axis were significantly higher at L1–2 (7.7 ± 2.4 mm) and L2–

3 (8.0 ± 3.5 mm) than at L3–4 (1.6 ± 1.2 mm), L4–5 (3.3 ±

2.6 mm), and L5–S1 (2.6 ± 1.9 mm). Along the mediolateral

axis, vertebral translations were significantly lower at L1–2

(1.9 ± 1.3 mm) and L2–3 (2.6 ± 1.6 mm) than at L3–4 (7.2 ±

3.1 mm) and L4–5 (7.1 ± 5.2 mm) (Figure 5A).
Rotational and translational vertebral
motions during flexion–extension,
bending, and torsion postures

During flexion–extension positions of the trunk, the

predominant rotational axis was around the mediolateral axis

(mean, 10.3° ± 4.7°) (Figure 4B). The rotational ROM around

the mediolateral axis at L5–S1 (14.1° ± 4.3°) was higher than

that at the other levels (L1–2, 9.5° ± 4.8°; L2–3, 7.6° ± 4.4°; L3–
Frontiers in Surgery 04
4, 10.6° ± 3.0°; and L4–5, 9.7° ± 4.3°; P < 0.05, all) (Figure 4B).

During the left–right bending of the trunk, a combination of

rotation in all three orthogonal directions was observed

(Figure 4C). Around the anteroposterior axis, vertebral

rotation was higher at L1–2 (10.3 ± 4.5°) than at L2–3 and

L4–5 (6.8° ± 2.5° and 7.2° ± 4.5°, respectively; P < 0.05)

(Figure 4C). Left–right torsion of the trunk was achieved by

coupled rotation in different directions (Figure 4D). The

principal rotation was around the craniocaudal axis. Around

the craniocaudal axis, there was no significant difference

between different levels (P > 0.05) (Figure 4D). The coupled

translations in the three directions were not significantly

different at the different levels during flexion–extension, left–

right bending, and left–right torsion postures (Figure 5).
Comparison of young and middle-aged
healthy participants

From the supine posture to the upright posture, around the

anteroposterior axis, young healthy participants had a higher

vertebral ROM than the middle-aged group at L4–5 (P < 0.05)

(Table 1). As for vertebral translation, there was no
frontiersin.org
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FIGURE 5

Ranges of vertebral translations of asymptotic volunteers (A) standing up and along three principal axes under (B) flexion–extension, (C) bending, and
(D) torsion of the trunk. The symbols (*, +, x, #, −) represent statistical significance on between-level comparison (P < 0.05).
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significant difference between the young and the middle-aged

groups (P > 0.05) (Table 2).

During the flexion–extension of the trunk, the young

healthy participants had higher rotational ROMs than their

middle-aged counterparts around the primary mediolateral

axis, yet this difference was not statistically different

(Table 1). Moreover, along the mediolateral axis and

anteroposterior axis, vertebral translations at L5–S1 were

higher in the middle-aged group than in the young group

(3.3 ± 1.4 vs. 6.0 ± 4.8 mm and 5.6 ± 2.0 vs. 9.7 ± 7.2 mm,

respectively; P < 0.05, both) (Table 2).

During the left–right bending of the trunk (Table 1), at the

L4–5 level, the young group had higher rotational ROMs than

the middle-aged group around all three axes (12.1° ± 4.1° vs.

8.3° ± 4.5°, 8.9° ± 4.8° vs. 5.2° ± 3.4°, and 8.0° ± 4.7° vs. 3.5 ±

2.8°, respectively; P < 0.05, all). As for the translation along

the anteroposterior axis, the young group had a lower ROM

than the middle-aged group at L4–5 (4.6 ± 3.3 vs. 7.6 ±

4.8 mm; P < 0.05) (Table 2). Along the mediolateral axis, the

young group had a lower translational ROM than the middle-

aged group at L5–S1 (3.0 ± 1.1 vs. 8.8 ± 6.6 mm; P < 0.05)

(Table 2).
Frontiers in Surgery 05
During trunk torsion, around the anteroposterior axis at

L2–3, young volunteers had a higher vertebral rotation than

their middle-aged counterparts (7.1° ± 3.3° vs. 4.5° ± 2.0°, P <

0.05) (Table 1). As for the translation along the craniocaudal

axis, the young group had a higher ROM than the middle-

aged group at L3–4 (5.4 ± 3.1 vs. 3.0 ± 2.2 mm; P < 0.05).

