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A more novel and powerful
prognostic gene signature of
lung adenocarcinoma
determined from the immune
cell infiltration landscape
Chao Ma* , Feng Li, Zhanfeng He and Song Zhao

Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China

Background: Lung adenocarcinoma (LUAD) is the leading histological subtype
of lung cancer worldwide, causing high mortality each year. The tumor
immune cell infiltration (ICI) is closely associated with clinical outcome with
LUAD patients. The present study was designed to construct a gene
signature based on the ICI of LUAD to predict prognosis.
Methods: Downloaded the raw data of three cohorts of the TCGA-LUAD,
GSE72094, and GSE68465 and treat them as training cohort, validation
cohort one, and validation cohort two for this research. Unsupervised
clustering detailed grouped LUAD cases of the training cohort based on the
ICI profile. The univariate Cox regression and Kaplan–Meier was adopted to
identify potential prognostic genes from the differentially expressed genes
recognized from the ICI clusters. A risk score-based prognostic signature
was subsequently developed using LASSO-penalized Cox regression analysis.
The Kaplan-Meier analysis, Cox analysis, ROC, IAUC, and IBS were
constructed to assess the ability to predict the prognosis and effects of
clinical variables in another two independent validation cohorts. More
innovatively, we searched similar papers in the most recent year and made
comprehensive comparisons with ours. GSEA was used to discover the
related signaling pathway. The immune relevant signature correlation
identification and immune infiltrating analysis were used to evaluate the
potential role of the signature for immunotherapy and recognize the critical
immune cell that can influence the signature’s prognosis capability.
Results: A signature composed of thirteen gene including ABCC2, CCR2,
CERS4, CMAHP, DENND1C, ECT2, FKBP4, GJB3, GNG7, KRT6A, PCDH7,
PLK1, and VEGFC, was identified as significantly associated with the
prognosis in LUAD patients. The thirteen-gene signature exhibited
independence in evaluating the prognosis of LUAD patients in our training
and validation cohorts. Compared to our predecessors, our model has an
Abbreviations

LASSO, least absolute shrinkage and selection operator Cox regression model; TCGA, The Cancer
Genome Atlas; LUAD, lung adenocarcinoma; DEGs, differentially expressed genes; ROC, receiver
operating characteristic; AUC, Area under the ROC curve; IBS, integrated Brier score; IAUC, integrated
AUC; IRS, immune relevant signature; GSEA, Gene Set Enrichment Analysis; TICs, tumor-infiltrating
immune cells; ICI, immune cell infiltration; HR, hazard ratio; CI, confidence interval; BS, Brier score;
PMID, PubMed ID; GSEA, Gene Set Enrichment Analysis; NES, Normalized Enrichment Score; NOM,
Nominal; FDR, False Discovery Rate.
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advantage in predictive power. Nine well know immunotherapy targets, including TBX2,
TNF, CTLA4, HAVCR2, GZMB, CD8A, PRF1, GZMA, and PDCD1 were recognized
correlating with our signature. The mast cells were found to play vital parts in backing
on the thirteen-gene signature’s outcome predictive capacity.
Conclusions: Collectively, the current study indicated a robust thirteen-gene signature
that can accurately predict LUAD prognosis, which is superior to our predecessors in
predictive ability. The immune relevant signatures, TBX2, TNF, CTLA4, HAVCR2,
GZMB, CD8A, PRF1, GZMA, PDCD1, and mast cells infiltrating were found closely
correlate with the thirteen-gene signature’s power.
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Introduction

Lung cancer was estimated to account for about 1/4 of all

cancer deaths in 2021 (1). Non-small cell lung cancer

(NSCLC) accounts for 85% of all lung cancers, mainly

including lung squamous cell carcinoma (LUSC) and lung

adenocarcinoma (LUAD), of which LUAD is the most

common subtype of NSCLC (1). Although surgery,

radiotherapy, chemotherapy, and immunotherapy have made

significant progress in coping with LUAD, the prognosis of

LUAD patients is still unsatisfactory due to tumor cell

invasion and adverse reactions during treatment (2). The

prognosis of LUAD is related to many factors, such as TNM

stage, tumor differentiation, and pathological subtypes. These

factors are widely used to guide clinical decision-making but

are still insufficient to accurately assess the prognosis of

LUAD (2). Therefore, it is necessary to explore a clinically

valid diagnostic and prognostic biomarker to understand the

underlying molecular mechanisms of the occurrence and

development of LUAD, and then to develop more promising

individualized treatment strategies for LUAD.

Recently, the tumor microenvironment (TME) has attracted

much attention. Accumulating evidence suggests that a

comprehensive understanding of the molecular composition

of LUAD requires a focus not only on tumor cells but also on

the TME (3, 4). The TME is the environment surrounding

the tumor, including surrounding blood vessels, immune cells,

fibroblasts, signaling molecules, and the extracellular matrix

(3, 4). Tumors are closely related to the surrounding

microenvironment and constantly interact with each other.

