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of Radiology, Pohang Stroke and Spine Hospital, Pohang, South Korea

Background: Therapeutic decisions for degenerative cervical myelopathy
(DCM) are complex and should consider various factors. We aimed to
develop machine learning (ML) models for classifying expert-level
therapeutic decisions in patients with DCM.
Methods: This retrospective cross-sectional study included patients diagnosed
with DCM, and the diagnosis of DCM was confirmed clinically and
radiologically. The target outcomes were defined as conservative treatment,
anterior surgical approaches (ASA), and posterior surgical approaches (PSA).
We performed the following classifications using ML algorithms: multiclass,
one-versus-rest, and one-versus-one. Two ensemble ML algorithms were
used: random forest (RF) and extreme gradient boosting (XGB). The area
under the receiver operating characteristic curve (AUC-ROC) was the primary
metric. We also identified the variable importance for each classification.
Results: In total, 304 patients were included (109 conservative, 66 ASA, 125
PSA, and 4 combined surgeries). For multiclass classification, the AUC-ROC
of RF and XGB models were 0.91 and 0.92, respectively. In addition, ML
models showed AUC-ROC values of >0.9 for all types of binary
classifications. Variable importance analysis revealed that the modified
Japanese Orthopaedic Association score and central motor conduction time
were the two most important variables for distinguishing between
conservative and surgical treatments. When classifying ASA and PSA, the
number of involved levels, age, and body mass index were important
contributing factors.
Conclusion: ML-based classification of DCM therapeutic options is valid and
feasible. This study can be a basis for establishing generalizable ML-based
surgical decision models for DCM. Further studies are needed with a large
multicenter database.
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Introduction

Degenerative cervical myelopathy (DCM) is a disease that

causes progressive and nontraumatic cervical spinal cord

compression due to degenerative changes in the cervical spine

(1). Patients with DCM present a broad spectrum of

symptoms, ranging from subtle sensory neuropathic

symptoms to motor weakness with functional disability,

depending on disease progression and severity (2). Patients

with DCM require early diagnosis and management;

specifically, it is essential to determine an appropriate

therapeutic option according to the disease severity while

minimizing damage to the spinal cord (3, 4).

There have been studies on determining the appropriate

treatment options for DCM (5). A randomized controlled study

of patients with mild-to-moderate DCM (modified Japanese

Orthopaedic Association [mJOA] score >12) conducted by

Kadanke et al. (6) showed that surgical treatment was not

superior to conservative treatment. In contrast, studies have

also suggested that surgical treatment demonstrated better

functional recovery and patient satisfaction in patients with

more severe DCM (7). In the guidelines presented in 2017,

Fehlings et al. (8) argued that early diagnosis and surgical

treatment are necessary for moderate-to-severe DCM. On the

other hand, they reported that there was a knowledge gap in

the selection of therapeutic options for mild DCM. Meanwhile,

studies on the optimal surgical approach method in patients

with DCM who decided to undergo surgery have also been

reported (9). Several studies have compared outcomes after

anterior and posterior surgical approaches (ASA and PSA,

respectively) for DCM; however, no clear evidence of

superiority has been established to date (5). A systematic

review also concluded that there are no apparent differences

between surgical methods in terms of neurologic recovery (10).

Consequently, there has been a debate regarding the

therapeutic decision for DCM (11). In addition, the surgical

indications can be slightly different depending on the surgeon’s

practice style, preference, and health insurance system (12, 13).

Machine learning (ML) algorithms are actively applied to

research for medical decisions because of their excellent

classification and prediction (14). Specifically, ML algorithms

can handle data with huge samples and use clinical information

to make the medical decision-making process more efficient

(15). In line with this, Park et al. (16) presented a disease

severity classification model to minimize unnecessary

electrodiagnostic testing in patients with carpal tunnel

syndrome. Yoo et al. (17) reported an ML decision model for

the selection of an optimal laser refractive surgery method. In

addition, studies have applied ML to DCM. Merali et al. (18)

predicted the 6-, 12-, and 24-month outcomes in 757 patients

with DCM and showed an area under the receiver operating

characteristic curve (AUC-ROC) of approximately 0.70. Hopkins

et al. (19) presented models predicting DCM diagnosis and
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mJOA scores using a deep neural network in 14 patients with

DCM and 14 healthy controls. In these studies, ensemble ML

algorithms presented valid and accurate results, proving their

clinical usefulness. As a result, ML-related research in the

clinical field has been growing rapidly. Nevertheless, an ML

model that classifies the therapeutic decisions in DCM has not

yet been reported to the best of our knowledge.