Along the mediolateral axis, the coupled translation at L5–S1

was higher in the middle-aged group than in the young group

(7.7 ± 5.0 vs. 2.5 ± 1.7 mm; P < 0.05) (Table 2).
Discussion

In this study, we collected quantitative vertebral kinematics

in both young and middle-aged asymptomatic subjects in the

supine to upright, flexion–extension, left–right bending, and

left–right torsion postures. The data indicated that the

coupled translation was different at different levels during the

supine to the upright postures. Moreover, during comparison,

rotation was higher at L4–5 in the young group than in the

middle-aged group. However, the coupled translations in the

anteroposterior direction at L4–5 and in the mediolateral
frontiersin.org

https://doi.org/10.3389/fsurg.2022.1002133
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


T
A
B
LE

1
C
o
m
p
ar
is
o
n
o
f
ro
ta
ti
o
n
ra
n
g
e
s
(°
)
o
f
ve

rt
e
b
ra
s
b
e
tw

e
e
n
yo

u
n
g
an

d
m
id
d
le
-a
g
e
d
p
ar
ti
ci
p
an

ts
.

L1
–L

2
L2

–L
3

L3
–L

4
L4

–L
5

L5
–S

1

M
L

A
P

C
C

M
L

A
P

C
C

M
L

A
P

C
C

M
L

A
P

C
C

M
L

A
P

C
C

Su
pi
ne
-s
ta
nd

in
g

Y
ou

ng
3.
67

±
3.
78

2.
17

±
1.
69

1.
69

±
1.
66

3.
57

±
1.
95

1.
20

±
0.
91

2.
03

±
2.
09

3.
64

±
3.
06

1.
76

±
1.
44

3.
39

±
3.
10

4.
31

±
2.
91

3.
03

±
2.
51

3.
03

±
2.
97

4.
25

±
3.
08

1.
95

±
1.
29

3.
50

±
3.
37

O
ld

3.
32

±
2.
14

1.
23

±
0.
96

2.
41

±
2.
34

3.
35

±
2.
23

2.
13

±
1.
43

2.
93

±
2.
91

2.
87

±
2.
35

2.
41

±
1.
66

2.
34

±
2.
05

5.
31

±
3.
95

1.
68

±
1.
60

2.
78

±
2.
42

4.
94

±
2.
14

2.
51

±
1.
63

3.
12

±
2.
54

P
0.
76
2

0.
14
3

0.
46
4

0.
84
6

0.
14
6

0.
35
9

0.
50
0

0.
31
0

0.
28
4

0.
38
2

0.
03
5*

0.
80
0

0.
54
6

0.
38
2

0.
71
6

Fl
ex
io
n–

ex
te
ns
io
n

Y
ou

ng
9.
54

±
5.
47

5.
33

±
2.
45

4.
56

±
4.
25

7.
92

±
5.
36

6.
04

±
3.
13

4.
43

±
5.
12

11
.2
1
±
2.
59

4.
13

±
3.
22

6.
85

±
6.
26

10
.0
8
±
4.
34

6.
44

±
2.
80

6.
70

±
6.
75

14
.2
7
±
4.
33

4.
46

±
2.
42

6.
51

±
3.
04

O
ld

9.
33

±
4.
01

5.
22

±
2.
66

3.
99

±
2.
64

7.
12

±
3.
11

4.
54

±
2.
97

3.
06

±
3.
26

9.
91

±
3.
44

3.