The TME contains multiple cell populations, signaling factors,

and structural molecules that interact with tumor cells and

support various stages of tumorigenesis (3, 4). Vast studies on

TME have displayed that infiltrating immune cells play a key

role in the development and progression of tumor and

response to immunotherapy (5, 6). Recent research shows that

tumor immune cell infiltration (ICI) is inextricably linked to

the outcomes in lung cancer patients (7). A growing body of

research suggests that LUAD can be regulated by interfering
02
with inflammation and inflammatory signaling pathways (8).

Understanding tumor growth, angiogenesis, and progression

in the LUAD tumor microenvironment will contribute to

developing more effective antitumor vaccines and other

treatment strategies.

However, the detailed interaction between the immune cells

infiltrating and LUAD outcomes has not been elucidated. Also,

so far, no one has attempted to use ICI to construct a LUAD

prognostic gene signature. The present work grouped patients

using unsupervised clustering based on the ICI profile and dig

into these ICI differentials for a prognostic model. More

importantly, we tested the stability and broad applicability of

our signature in independent cohorts and compared it with

the findings obtained by our predecessors, which confirmed

the superiority of our signature. At the end of the study,

functional annotation analysis, immune signature correlation

analysis, and 22 tumor-infiltrating immune cells (TICs)

analysis revealed the potential functions and targets of our

signatures in detail.
Materials and methods

Mining public databases

The Cancer Genome Atlas (TCGA) is a project, begun in

2005, to catalogue genetic mutations responsible for cancer,

using genome sequencing and bioinformatics (9). The project

TCGA-LUAD contains LUAD samples and their accordingly

clinical data. We obtained the level 3 gene expression and

clinical data of patients in the project TCGA-LUAD on the

GDC Xena platform (https://gdc.xenahubs.net). We searched

the GEO database (10) (https://www.ncbi.nlm.nih.gov/geo/)

using the keyword “lung adenocarcinoma” and looked for the

potential candidates using the following screening criteria:

(1) total RNA expression data is available; (2) total LUAD

cases that contain survival data are greater than 390. Finally,

datasets named GSE72094 and GSE68465 were selected, and

their gene expression data and clinical characteristics were
frontiersin.org

https://gdc.xenahubs.net
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fsurg.2022.1015263
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Ma et al. 10.3389/fsurg.2022.1015263
acquired from the GEO portal. For detail, the dataset GSE72094

was analyzed on the GPL15048 platform (Rosetta/Merck

Human RSTA Custom Affymetrix 2.0 microarray,

HuRSTA_2a520709.CDF), and the dataset GSE68465 was

performed on the GPL96 platform (HG-U133A, Affymetrix

Human Genome U133A Array). For the datasets selected

above, we only collected the tumor sample that contain gene

expression data and survival data for our study. The eligible

patients in the TCGA-LUAD, GSE72094, and GSE68465 were

gathered into and taken as training cohort, validation cohort

one, and validation cohort two, respectively.
Consensus clustering for tumor-
infiltrating immune cells and differentially
expressed genes (DEGs) identification

CIBERSORT is an analytical tool in the Alizadeh laboratory

developed by Newman et al. (11). This tool has been extensively

studied and reported. It can estimate the abundance of member

cell types in mixed cell populations using only gene expression

data (11). Tumor-infiltrating leukocytes are immune cells

surrounding tumor cells. Studies have shown that tumor-

infiltrating leukocytes have properties that predict survival

outcomes in different cancers (12). Developed by Kosuke

Yoshihara and colleagues, the ESTIMATE algorithm uses gene

expression data to output estimated levels of infiltrating

stromal and immune cells and estimated tumor purity (13).

CIBERSORT immune fractions and leukocyte fractions of the

training cohort were download from one previous published

study (14). We adopt the “ESTIMATE” R package to estimate

the immune and stromal score for each case in training

cohort. We merged the CIBERSORT immune fractions,

leukocyte fraction, and ESTIMATE scores of each LUAD case

as its the ICI pattern. Subsequently, the LUAD cases were

clustered by the “ConsensusClusterPlus” R package developed

by Matthew D. Wilkerson (15), the repeat time was set to

“1,000”, the clustering algorithm was set to “Pam”, and the

distance measure was set to “Euclidean distances”. Based on

the ICI subgroups generated by the above analysis, we called

the “limma” R package to identify the DEGs between different

ICI subgroups, and the operating parameters were set to

|log2(fold-change)| > 0.2 and p-value < 0.05.
Construction and validation of the
prognosis model

We evaluated the prognostic performance of DEGs by a

univariate Cox regression analysis (via the “survival” R package)

in the training cohort (p-value < 0.05). The LASSO is a regression

analysis method that performs both variable selection and

regularization to enhance the prediction accuracy and
Frontiers in Surgery 03
interpretability of the resulting statistical model. We deployed the

LASSO Cox regression for constructing a prognostic model. In the

actual operation, we called the “glmnet” R package to perform the

LASSO algorithm to select, shrink, and identify potential

prognostic genes (16–19). Ten-fold cross-validation was applied to

tune the optimal value of the penalty parameter. The R package

would be outputted the selected genes with coefficients. The

formula for computing the risk score is as follows (n: hub gene,

Expi: expression level, βi: coefficient):