In this context, we developed an ML-based model for

classifying expert-level therapeutic decisions using ensemble

ML algorithms in patients with DCM to verify their

performance. In addition, we investigated the contributing

factors involved in the therapeutic decisions in DCM through

feature importance results derived from optimal ML

classification models.
Materials and methods

Study design

This single-center, retrospective study enrolled patients

diagnosed with DCM between January 2017 and December

2021. The dataset included patients of experienced

neurosurgeons in our hospital who also co-authored this

study. This study was reviewed and approved by the

institutional review board of Pohang Stroke and Spine

Hospital (PSSH-0475-202202-HR-007-01). It was performed

in compliance with the Declaration of Helsinki and the

International Conference on Harmonization-Good Clinical

Practice Guidelines. Informed consent was not required owing

to the retrospective nature of the study design.

The diagnosis of DCM was confirmed when it satisfied the

following criteria: clinical manifestation, functional level, and

cervical cord compression grade on magnetic resonance

imaging (MRI). We utilized patient information—

demographic, clinical, radiological, and electrodiagnostic

characteristics—as variables for ML classification based on

electrical health records (EHR). Therefore, variable definitions

were primarily based on formats recorded in the EHR.

Detailed information on each variable is provided in

Supplementary Table S1.

We performed an ML algorithm-based ensemble

classification using the extracted variables. The ground truth

was set based on an experienced neurosurgeon’s decision. We

proceeded with three types of classification—multiclass, one-

versus-rest, and one-versus-one—according to the target

outcomes (Figure 1).
Patients and clinical assessments

DCM-related clinical manifestations were defined as

follows: presence of upper motor neuron signs, clumsy hands,
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FIGURE 1

Schematic architecture of the study design. ASA, anterior surgical approaches; DCM, degenerative cervical myelopathy; MC, Muhle’s classification;
mJOA; modified Japanese Orthopaedic Association score; PSA, posterior surgical approaches.
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motor weakness, atrophic muscle change, progressive gait

disturbance, sensory loss with altered proprioception,

paresthesia, and bowel or bladder symptoms. Patients with at

least one or more symptoms and signs, and a functional

decline of ≤15 on the mJOA score were included in the

confirmed cases of DCM. An experienced neurosurgeon or

physiatrist enquired and evaluated the patient’s symptoms and

recorded the score. The exclusion criteria for this study were

as follows: (1) brain lesion or brain surgery history, (2)

history of cervical spine surgery, (3) previous thoracic

myelopathy or cauda equina syndrome, (4) cervical cord

compression lesion lower than the C6/7 level, (5) severe

carpal tunnel syndrome, and (6) missing values.

During the first visit, in the period in which DCM was

diagnosed, we measured the patient’s numerical rating scale

(NRS) of the neck and arm pain and recorded the subjective

symptom duration in months. We identified comorbidities via

patient or guardian interviews, medical records, and

medication history.

The target classes were conservative treatment, ASA, and

PSA. ASA included anterior cervical discectomy and fusion,

anterior cervical corpectomy and fusion, and cervical

arthroplasty. PSA included laminoplasty and laminectomy,

with or without fusion. Considering poor compliance or

transferred patients, we set the ground truth based on the
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decision of human experts, not on whether the actual surgery

was performed.
Radiologic features

Cervical MRI scans were performed using a 1.5 T Philips

Achieva (Philips Medical Systems, Eindhoven, Netherlands).