91

±
2.
39

3.
82

±
3.
18

9.
18

±
4.
47

6.
10

±
3.
53

3.
59

±
5.
18

13
.9
3
±
4.
35

5.
17

±
2.
22

8.
59

±
3.
86

P
0.
90
1

0.
92
2

0.
76
9

0.
63
3

0.
19
5

0.
47
5

0.
43
8

0.
84
9

0.
11
8

0.
59
2

0.
76
7

0.
10
9

0.
84
4

0.
53
1

0.
26
9

Le
ft
–r
ig
ht

be
nd

Y
ou

ng
8.
42

±
4.
59

11
.3
4
±
4.
64

5.
37

±
4.
99

6.
01

±
3.
29

7.
48

±
2.
39

4.
82

±
4.
66

9.
86

±
5.
58

8.
79

±
2.
37

6.
17

±
4.
20

12
.0
6
±
4.
09

8.
85

±
4.
79

7.
95

±
4.
69

7.
62

±
4.
57

8.
55

±
1.
92

5.
66

±
4.
26

O
ld

7.
53

±
3.
76

9.
11

±
4.
28

4.
60

±
4.
70

8.
25

±
4.
36

5.
96

±
2.
54

4.
05

±
3.
23

9.
78

±
5.
07

8.
50

±
4.
14

4.
68

±
4.
93

8.
34

±
4.
50

5.
24

±
3.
44

3.
47

±
2.
79

10
.0
7
±
5.
42

10
.0
6
±
4.
31

7.
85

±
4.
38

P
0.
61
4

0.
12
9

0.
65
4

0.
20
5

0.
30
0

0.
65
5

0.
96
3

0.
84
4

0.
38
9

0.
03
7*

0.
01
5

0.
01
1*

0.
18
3

0.
30
3

0.
21
4

Le
ft
–r
ig
ht

to
rs
io
n

Y
ou

ng
9.
05

±
6.
47

6.
95

±
4.
12

15
.1
7
±
4.
14

9.
86

±
4.
67

7.
06

±
3.
34

15
.5
5
±
6.
26

8.
34

±
4.
70

7.
05

±
2.
83

16
.8
8
±
6.
31

9.
74

±
5.
63

6.
93

±
3.
40

15
.9
8
±
6.
84

8.
63

±
5.
40

4.
42

±
3.
74

8.
03

±
2.
87

O
ld

8.
74

±
7.
66

5.
71

±
3.
30

16
.4
8
±
6.
37

7.
61

±
3.
89

4.
47

±
2.
00

11
.3
0
±
4.
91

10
.7
4
±
5.
10

5.
93

±
3.
87

15
.6
4
±
6.
29

8.
18

±
7.
44

4.
77

±
2.
93

11
.7
9
±
7.
27

10
.1
8
±
5.
27

5.
49

±
3.
67

17
.0
5
±
6.
68

P
0.
89
2

0.
34
1

0.
58
7

0.
32
7

0.
04
9*

0.
08
0

0.
29
5

0.
39
2

0.
60
7

0.
49
6

0.
09
8

0.
08
5

0.
50
1

0.
43
6

<0
.0
01
**

R
o
ta
ti
o
n
ar
o
u
n
d
th
e
ax
is
:
M
L,

A
P
,
an

d
C
C
.

T
h
e
va
lu
e
s
w
e
re

p
re
se
n
te
d
as

m
e
an

±
SD

in
d
e
g
re
e
.

A
P
,
an

te
ro
p
o
st
e
ri
o
r;
C
C
,
cr
an

io
ca

u
d
al
;
M
L,

m
e
d
io
la
te
ra
l.

*<
0
.0
5
;
**
<
0
.0
1.

Xu et al. 10.3389/fsurg.2022.1002133

Frontiers in Surgery 06 frontiersin.org

https://doi.org/10.3389/fsurg.2022.1002133
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


T
A
B
LE

2
C
o
m
p
ar
is
o
n
o
f
tr
an

sl
at
io
n
ra
n
g
e
s
(m

m
)
o
f
ve

rt
e
b
ra
s
b
e
tw

e
e
n
yo

u
n
g
an

d
m
id
d
le
-a
g
e
d
p
ar
ti
ci
p
an

ts
.