Risk score ¼
Xn

i

Expi �bi

Patients in each studied cohort were divided into high/low risk

groups according to the median risk score. Kaplan–Meier survival

curve analysis was used to compare the overall survival of the two

groups, and univariate and multivariable Cox analyses were used to

evaluate the predictive value of gene signature. Kaplan–Meier plots

were constructed by the integration of the “survival” and

“survminer” R packages. Cox models, including univariate and

multivariable were built via the “survival” R package. In

addition, the ROC (20), integrated AUC (IAUC) (20) and

integrated Brier score (IBS) (21) were performed for confirming

the signature’s prognosis capability via the R packages of

“timeROC”, “survival” “Rcpp”, “ranger”, and “survival”.
Comparison of our gene signature with
previously published ones

To compare whether our findings are good or bad

compared to our predecessors, we looked for candidate

research from PubMed (https://pubmed.ncbi.nlm.nih.gov/) to

compare. In detail, we used the search module of PubMed

and filtered the results with the following criteria: (1) the

keyword “gene signature prognosis lung adenocarcinoma”;

(2) according to Clarivate Journal Citation Reports Year 2020,

screened out studies with an impact factor greater than 6;

(3) The publication date of the article was from September 1,

2020 to September 1, 2021; (4) Candidate genes and

coefficients were clearly listed in the study. We extracted the

gene signatures and coefficients from the found candidate

studies and applied them to our study cohorts, calculating risk

scores for LUAD cases as described above. Kaplan-Meier

analysis and Cox models were used to assess the predictive

power of each study for LUAD prognosis.
Gene set enrichment analysis (GSEA)

In our study, Hallmark gene set collections (22) (v7.4,

https://www.gsea-msigdb.org/gsea/downloads.jsp) were selected
frontiersin.org
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as the background for the GSEA. We conducted this analysis

between the high- and low-risk LUAD group of the training

cohort to uncover the signature’s prospective mechanisms in

tumor outcomes. In the GSEA analysis, | Normalized

Enrichment Score (NES) | > 1, nominal (NOM) p-value < 0.05,

and FDR q-value < 0.2 were used as cutoffs.
Correlations between gene signature and
immune relevant signatures

Immune checkpoints are modulators of immune activation.

They play a vital role in maintaining immune homeostasis and

preventing autoimmunity. In cancer, the immune checkpoint

mechanism is often activated to suppress the developing anti-

tumor immune response. For assessing the immune therapy

potential of our signature, we selected CD274 (23), CTLA4

(24), HAVCR2 (25), IDO1 (26), LAG3 (27), PDCD1 (28),

CD8A (29), CXCL10 (30), CXCL9 (31), GZMA (32), GZMB

(33), IFNG (34), PRF1 (35), TBX2 (36), and TNF (37) from

previous studies as immune relevant signatures, and used the

Spearman coefficient and Wilcoxon rank-sum to measure the

correlations.
FIGURE 1

Research flow chart. TCGA, The Cancer Genome Atlas; LUAD, lung adenoca
regression model; DEGs, differentially expressed genes; ROC, receiver oper
Brier score; IAUC, integrated AUC; IRS, immune relevant signature; GSEA, Ge
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Determine the relationships between our
signature and 22 TICs

The Spearman’s coefficient and Wilcoxon rank-sum test

were used to analyze the relationship between the 22 TICs

and the obtained signature of this study. Univariate Cox

model, multivariable Cox model, and Kaplan-Meier analysis

were used to assess the prognostic power of 22 TICs.

Combining the above results can determine the TIC that

affects the prognosis of the gene signature.
Results

Patient characteristics

Figure 1 displays the analysis procedures of this study.

We collected RNA sequencing profiles of 500 LUAD

samples from the TCGA database, and treated them as the

training cohort. For the validation purpose, 398 LUADs

from the GSE72094 and 442 LUADs from the GSE68465

were selected as the validation cohort one and validation

cohort two, repetitively. The detailed clinicopathological
rcinoma; LASSO, least absolute shrinkage and selection operator Cox
ating characteristic; AUC, Area under the ROC curve; IBS, integrated
ne Set Enrichment Analysis; TICs, tumor-infiltrating immune cells.
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TABLE 1 Clinical characteristics of patients involved in the study.

Characteristics Training
cohort
TCGA-
LUAD,
n = 500)

Validation
cohort one
(GSE72094,
n = 398)

Validation
cohort two
(GSE68465,
n = 442)

Age

<65 219 (43.8%) 107 (26.88%) 214 (48.42%)

>=65 271 (54.2%) 291 (73.12%) 228 (51.58%)

Unknown 10 (2%) 0 0

Gender

Female 270 (54%) 222 (55.78%) 219 (49.55%)

Male 230 (46%) 176 (44.22%) 223 (50.45%)

Race

White 386 (77.2%) 377 (94.72%) 294 (66.52%)

Non-White 60 (12%) 18 (4.52%) 19 (4.29%)

Unknown 54 (10.8%) 3 (0.75%) 129 (29.19%)

Ethnicity

Hispanic or
Latino

7 (1.4%) 9 (2.26%) NA

Non-Hispanic or
Latino

381 (76.2%) 381 (95.73%) NA

Unknown 112 (22.4%) 8 (2.01%) NA

Tumor stage

Stage I 268 (53.6%) 254 (63.82%) NA

Stage II 119 (23.8%) 67 (16.83%) NA

Stage III 80 (16%) 57 (14.32%) NA

Stage IV 25 (5%) 15 (3.77%) NA

Unknown 8 (1.6%) 5 (1.26%) NA

T classification

T1 167 (33.4%) NA 150 (33.94%)