Imaging findings were analyzed at the time of DCM diagnosis

and re-reviewed by a radiologist for this study as well. In case

of discrepancy during the retrospective review, it was finally

decided by the consensus of the radiologists and surgeon. The

Muhle’s classification (MC) grade, which was interpreted

based on the most stenotic level in the midsagittal view of the

MRI, was used as an index for cervical spinal cord

compression (20). In addition, we counted the number of

levels with an MC grade of I or higher. Lesion types were

classified as ossification of the posterior longitudinal ligament

(OPLL), disc herniation, spondylolisthesis, or others

(including combined pathologies). We also identified the

presence of high signal intensity (HSI) on T2 MRI.

We drew the k-line in the midline of the sagittal view of the

cervical radiograph, which was recorded in the standing state to

confirm cervical spine alignment (21). The k-line evaluation

using a radiograph was retrospectively reviewed by an
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experienced radiologist and neurosurgeon. In case of

discrepancy, it was finally decided by the consensus of the

two interpreters.
Electrodiagnostic evaluation

All electrodiagnostic tests were performed using a Sierra Wave

(Cadwell Laboratories Inc., Kennewick, WA, USA). We conducted

transmagnetic stimulation using MagPro Compact and a circular

coil with an outer diameter of 12 cm (MagVenture Inc.,

Alpharetta, GA, USA). Stimulation for motor-evoked potential

(MEP) was performed at the cortical and cervical levels and

recorded from the abductor pollicis brevis muscle. Cortex

stimulation was applied to the Cz region according to the

international 10–20 system, and cervical stimulation was

performed at the spinous process at the C7 level to obtain

peripheral motor conduction time. The central motor

conduction time (CMCT) was then calculated as follows (22):

CMCT msð Þ ¼ cortical MEP onset latency

� cervical MEP onset latency:

We used the CMCT value as a variable for the symptomatic

side and a slower CMCT value for bilateral symptoms. CMCT

was divided into four categories: normal, <11.5 ms; mildly

delayed, 11.5 ≤CMCT <15; definitely delayed, ≥15; and not

evoked MEP.

We evaluated the upper extremity nerve conduction study

and electromyography in all patients for differential diagnosis

and identified radiculopathy, which was confirmed by

electromyography. We diagnosed concomitant radiculopathies

with denervation potentials in two or more muscles

innervated by different peripheral nerves in the specific

myotome (23). All electrodiagnostic tests were performed and

interpreted by experienced physiatrists.
Statistical analysis

We used R software version 4.1.3 (R Core Team,

R Foundation for Statistical Computing, Vienna, Austria) and

GraphPad Prism 9.3.1 (GraphPad Software, San Diego, CA,

USA) for statistical analyses. Continuous variables were

analyzed using Shapiro–Wilk normality test and expressed as

mean ± standard deviation or median (interquartile range).

Categorical variables are expressed as frequency (proportion).

For comparative analysis between the conservative, ASA, and

PSA groups, one-way analysis of variance with Bonferroni’s

multiple comparison test or Kruskal-Wallis test with Dunn’s

multiple comparisons test was applied to continuous variables,
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and chi-squared trend test was used for categorical variables.

Statistical significance was set at p < 0.05.
Machine learning processing

ML modeling was performed based on the “caret” package

of the R software (24). The ML processing in this study is

shown in Figure 2. The R code in this study is available in

the Online supplementary material. We confirmed variables

with near-zero variance and multicollinearity (correlation

coefficient >0.7) for variable selection. Subsequently, centering

and scaling were performed for numeric variables, and one-

hot encoding was performed for categorical variables.

The whole dataset was randomly split into 75%-training and

25%-test sets. In the binary classifications, the target class-

balanced training set was additionally formed by applying the

synthetic minority oversampling technique, after which we

drove the ML algorithms. Random forest (RF) and extreme

gradient boosting (XGB), which are representative ensemble

ML algorithms, were used (25, 26). Five-fold cross-validation

was repeated 50 times to generate the optimal training model.

Random and grid search methods were applied for

hyperparameter tuning. The tuned hyperparameter values

applied to each classification are presented in Supplementary

Table S2. External validation was performed by applying the

training model generated for each algorithm to the test set.