L1
–L

2
L2

–L
3

L3
–L

4
L4

–L
5

L5
–S

1

M
L

A
P

C
C

M
L

A
P

C
C

M
L

A
P

C
C

M
L

A
P

C
C

M
L

A
P

C
C

Su
pi
ne
-s
ta
nd

in
g

Y
ou

ng
1.
57

±
1.
22

2.
20

±
1.
91

8.
41

±
2.
25

2.
37

±
1.
2

2.
50

±
2.
23

8.
15

±
3.
77

1.
30

±
0.
67

3.
16

±
1.
57

2.
42

±
1.
71

2.
14

±
2.
14

2.
76

±
1.
99

2.
51

±
2.
01

1.
63

±
1.
07

2.
94

±
1.
76

2.
35

±
1.
48

O
ld

2.
32

±
1.
39

1.
73

±
1.
39

6.
85

±
2.
30

2.
95

±
1.
99

3.
43

±
2.
99

7.
88

±
3.
32

1.
58

±
1.
17

2.
31

±
1.
52

1.
80

±
1.
20

1.
77

±
1.
48

2.
36

±
1.
29

3.
45

±
2.
10

2.
79

±
2.
13

3.
14

±
3.
36

2.
91

±
2.
28

P
0.
55
9

0.
54
5

0.
12
3

0.
65
1

0.
22
6

0.
78
8

0.
85
5

0.
42
1

0.
23
7

0.
23
4

0.
09
7

0.
83
4

0.
33
9

0.
80
7

0.
57
0

Fl
ex
io
n–

ex
te
ns
io
n

Y
ou

ng
4.
57

±
2.
90

5.
91

±
4.
50

3.
91

±
2.
84

3.
89

±
2.
80

5.
09

±
2.
37

4.
74

±
3.
12

3.
88

±
2.
57

5.
90

±
3.
62

5.
77

±
2.
44

4.
77

±
3.
50

6.
13

±
4.
31

6.
33

±
4.
04

3.
26

±
1.
41

5.
55

±
2.
02

5.
60

±
1.
74

O
ld

3.
97

±
1.
69

4.
58

±
3.
16

4.
05

±
1.
90

4.
28

±
2.
03

4.
77

±
3.
31

3.
58

±
2.
44

4.
61

±
2.
78

6.
12

±
4.
45

4.
59

±
2.
40

4.
26

±
1.
39

6.
15

±
4.
75

5.
63

±
2.
70

5.
99

±
4.
77

9.
68

±
7.
18

5.
58

±
2.
55

P
0.
55
8

0.
38
6

0.
89
9

0.
69
9

0.
83
2

0.
30
1

0.
47
3

0.
88
6

0.
29
3

0.
61
8

0.
99
1

0.
53
3

0.
01
5*

0.
01
4*

0.
98
8

Le
ft
–r
ig
ht

be
nd

Y
ou

ng
3.
60

±
2.
80

3.
49

±
2.
20

2.
94

±
1.
72

3.
45

±
1.
29

4.
20

±
3.
56

4.
84

±
3.
03

4.
85

±
2.
31

6.
01

±
3.
15

4.
90

±
3.
99

6.
15

±
4.
41

4.
56

±
3.
27

5.
00

±
2.
51

2.
98

±
1.
12

6.
24

±
4.
12

3.
89

±
3.
16

O
ld

5.
35

±
2.
95

5.
22

±
2.
51

4.
71

±
2.
22

5.
77

±
3.
25

7.
58

±
2.
82

3.
53

±
2.
12

5.
59

±
2.
04

4.
79

±
2.
87

5.
04

±
2.
41

4.
93

±
2.
15

7.
55

±
4.
83

6.
20

±
4.
79

8.
76

±
6.
56

7.
19

±
5.
94

4.
93

±
3.
08

P
0.
11
7

0.
17
6

0.
13
8

0.
03
8*

0.
00
9*
*

0.
27
2

0.
50
3

0.
33
8

0.
90
8

0.
27
0

0.
02
0*

0.
31
3

<0
.0
01
**

0.
52
0

0.
39
5

Le
ft
–r
ig
ht

to
rs
io
n

Y
ou

ng
5.
24

±
1.
80

4.
58

±
2.
53

3.
61

±
2.
31

4.
71

±
2.
56

3.
67

±
3.
13

3.
51

±
2.
76

5.
88

±
3.
67

6.
59

±
4.
06

5.
35

±
3.
13

6.
44

±
4.
48

6.
27

±
3.
20

4.
81

±
2.
94

2.
49

±
1.
66

6.
93

±
3.
68

3.
36

±
2.
59

O
ld

6.
37

±
3.
32

4.
78

±
3.
21

5.
12

±
4.
01

4.
64

±
3.
54

5.
85

±
2.
69

5.
11

±
2.
57

6.
37

±
3.
47

4.
68

±
2.
72

2.
96

±
2.
17

5.
26

±
2.
63

6.
52

±
4.
05

5.
42

±
4.
17

7.
68

±
4.
96

9.
25

±
6.
79

3.
45

±
2.
40

P
0.
38
6

0.
87
9

0.
21
4

0.
96
1

0.
09
0

0.
18
5

0.
70
2

0.
13
8

0.
04
9*

0.
36
2

0.
84
6

0.
61
5

<0
.0
01
**

0.
12
5

0.
93
9

R
o
ta
ti
o
n
ar
o
u
n
d
th
e
ax
is
:
M
L,

A
P
,
an

d
C
C
.

T
h
e
va
lu
e
s
w
e
re

p
re
se
n
te
d
as

m
e
an

±
SD

in
m
m
.

A
P
,
an

te
ro
p
o
st
e
ri
o
r;
C
C
,
cr
an

io
ca

u
d
al
;
M
L,

m
e
d
io
la
te
ra
l.

*<
0
.0
5
;
**
<
0
.0
1.

Xu et al. 10.3389/fsurg.2022.1002133

Frontiers in Surgery 07 frontiersin.org

https://doi.org/10.3389/fsurg.2022.1002133
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Xu et al. 10.3389/fsurg.2022.1002133
direction at L5–S1 in the young group were lower than those in

the middle-aged group.

Many studies have reported the segmental ROM of the

lumbar spine using various experimental designs. Li et al. (17)