T2 267 (53.4%) NA 251 (56.79%)

T3 45 (9%) NA 28 (6.33%)

T4 18 (3.6%) NA 11 (2.49%)

Unknown 3 (0.6%) NA 2 (0.45%)

Prior malignancy

Yes 79 (15.8%) NA NA

No 421 (84.2%) NA NA

Tissue origin

Upper lobe lung 291 (58.2%) NA NA

Non-upper lobe
lung

209 (41.8%) NA NA

Smoking history

Ever 415 (83%) 300 (75.38%) 300 (67.87%)

Never 71 (14.2%) 31 (7.79%) 49 (11.09%)

Unknown 14 (2.8%) 67 (16.83%) 93 (21.04%)

KRAS mutation

Yes NA 139 (34.92%) NA

No NA 259 (65.08%) NA

(continued)

TABLE 1 Continued

Characteristics Training
cohort
TCGA-
LUAD,
n = 500)

Validation
cohort one
(GSE72094,
n = 398)

Validation
cohort two
(GSE68465,
n = 442)

TP53 mutation

Yes NA 97 (24.37%) NA

No NA 301 (75.63%) NA

EGFR mutation

Yes NA 41 (10.3%) NA

No NA 357 (89.7%) NA

STK11 mutation

Yes NA 64 (16.08%) NA

No NA 334 (83.92%) NA

Vital status

Alive 318 (63.6%) 285 (71.61%) 206 (46.61%)

Dead 182 (36.4%) 113 (28.39%) 236 (53.39%)

Ma et al. 10.3389/fsurg.2022.1015263
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parameters were selected for subsequent analysis and shown

in Table 1.
Two clustering found in the ICI landscape

We discovered two ICI subtypes (Supplementary Material

Figure S1; Figure 2A) using the ICI profiles. Notably, the

Kaplan-Meier analysis detected survival differences (log-rank

test, p = 0.011; Figure 2B) exist between them. As shown in

the figure, the cluster A was related to a promising overall

survival, whereas the cluster B proved an unfavorable

prognosis. The “limma” R package recognized 6015 DEGs

between the two ICI clusters (Supplementary Material

Table S1).
A thirteen-gene prognostic signature
found

First, we obtained 222 potential prognostic genes in the

training cohort patients by univariate Cox regression and

Kaplan–Meier analysis performed on the 6,015 DEGs

(Supplementary Material Table S2). Then the LASSO

analysis was carried out using the 222 genes for in-depth

shrinkage and selection. 13 of the 222 candidate genes

(ABCC2, CCR2, CERS4, CMAHP, DENND1C, ECT2, FKBP4,

GJB3, GNG7, KRT6A, PCDH7, PLK1, and VEGFC) retained

their prognostic significance and may thus impact the

prognosis of LUAD (Figures 2C,D). Table 2 displays the 13

candidate genes’ coefficients.
frontiersin.org
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FIGURE 2

Clustering the LUADs based on the profile of ICI and identifying the prognosis signature. (A) LUADs in the training cohort were grouped into two
clusters. Each row represents one ICI type, and each column indicates one LUAD case. (B) Kaplan-Meier analysis shows that the survival of these
two clusters is statistically significant, that is, p= 0.011. (C) Ten-time cross-validation for tuning parameter selection in the LASSO model. (D)
Partial likelihood deviation map with Lasso approach. ICI, immune cell infiltration; LUAD, lung adenocarcinoma.

Ma et al. 10.3389/fsurg.2022.1015263
Confirmation of the prognostic capacity
of the thirteen-gene signature

To further elucidate the relationship between risk scores and

survival status in LUAD patients, we generated risk curves and
Frontiers in Surgery 06
survival scatterplots for the training cohort, validation cohort

one, and validation cohort two (Supplementary Material

Figure S2). The results showed that mortality increased with

increasing risk scores. A heatmap of the expression levels of

thirteen identified genes in LUAD showed their expression
frontiersin.org
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TABLE 2 Thirteen prognostic genes generated from the LASSO Cox
regression.