AUC-ROC and overall accuracy were used as the main metrics

for multiclass classification. In the multiclass classification,

AUC-ROC was defined as the micro-average value calculated

by converting the multiclass into the sum of binary

classifications using the “multiROC” package of R software

(27). In the binary classifications, AUC-ROC, F1 measure, and

area under the precision-recall curve (AUC-PR) were evaluated

using the “MLeval” package of the R software (28).
Results

Baseline characteristics

A total of 304 patients were included (109 conservative and

195 surgical treatments). ASA was chosen in 66 patients, PSA in

125, and a combined approach was selected as the surgical

treatment in four patients.

The PSA group was significantly older than the other two

groups (p < 0.001), and the proportion of men was relatively

higher (p = 0.023). In addition, the proportion of patients

covered by medical-aid and living in rural areas in the PSA

group was significantly higher (p = 0.045 and p < 0.001,

respectively). Meanwhile, the ASA group showed a

significantly lower body mass index (BMI) value of 23.5
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FIGURE 2

Machine learning (ML) process for this study. Five-fold cross-validation was repeated 50 times on the preprocessed training set to generate an
optimal training model. Afterwards, test prediction was performed on the test set with the training model of each ML algorithm. RF, random
forest; XGB, extreme gradient boosting.
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(21.3–25.3) kg/m2 compared to 24.6 (23.0–26.6) kg/m2 in the

PSA group (p = 0.036) (Table 1 and Supplementary Table S3).

The PSA group had a significantly longer symptom

duration than the other two groups (p < 0.001). The mJOA

score was 12.0 (11.0–13.0) in the ASA and PSA groups, which

was significantly lower than 14.0 (14.0–14.0) in the

conservative group (p < 0.001). Moreover, the bilateral

symptom rate was the highest in the PSA group (p = 0.013).

The involved level count was the highest in the PSA group at

3.0 (3.0–4.0) levels, and lowest in the ASA group at 1.0 (1.0–

2.0) level (p < 0.001). Regarding the lesion type, the disc

herniation rate was relatively higher in the ASA group, while

the rates for OPLL, spondylolisthesis, and other/combined

etiology were relatively higher in the PSA group (p < 0.001).

The surgical treatment group showed a higher rate of HSI on

T2 images, higher MC grade, and lower rate of the k-line (+)

cases (p < 0.001, p < 0.001, and p = 0.003, respectively).

Further, the surgical treatment group presented more severe

CMCT deterioration and a higher rate of radiculopathy (p <

0.001 and p = 0.026, respectively) (Table 2 and

Supplementary Table S3).
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Multiclass classification

When multiclass classification was performed between the

conservative, ASA, and PSA groups, the test prediction AUC-

ROC of the RF and XGB models were 0.91 and 0.92,

respectively. The overall accuracies of the RF and XGB models

were 76.2% and 74.6%, respectively (Table 3). The confusion

matrix of multiclass classification for each algorithm is

presented in Supplementary Table S4.
Binary classifications (one-versus-rest
and one-versus-one)

The results of the binary classification of each algorithm are

summarized in Table 4. The confusion matrix for each

classification is presented in Supplementary Table S5.

In the classification model between conservative and

surgical treatments, RF and XGB showed AUC-ROC values of

0.94 and 0.93, respectively. The mJOA score and normal
frontiersin.org
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TABLE 2 Disease-related features.

Conservative
(n = 109)

ASA
(n = 66)

PSA
(n = 125)

p-value

Symptom duration,
months

3.0 (2.0–6.0) 3.5
(2.0–12.0)

10.0
(3.0–24.0)

<0.001

NRS, neck 3.0 (2.0–5.0) 4.0 (3.0–6.0) 3.0 (2.0–5.0) 0.099

NRS, arm 4.0 (3.0–5.0) 5.0 (3.0–7.0) 4.0 (3.0–6.0) 0.146

mJOA score 14.0 (14.0–14.0) 12.0
(11.0–13.0)

12.0
(11.0–13.0)

<0.001

Symptom side, n (%) 0.013

Right 25 (22.9) 11 (16.7) 12 (9.6)

Left 32 (29.4) 13 (19.7) 28 (22.4)

Bilateral 52 (47.7) 42 (63.6) 85 (68.0)