reported vertebral kinematics at L2–L5 during different

postures in old subjects using combined dual fluoroscopic and

magnetic resonance imaging (MRI) techniques. In our study,

we also collected vertebral motion at L1–2 and L5–S1.

Moreover, we involved the posture from the supine to the

upright posture, which has not been studied in vivo before

(17–19, 21). We also increased the sample size to include

young and middle-aged subjects. Pearcy (22) investigated in

vivo lumbar vertebral motion at approximately 14° at each

lumbar level during maximal flexion–extension positions, and

Wu et al. (23) also studied lumbar vertebral motion. L4–5

showed the largest anteroposterior translation (2.9 ± 1.5 mm),

and L5–S1 showed the largest craniocaudal translation (2.8 ±

0.9 mm) during flexion–extension positions, where the pelvis

and hips were limited. Our data showed higher translation at

L4–5 and L5–S1 measured without the pelvis under

limitation. Pearcy (22) reported larger bending ranges in the

upper vertebral segments than in the lower vertebral levels,

which was in line with the findings of our study. This could

be related to the different anatomic orientations of the facet

joints at different levels, as the L1–2 facet was oriented more

vertically than L4–5 (24).

Shin et al. (19) studied lumbar vertebral motion during axial

rotation with subjects holding a 16-pound dumbbell and found

no significant difference in the range of primary axial rotation

between different segmental levels, which was in line with the

results of our study. In their study, they reported that the

ROM of the vertebra was approximately 6° at each segment

during left–right twisting, which was lower than that in our

study. The reason might be that the subjects were only in a

standing weight-bearing posture, and the pelvis was not

limited in our study, enlarging the vertebral rotational ROM.

Haughton et al. (25) investigated lumbar twisting using MR

scans with the subject lying supine and showed an average

range of axial rotation between 1.8° and 5.7° at the three

vertebral levels. Ochia et al. (26) determined that the upper

lumbar motion segments had a greater axial rotation range

compared with the lower segments when the upper body was

passively rotated to ±50° in the supine posture, which was

similar to our result. However, using MRI scanning, Li et al.

(17). reported that the ROM of the vertebra was

approximately 2° or 3° during left–right torsion. These large

discrepancies in the vertebral rotation could be explained by

the various loading conditions used in these studies, which

were caused by the different experimental setups used. In our

study, we included young and middle-aged participants who

were younger than those in previous studies (17, 19).

Moreover, all participants in our study were Asian. A

quantitative comparison between these studies might be
Frontiers in Surgery 08
difficult, considering the different loading conditions and ages

of the participants.

It was reported that coupled axial translational and

rotational characteristics were different between the supine

and the upright postures in an in vitro experiment because of

body weight (27). Dehghan-Hamani et al. (28) recently noted

that moving from the supine to the upright posture altered

not only the translational kinematics (0.25–0.75 mm), but also

the rotational kinematics (0.0°–7.0°) by finite-element models.