Gene Description Coefficient

ABCC2 ATP Binding Cassette Subfamily C Member 2 0.021348192

CCR2 C-C Motif Chemokine Receptor 2 −0.137788931

CERS4 Ceramide Synthase 4 −0.064587353

CMAHP Cytidine Monophospho-N-Acetylneuraminic
Acid Hydroxylase, Pseudogene

−8.78E-05

DENND1C DENN Domain Containing 1C −0.023165087

ECT2 Epithelial Cell Transforming 2 0.000766385

FKBP4 FKBP Prolyl Isomerase 4 0.027608786

GJB3 Gap Junction Protein Beta 3 0.060365957

GNG7 G Protein Subunit Gamma 7 −0.062917285

KRT6A Keratin 6A 0.015492812

PCDH7 Protocadherin 7 0.010744541

PLK1 Polo Like Kinase 1 0.06452668

VEGFC Vascular Endothelial Growth Factor C 0.044307863

FIGURE 3

Kaplan-Meier analysis (A–C), Cox models (D), ROC, iAUC, and IBS (E–G) co
divided into low-risk groups and high-risk groups based on their median ris
difference is significant. The lower part displays the number of patients at
explains as follows: Gender: male vs. female; Race: white vs. non-whit
malignancy: yes vs. no; Tumor origin: upper lobe lung vs. non-upper lobe lu
mutation: yes vs. no; EGFR mutation: yes vs. no; STK11 mutation: yes vs. no
less than 0.1 were included in the multivariable analysis; The bold p-valu
curves valued the accuracy for LUAD outcome prediction of our signatu
compared our signature’s prognostic ability with other available clinical cha
the model’s predictive ability. HR, hazard ratio; CI, confidence interval; ROC
IAUC, integrated AUC; BS, Brier score; IBS, integrated Brier score; LUAD, lun
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pattern in the LUAD population (Supplementary Material

Figure S2). As exhibited in Supplementary Material

Figure S3, GNG7, DENND1C, CCR2, CERS4, and CMAHP

were found associated with promising prognoses for LUADs,

while KRT6A, ABCC2, GJB3, PCDH7, VEGFC, PLK1, ECT2,

and FKBP4 were associated with poor outcomes.

Kaplan-Meier survival curves (Figures 3A–C) showed that

the survival rate of the patients in the low-risk group was

significantly higher than that in the high-risk group in the

training cohort (p-value = 5.808e-08), validation cohort one

(p-value = 6.41e-08), and validation cohort two (p-value =

1.204e-08). To determine whether the prognostic significance

of the risk score depends on clinicopathological parameters,

univariate and multivariable Cox analyses were performed to

analyze the following variables: risk score, age, tumor location,

grade, tumor stage, etc. (Figure 3D). The Cox models that in

the training cohort demonstrated that risk score and tumor

stage interpedently impacted the LUAD patients’ prognosis,
nstructed in the studied cohorts. (A–C) Patients in each cohort were
k score. The log-rank test with a p-value < 0.05 suggests the survival
risk. (D) The comparison methods involved in the studied cohorts,
e; Ethnicity: Hispanic or Latino vs. non-Hispanic or Latino; Prior
ng; Smoking history: ever vs. never; KRAS mutation: yes vs. no; TP53
; T classification: T2-T4 vs. T1; Only univariate variables with p-values
e indicates that <0.05, which considers significant. (E–G) The ROC
re at 1-, 3-, and 5-year, respectively. The IAUC and IBS analyses
racteristics. The larger the AUC, or the smaller the BS, the stronger
, receiver operating characteristic; AUC, area under the ROC curve;
g adenocarcinoma.
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whereas the p-value of the risk score was more significant

(p-value <= 1.72e−11 vs. p-value <= 1.41e−04). Consistently,

the univariate or multivariable Cox models of the validation

cohort one found the risk score was the best factor that

predicting the LUAD prognosis (p-value <= 1.55e−07). The

analyses performed in validation cohort two demonstrated

that age, T classification, and risk score could affect the

prognosis. Still, the impact of the risk score (p-value <= 6.50e

−10) was obviously the strongest among them.

We used ROC analysis, IAUC, and IBS to evaluate our

model’s discrimination performance and to assess

heterogeneities in its predicting ability (Figures 3E–G). The

AUC of the signature in the training cohort was 0.734 at 1-

year, 0.715 at 3-year, and 0.653 at 5-year. Even though the

tumor stage caught up with the risk score’s IAUC around the

5-year time point, the risk score stayed at the best

performance level in general. The value of the Brier score is

always between 0.0 and 1.0, with a perfect model score of 0.0

and the worst score of 1.0 (21). Similarly, the risk score IBS

stayed at the best level at the majority of period showed. The

results generated from the validation cohort one and

validation cohort two consistent with those from the training

cohort, showing that the thirteen-gene model was better than

other clinical factors in predicting the LUAD outcomes. In

summary, the signature we discovered are better than other

clinical factors at predicting the outcomes of LUADs.
The thirteen-gene signature is better
than our predecessors

According to the screening criteria we set, eight previous

studies were found and presented in Supplementary Material

Table S3. The Kaplan–Meier estimators (Figure 4A)

confirmed that our finding (p-value <= 6.41e-08) were more

predictive than those of Cheng, Yang, et al.’s (p-value <=

6.934e-03), Zhang, Anran, et al.’s (p-value <= 1.718e-03), and

Jiang, Wei, et al.’s (p-value <= 4.917e-02) in terms of their

p-values. Furthermore, Cox univariate and multivariable

regressions (Figure 4B) further indicated the stability and

superiority of our gene model. The results showed that

previous studies only displayed significance in some cohorts

or only in part analyses. However, our model showed

significance in univariate and multivariable analyses in all

cohorts.
GSEA determined the mechanisms of
the prognosis signature

We selected the Hallmark gene set collections to obtain a

GSEA Hallmark enrichment analysis. The enrichment graph

is presented as Figure 5. The results of the GSEA Hallmark
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analysis revealed significant pathways as follows: mTORC1

signaling, MYC, glycolysis / gluconeogenesis, unfolded protein

response, G2/M checkpoint, E2F transcription factors, mitotic

spindle assembly, DNA repair, estrogen response, ultraviolet

radiation, spermatogenesis, hypoxia, bile acids metabolism,

heme metabolism, peroxisome, and KRAS activation.
Immune relevant signatures correlations