Number of involved levels 2.0 (1.0–3.0) 1.0 (1.0–2.0) 3.0 (3.0–4.0) <0.001

Lesion type, n (%) <0.001

OPLL 44 (40.4) 14 (21.2) 41 (32.8)

Disc herniation 56 (51.4) 33 (50.0) 17 (13.6)

Spondylolisthesis 6 (5.5) 12 (18.2) 39 (31.2)

Others or combined 3 (2.8) 7 (10.6) 28 (22.4)

Most stenotic level,
n (%)

0.082

C1/2 0 (0.0) 0 (0.0) 5 (4.0)

C2/3 2 (1.8) 0 (0.0) 1 (0.8)

C3/4 11 (10.1) 8 (12.1) 18 (14.4)

C4/5 19 (17.4) 20 (30.3) 30 (24.0)

C5/6 47 (43.1) 28 (42.4) 49 (39.2)

C6/7 30 (27.5) 10 (15.2) 22 (17.6)

HSI on T2 image, n (%) 20 (18.3) 35 (53.0) 90 (72.0) <0.001

Muhle’s classification,
n (%)

<0.001

Grade I 33 (30.3) 4 (6.1) 4 (3.2)

TABLE 1 Baseline characteristics.

Conservative
(n = 109)

ASA
(n = 66)

PSA
(n = 125)

p-value

Age, years 55.9 ± 11.4 57.9 ± 13.1 64.0 ± 10.9 <0.001

Male, n (%) 61 (56.0) 40 (60.6) 91 (72.8) 0.023

BMI, kg/m2 24.0
(22.2–26.7)

23.5
(21.3–25.3)

24.6
(23.0–26.6)

0.036

Medical-aid, n (%) 3 (2.8) 2 (3.0) 12 (9.6) 0.045

Urban residence,
n (%)

75 (68.8) 39 (59.1) 53 (42.4) <0.001

Comorbidities, n (%)

Hypertension 34 (31.2) 25 (37.9) 54 (43.2) 0.167

Diabetes 15 (13.8) 27 (21.6) 13 (19.7) 0.287

Dyslipidemia 14 (12.8) 9 (13.6) 20 (16.0) 0.777

Heart problemsa 5 (4.6) 0 (0.0) 10 (8.0) 0.053

Degenerative
lumbar disease

28 (25.7) 23 (34.8) 56 (44.8) 0.010

ASA, anterior surgical approaches; BMI, body mass index; PSA, posterior

surgical approaches.
aSymptomatic arrhythmia or coronary artery disease.
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CMCT category were the two most important variables in both

RF and XGB models for classifying conservative and surgical

groups. Age and symptom duration were also included in the

top five important features in both models (Table 5).

The ensemble ML algorithms demonstrated outstanding

performance in ASA and PSA classification; both RF and XGB

showed AUC-ROC of 0.99 and 0.96, respectively. The most

important variable in classifying ASA and PSA was confirmed

to be level count in both the RF and XGB models. In addition,

age, BMI, and subjective neck pain were identified as the major

common features in both models (Table 5).

Grade II 63 (57.8) 35 (53.0) 50 (40.0)

Grade III 13 (11.9) 27 (40.9) 71 (56.8)

K-line (+), n (%) 104 (95.4) 52 (78.8) 102 (81.6) 0.003

APB-CMCTa, n (%) <0.001

Normal 96 (88.1) 19 (28.8) 20 (16.0)

Mildly delayed 10 (9.2) 24 (36.4) 39 (31.2)

Definitely delayed 3 (2.8) 17 (25.8) 48 (38.4)

Not evoked MEP 0 (0.0) 6 (9.1) 18 (14.4)

Radiculopathy, n (%) 29 (26.6) 30 (45.5) 49 (39.2) 0.026

APB, abductor pollicis brevis; ASA, anterior surgical approaches; CMCT,

central motor conduction time; HSI, high signal intensity; MEP, motor

evoked potential; mJOA, modified Japanese Orthopaedic Association scale;