However, few studies have reported vertebral kinematics in

the supine to the upright posture in vivo. Our data

demonstrated that the vertebra primarily rotated around the

mediolateral axis (mean, 3.9° ± 2.9°). In addition, along the

mediolateral axis, translations at L3–L4 and L4–L5 were

higher than those at the upper levels, proving that the lower

lumbar disc was mainly influenced by the lateral force. This

might be related to the fact that degenerative lumbar scoliosis

(DLS) was more likely to occur in the lower lumbar segments

than in upper lumbar segments (29, 30). The upper lumbar

vertebra had higher craniocaudal translation than the lower

segments. This phenomenon induced the discs at L3–4 and

L4–5 to have a higher speed of degeneration than those at the

upper lumbar segments, which had a worse capability of

deformation. Previous studies reported that with increased

age, the intervertebral disc would degenerate and reduce the

capability of deformation (31, 32).

As for the difference between the young and the middle-

aged groups, rotational ROMs were higher in the young group

than in the middle-aged group at L4–5, which might be

related to the fact that the ROM at L4–5 decreased with the

degeneration of the lumbar spine. This might be related to

degenerative lumbar diseases such as facet joint osteoarthritis

and DLS, which occur mainly at the L4–5 segment (33–40).

As for the coupled motion, it was interesting to note that the

middle-aged group had a higher coupled slip in the anterior–

posterior direction at L4–5 than the young group. However, at

L5–S1, the middle-aged group exhibited a higher coupled

lateral slip in the mediolateral direction. Wu et al. (23) also

found that lumbar motion segments at L4–5 and L5–S1

showed larger anteroposterior and mediolateral translations in

older subjects. These changes are related to spinal instability,

but the biomechanical mechanisms of the lumbar spine that

are related to these kinematic characteristics are unclear.

Epidemiological studies have reported that most instances of

degenerative spondylolisthesis occur at L4–5 rather than at

other levels (1, 38). Degenerative spondylolisthesis is always

accompanied by anterior slippage of the proximal vertebral

endplate. The higher anteroposterior translation at L4–5 in

older subjects might be related to disease development. In

addition, the lower lumbar segment, especially the L5–S1

segment, was more likely to cause lumbar disc herniation

than other segments do (3, 41). The higher translation in the

mediolateral direction at L5–S1 in older subjects might cause
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more shear force, which could be a biomechanical factor for

lumbar disc herniation. The higher lateral translational

motion in older subjects might be related to the fact that the

facet joints at L5–S1 were oriented more coronally than those

at the upper levels (24, 42). It has been reported that fusion

extending to the sacrum is more likely to result in

pseudarthrosis (43). Future research should focus on lumbar

biomechanical mechanisms in patients with DLS and DDD.

Our study has several limitations. First, flexion was

approximately 45° from standing to maximal flexion posture

to ensure that the targeted lumbar spine was within the field

of view, which might reduce the lumbar ROM during flexion.

Subsequently, we collected the instantaneous maximal posture

without dynamic motion of the vertebra. Data during the

process of changing posture were unavailable.

This paper reported basic data on lumbar vertebral ROM at

L1–S1 in both young and middle-aged volunteers during the

supine to upright (predominant rotation, 3.9° ± 2.9°), flexion–

extension (predominant rotation, 10.25° ± 4.66°), left–right

bending (predominant rotation, 8.74° ± 4.37°), and left–right

torsion postures (predominant rotation, 14.82° ± 6.34°). There

were higher coupled translations at L3–4 and L4–5 than at

the upper lumbar segments during the supine to the upright

posture. Moreover, vertebral rotation decreased, and coupled

translation increased in older subjects. Specifically, compared

with their younger counterparts, older subjects had a higher

anteroposterior translation at the L4–5 segment and higher

mediolateral translation at the L5–S1 segment. These findings

provide basic data for making comparisons of spinal

pathology between age groups. In addition, this study might

be useful for contemporary implant design to prevent adjacent

segment degeneration and could provide a more accurate

guidance for studying the ROM of the trunk during

rehabilitation.
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