The immune relevant signatures, including TBX2, TNF,

CTLA4, HAVCR2, GZMB, CD8A, PRF1, GZMA, and

PDCD1, were found expressed differently between high- and

low-risk LUADs, as demonstrated by the Wilcoxon test

(Figure 6A). Interestingly, the Spearman coefficient

examination found TBX2, TNF, CTLA4, HAVCR2, GZMB,

CD8A, PRF1, GZMA, and PDCD1 correlated with the

thirteen-gene signature (Figure 6B). Incorporating the above

findings, nine signatures, including TBX2, TNF, CTLA4,

HAVCR2, GZMB, CD8A, PRF1, GZMA, and PDCD1 were

recognized associating with the thirteen-gene signature.
Mast cells play vital roles in our
signature’s ability in LUADs

Supplementary Material Figure S4 detailed displays the 22

TICs distribution and their inner relationships. As shown in

Figure 7 and Supplementary Material Table S4, the

Wilcoxon rank sum test identified 13 TICs related to the risk

score, and Spearman’s coefficient also found 15 TICs closely

linked to our signature. In summary, a total of 13 TICs are

significantly related to the gene signature, which included

Macrophages M0, T cells CD4 memory resting, Mast cells

resting, Dendritic cells resting, T cells CD4 memory activated,

Mast cells activated, Monocytes, Neutrophils, T cells follicular

helper, Plasma cells, T cells CD8, T cells regulatory (Tregs),

and Dendritic cells activated. Specifically, our signature was

positively correlated with Dendritic cells activated, T cells

CD8, T cells follicular helper, Neutrophils, Mast cells

activated, T cells CD4 memory activated, and Macrophages

M0, while it was negatively correlated with the rest.

The 22 TICs’ prognostic importance were measured by

consulting Cox’s univariate and multivariable proportional

hazard models and Kaplan-Meier estimator. As shown in

Figure 8A, Mast cells resting and Mast cells activated

significantly affect the prognosis of LUAD. The Kaplan-Meier

analysis (Figure 8B, Supplementary Table S5) hinted that

Mast cells resting, Mast cells activated, and Dendritic cells

resting were able to predict LUAD prognosis. In aggregate,

the mast cells significantly impacted the outcomes of LUAD.

The results in this section confirm that mast cells were

significantly associated with our signature and have the ability
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FIGURE 4

Kaplan-Meier analysis (A) and Cox models (B) were performed in the studied cohorts to compare our and previous studies’ predictive abilities.
(A) Patients in each cohort were divided into low-risk groups and high-risk groups based on their median risk score. The log-rank test with a
p-value < 0.05 suggests the survival difference is significant. (B) Only univariate variables with p-values less than 0.1 were included in the
multivariable analysis. The bold words mean the p-value < 0.05. P-value is considered significantly. HR, hazard ratio; CI, confidence interval;
PMID, PubMed ID, https://pubmed.ncbi.nlm.nih.gov/. (continued)

Ma et al. 10.3389/fsurg.2022.1015263

Frontiers in Surgery 09 frontiersin.org

https://pubmed.ncbi.nlm.nih.gov/
https://doi.org/10.3389/fsurg.2022.1015263
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 4

Continued.
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to predict LUAD outcome, further implying a potential

association of mast cells infiltration with our signature‘s

prognostic power.
Discussion

In this study, we innovatively established the ICI profile of

LUAD by mining TCGA and GEO databases and discovered

a robust thirteen-gene prognostic signature from the ICI

differences. In the present research, we included three

datasets, including TCGA-LUAD, GSE72094, and GSE68465,

containing 1,340 samples. Not only that, the novelty of our

study lies in the use of multiple statistical methods, including

Kaplan-Meier analysis, Cox regression, ROC curve, IAUC,

and IBS, to validate our trained model. Given the current

plethora of studies of the same type, we also compared with

them to highlight the strengths of our model. The most

important thing is that we conducted a correlation analysis

between our model and some current mainstream immune

signatures to find potential immune targets with our model.

Finally, GSEA and immune infiltration analysis revealed

important mechanisms associated with gene signatures and

speculated that mast cells might contribute to the predictive

power of our signature.

Our signature contains thirteen genes (Table 2), which were

ABCC2, CCR2, CERS4, CMAHP, DENND1C, ECT2, FKBP4,

GJB3, GNG7, KRT6A, PCDH7, PLK1, and VEGFC. In our

research, PLK1, GJB3, VEGFC, FKBP4, ABCC2, KRT6A,

PCDH7, and ECT2 adversely affected LUAD outcomes,

while the remaining genes displayed favorable impacts
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(Supplementary Material Figure S3). PLK1 is related to