NRS, numerical rating scale of pain; OPLL, ossification of the posterior

longitudinal ligament; PSA, posterior surgical approaches.
aNormal, CMCT <11.5 ms; mildly delayed, 11.5 ≤CMCT <15; and definitely

delayed, CMCT ≥15.
Discussion

In this study, we suggest a strategy for therapeutic decision-

making by applying an ML model in patients with DCM. Our

results demonstrated that the proposed ML models showed

AUC-ROC values of >0.9 in all types of classifications,

proving their outstanding performance. There has been an

unmet need for personalized, cost-effective surgical decisions

and treatment of DCM (29). As the first attempt to utilize an

ML-based approach for therapeutic selection in patients with

DCM, this study is significant because we present a direction

for surgical decisions using a novel method. Furthermore, we

presented the possibility of a comprehensive decision process

for DCM therapeutic options using various clinically available

determinants, which is an advantage of the ML process,

rather than relying on any specific parameter. Consequently,

our ML classification models can be beneficial for spine

surgeons in choosing the most effective and proper surgical

approach for DCM.
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Our variable importance results provide empirical

information on the contributing factors that affect the

treatment method of DCM at the experienced-neurosurgeon

level. In addition, some of the strengths of this study are the

creation of various types of classification models and analysis
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TABLE 3 Results of multiclass classification.

Metric RF XGB

AUC-ROCa 0.91 0.92

Overall accuracy (%) 76.2 74.6

AUC-ROC, area under the receiver operating characteristic curve; RF, random

forest; XGB, extreme gradient boosting.
aCalculated by micro-averaging method.
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of the importance of these factors from multiple angles. In our

ML models, the mJOA score and CMCT were the most critical

factors contributing to the classification of conservative and

surgical treatments. Previous studies have also attempted to

identify the factors that determine conservative treatment in

patients with DCM. Rhee et al. (11) suggested that functional

indicators such as the mJOA score, time for a 10-meter walk,

and activities of daily living could determine non-operative

treatment in patients with DCM through their systematic

review, which was consistent with our results. Yoshimatsu

et al.’s (30) multivariable logistic regression model showed that

the patient’s disease duration, one of the top-five important

variables for both our models, should primarily be considered

when deciding conservative treatment for DCM. Meanwhile, it

was reported that CMCT correlated with the degree of spinal

cord compression reported in imaging findings (31, 32). CMCT

has been known as one of the essential diagnostic tools in

myelopathy because it reflects mechanical compression as well

as the functional integrity of the motor pathway (33). In
TABLE 4 Results of binary classifications.

Classification Algorithm AUC-ROC F1 AUC-PR

Conservative vs. Surgical RF 0.94 0.93 0.96
XGB 0.93 0.93 0.95

ASA vs. PSA RF 0.99 0.94 0.96
XGB 0.96 0.80 0.82

ASA, anterior surgical approaches; AUC-PR, area under the precision-recall curve; AU

predictive value; PSA, posterior surgical approaches; RF, random forest; XGB, extrem

TABLE 5 The top five important variables in each model.

Order Conservative vs. Surgical

Random forest Extreme gradient boosting

1 mJOA score mJOA score

2 Normal CMCT Normal CMCT

3 HSI Age

4 Symptom duration BMI

5 Age Symptom duration

ASA, anterior surgical approaches; BMI, body mass index; CMCT, central motor cond

Association scale; NRS, numeric rating scale of pain; PSA, posterior surgical approac
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particular, ML models that distinguish the surgical treatment

group from the conservative group indicated normal CMCT as

the critical feature in our results.

Through ML models, this study also revealed the factors in

determining the ASA and PSA in the patient group for which

surgical treatment was decided. In 2019, the World Federation

of Neurosurgical Societies (WFNS) spine committee

recommended the surgical approaches for DCM; they

reported essential features to determine between ASA and

PSA, such as the number of compression levels, cervical

posture, and etiology of myelopathy (34, 35). In our results, it

is notable that the functional level or CMCT findings were

not important features in determining the approach method

in patients who had already decided on surgery. Instead, the

number of levels involved was the most important

contributing factor in both ML models. Age was the second

important variable in the models. In addition, BMI and

subjective neck pain were variables with relatively high

importance in the classification model between ASA and PSA.