tumor aggressiveness and patient prognosis of non-small cell

lung cancer (NSCLC). Studies have shown that PLK1

expression is up-regulated in various cancer types, which in

turn induces cell proliferation and malignant transformation

(38). Aasen and colleagues identified GJB3 to be significantly

associated with poor prognosis in LUAD patients (39). In

comparison, Want et al. demonstrated that GJB3 was

overexpressed in squamous cell lung carcinoma (40). VEGF is

a key mediator of cancer angiogenesis, and it is up-regulated

by oncogene expression, a variety of growth factors, and

hypoxia (41, 42). VEGF overexpression has been reported in

lung cancer (41, 42). Recent studies have shown that VEGF-B

may trigger tumor angiogenesis through a pathway

independent of VEGF-A, and it may even be a prognostic

marker of cancer metastasis (41, 42). Both VEGF-C and

VEGF-D are closely related to lymphatic angiogenesis (41,

42). FKBP4 plays a role in immune regulation, protein

folding, and transport. Experiments confirmed that FKBP4

activates the Akt/mTOR signaling pathway and acts as an

oncogene to promote the malignant process of NSCLC (43).

ABCC2 plays a vital role in transporting endogenous and

exogenous substances and affecting drug absorption,

distribution, and excretion (44). Chen’s study proved that the

high ABCC2 expression is linked to cisplatin resistance, and

reducing the ABCC2 expression can gain the sensitivity of

NSCLC patients to cisplatin (44). Previous studies have shown

that KRT6A plays a crucial role in cell migration, especially

keratinocyte migration (45). Yang and colleagues

demonstrated that KRT6A is highly expressed in LUAD,

especially in samples from lymph node-positive patients (45,
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FIGURE 5

GSEA analysis with the HALLMARK gene set as the background identified relevant pathways of our signature. The significance threshold of this
analysis was set as: | NES | >1, NOM p-value < 0.05, and FDR q-value < 0.25. GSEA, Gene Set Enrichment Analysis; NES, Normalized Enrichment
Score; NOM, Nominal; FDR, False Discovery Rate.
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46). Another study found that LUAD with low KRT6A

expression had a better prognosis than LUAD with high

KRT6A expression (46). Moreover, Che’s research revealed

that KRT6A might serve as a potential prognostic indicator

and therapeutic target for NSCLC (47). They showed an

under-recognized mechanism that KRT6A acts downstream of

LSD1 and upregulates G6PD through the MYC signaling

pathway, demonstrating its vital role for NSCLC progression

(47). PCDH7, a member of the protocadherins family, acts as

a tumor suppressor in various human cancers (48). Although

PCDH7 has recently been shown to have the effect of

accelerating the distant metastasis of lung cancer and breast
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cancer, some studies have also shown that PCDH7 has low

expression in colorectal cancer, gastric cancer, and invasive

bladder cancer (49). Studies have shown that high ECT2

expression predicts the progression of NSCLC and the poor

prognosis, and is related to the proliferation, survival, and

invasion of tumor cells (50).

Bioinformatics reveals the biological mysteries endowed by

large and complex biological data through the integrated use

of biology, computer science and information technology. In

recent years, using public databases and bioinformatics

methods, researchers have explored and established many

prognostic models related to LUAD. Previous studies have
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FIGURE 6

Determination of the immune relevant signatures that are significantly related to our signature. (A) LUADs were grouped into low- and high-risk
based on their median risk score. The Wilcoxon rank-sum found immune signatures that differentially distributed in the high-risk and low-risk
patients. (B) The Spearman’s coefficient evaluated the correlations between our signature and immune relevant signatures. ns: p-value > 0.05;
*: p-value < 0.05; **: p-value < 0.01; A p-value < 0.05 means statistical significance; The bold p-value in plot B indicates that <0.05. LUAD, lung
adenocarcinoma.
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made great contributions to the further development of LUAD.

Whether the LUAD prognostic model we established in this

study has an advantage, we also answer in this paper. By

comparison, the prognostic power of our model was better

than the eight studies (51–58) from the most recent year.

GSEA found that the pathways of mTORC1 signaling,

MYC, and glycolysis / gluconeogenesis ranked top potential

that play vital roles in gene signature functioning. mTOR
Frontiers in Surgery 12
complex is recently depicted as a nutrient sensor in the

metabolism of cancer (59). mTORC1 integrates signals from a

variety of growth factors, nutrients and energy supply (60).

mTORC1 promotes cell growth when energy is sufficient, and

promotes catabolism when the body is hungry (60).

Abnormal activation of the Akt/mTOR pathway is usually

observed in lung cancer. The dysregulated PI3-K/Akt/mTOR

activity is known to contribute to the development and
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FIGURE 7

Determination of the relationship between the 22 TICs and our signature. (A) Patients were divided into high and low-risk groups according to their
median risk score, and the Wilcoxon rank-sum was applied to detect differences in TIC distribution between different groups. (B) Spearman’s
coefficient assessed the correlations between the 22 TICs and our model. Here, we plotted the TIC correlation with a p-value < 0.05. (C) The
results of Wilcoxon’s rank-sum test and Spearman’s coefficient were intersected to determine stable and critical TICs. TIC, tumor-infiltrating
immune cell; *: p-value < 0.05; p-value < 0.05 is considered significant.
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FIGURE 8

The prognostic power of the 22 TICs was determined using the Cox proportional hazards model (A) and the Kaplan-Meier estimator (B). In Panel A, only
univariate variables with p-values less than 0.1 were included in the multivariable analysis, with bold text indicating p-values < 0.05. In Panel B, we only
show Kaplan-Meier plots with p-values less than 0.05. TIC, tumor-infiltrating immune cell; p-value < 0.05 is considered significant.
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maintenance of lung cancer (61). Targeting of mTOR is an

attractive and promising approach in the development of

therapeutic agents against lung cancer (61). MYC plays a key

role in growth regulation, differentiation and apoptosis (62).

The abnormal expression of MYC is related to a variety of

tumors (62). Overexpression of MYC makes cells sensitive to

apoptosis caused by various stimuli (62). MYC is an oncogene

that is out of control in human cancers, including lung

cancer, where it supports oncogenic processes and progression

(63). MYC has a key role in regulating lung cancer cell

behavior, regulating lung cancer cell growth, resistance, death,

and dissemination by regulating kinesins, anti-apoptotic

proteins, and metabolism (63). Glycolysis is an inefficient way

of energy metabolism (64). Cancer cells are more likely to use

glycolysis even when there is enough oxygen (64). This

dependence on aerobic glycolysis is called the Warburg effect

and promotes tumorigenesis and malignant tumor progression

(64). Inhibition of glycolysis is considered to be a treatment
Frontiers in Surgery 14
for aggressive cancers including lung cancer. It has recently

been discovered that the shortened gluconeogenesis mediated

by phosphoenolpyruvate carboxykinase can partially avoid the

need for glycolysis in lung cancer cells (65).

Immunotherapy is a treatment that uses parts of the body’s

immune system to fight diseases such as cancer. This can be

done in several ways (66): (1) Stimulate or enhance the immune

system’s natural defenses, making it harder or smarter to find

and attack cancer cells. (2) Making substances similar to

components of the immune system in the lab and using them to

help restore or improve the way the immune system finds and

attacks cancer cells. In recent decades, with the development of

early diagnosis techniques, immunotherapy has made a

significant contribution to improving the survival rate of cancer

patients (67). Immune checkpoint inhibitors, particularly

inhibitors of the PD-1 axis, have altered the management of

NSCLC over the last ten years (68). First demonstrated to

improve outcomes in second-line or later therapy of advanced
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disease, immune checkpoint inhibitors were shown to improve

overall survival compared to chemotherapy in first-line treatment

for patients whose tumors express PD-L1 on at least 50% of

cells (68). More recently, combining immune checkpoint

inhibitors with chemotherapy has improved survival in patients

with squamous and nonsquamous NSCLC, regardless of PD-L1

expression (68). Immune checkpoint blockade has been shown

to be effective in a substantial proportion of patients’ refractory

to standard therapy. However, the effectiveness of this approach

in LUAD is rarely reported (69). Several biological features of

LUAD suggest that modulation of the immune response may

confer benefits (69). One of the main challenges of LUAD

immunotherapy is identifying predictive sensitive biomarkers so

that treatment can be tailored to maximize benefit (67, 69). In

the present study, nine immune relevant signatures, including

TBX2, TNF, CTLA4, HAVCR2, GZMB, CD8A, PRF1, GZMA,

and PDCD1 were determined as closely linked to our thirteen-

gene signature and might contribute to the ongoing LUAD

immunotherapy research.

Our study speculated that extensive infiltration of mast cells

in LUAD tumors contributes to maintaining the stable

predictive power of our signature. Mast cell is known for its

involvement in allergic disorders, but in recent years,

accumulating evidence has shed light on its involvement in

cancer, including LUAD (70–72). Mast cells are involved in

disease processes characterized by inflammation and tissue

remodeling and correlated with innate and adaptive immune

responses to respiratory pathogens to promote lung health

(73). Mast cells contribute to the secretion of VEGF, which in

turn is associated with poor prognosis in NSCLC (73). Since

the immune microenvironment plays a key role in the tumor

progression, mast cells, as a critical stromal component of the

immune system, are undoubtedly a key regulator for

maintaining tissue homeostasis. Therefore, we believe that it is

crucial to conduct further studies to understand the role of

mast cells in tumor microenvironment remodeling.

This study has certain limitations. We generated a thirteen-

gene signature from retrospective data. Although our model has

absolute advantages over its predecessors, its proof is still by

adopting public databases. Its applicability in real life still

needs more clinical data to support. In addition, when

comparing with the predecessors, because the datasets used by

them were not uploaded to their respective supplementary

files, and the these authors did not clearly explain the

preprocessing methods and specific data sources, we used the

unified official TCGA dataset for comparison. These situations

may contribute to slight deviations in the results. Moreover,

the prognostic ability and mechanism of action of the

thirteen-gene signature and mast cells still need to be verified

by wet experimental data. Overall, our study brings more

implications for future LUAD treatment and diagnosis, but

also more research is needed to reveal a bright future for the

thirteen-gene signature.
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Conclusion

This study established the ICI characteristics of LUAD and

constructed a powerful thirteen-gene prognostic signature based

on the ICI. By applying the signature to independent datasets, its

stability and broad applicability are validated. More importantly,

we compared ours with the previous studies and confirmed our

signature’s superiority. The mast cells potentially help the

signature to maintain its predictive power. Our work may

promote the evolution of diagnosis and treatment of LUAD.
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