We inferred that these could be due to the characteristic

advantages and disadvantages of ASA and PSA. One of the

advantages of ASA is the reduced postoperative neck pain

through muscle-sparing (36). In addition, this method allows

for the correction of the kyphotic curvature of the cervical

spine and the removal of anterior pathology such as disc

herniation (37). However, ASA is preferred only for lesions

confined to less than three levels. Moreover, this approach

could be more difficult in extremely obese patients (38), and
Sensitivity (%) Specificity (%) Precision (%) NPV (%)

89.6 86.7 95.6 72.2
89.1 94.1 97.6 76.2

100.0 88.0 76.9 100.0
100.0 80.0 66.7 100.0

C-ROC, area under the receiver operating characteristic curve; NPV, negative

e gradient boosting.

ASA vs. PSA

Random forest Extreme gradient boosting

Level count Level count

Age Age

NRS, neck BMI

BMI NRS, neck

Disc herniation lesion Symptom duration

uction time; HSI, high signal intensity; mJOA, modified Japanese Orthopaedic

hes; RF, random forest; XGB, extreme gradient boosting.
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severe conditions such as vascular or aerodigestive

complications may also occur in rare cases (39). In contrast,

one of the most significant advantages of PSA is that wide

decompression is possible. Furthermore, it is particularly

preferred for the treatment of cervical cord compressive

lesions across multiple levels—more than three levels (40).

This method can preserve the lordosis of the cervical spine;

however, it is vulnerable to instability (41). However, despite

considering these factors, in our ML model classifying ASA

and PSA, the cervical spine alignment or presence of

radiculopathy unexpectedly had lower importance. Since this

study targeted a group of patients with various degenerative

cervical pathologies, we inferred that the number of lesion

levels played a crucial role in the decision rather than the

presence of cervical kyphosis or radiculopathy. Meanwhile,

since we have applied strict criteria for defining k-line (−) or
concomitant radiculopathy, their proportion was measured

lower than that in other studies (42, 43); therefore, we

inferred the possibility that they did not show higher

importance. Consequently, it is necessary to consider various

factors to determine the treatment direction for patients with

DCM (35). The ML models proposed in this study are

significant because they can support surgeons in making the

complicated decision-making process more readily, efficiently,

and tailored.

This study applied ML algorithms that utilize the tree-based

ensemble learning method (44). RF is an advanced tree-based

ensemble model that combines multiple decision trees by the

bagging algorithm and effectively reduces the variance error

(45). XGB, one of the most advanced ensemble algorithms

using boosting, also shows superior performance compared to

other traditional ML algorithms (46). It is a gradient boosting

method-based ensemble algorithm with improved scalability

and performance (47). These ensemble algorithms are

currently the models of choice in many ML-based clinical

studies on tubular data analysis (48, 49). Thus, we utilized

these two algorithms in our ML processing. In our

classification models, RF slightly outperformed XGB.

This study has a few limitations. First, it was a single-center

study with relatively small sample size. Therefore, the results have

limited generalizability. Second, as a retrospective study, since we

performed ML modeling using EHR accumulated over a

relatively long duration, some variables might show ambiguity

in definitions. Third, we presented a model to classify the first

therapeutic decision from DCM diagnosis; however, long-term

follow-up data after surgery were not provided.

We applied ML to the therapeutic decision of DCM for the

first time. Despite several limitations, this study can be a basis

for the generalizable clinical decision model using ML

algorithms in the future and referred to as a cornerstone

study for achieving this purpose for many researchers. To

overcome the limitations and obtain a valid and more

generalizable ML model, a large sample dataset from a
Frontiers in Surgery 08
systematic, multicenter, and multi-ethnic-based study is

needed to utilize the advantages of ML. Moreover, the dataset

should include long-term outcomes to present the prognostic

results of ML-based classification models.
Conclusion

This study presented valid and feasible ML classification

models for the selection of therapeutic options in patients

with DCM. Our results can provide a rational basis for

human experts’ clinical decisions and encourage efficient and

tailored decision-making. Nevertheless, further large-scale

studies are required to develop a more generalizable ML model.
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