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Chronic wound healing remains a challenging medical problem affecting
society, which urgently requires anatomical and functional solutions.
Adipose-derived stem cells (ADSCs), mesenchymal stem cells with self-
renewal and multiple differentiation ability, play essential roles in wound
healing and tissue regeneration. The exosomes from ADSCs (ADSC-EXOs)
are extracellular vesicles that are essential for communication between cells.
ADSC-EXOs release various bioactive molecules and subsequently restore
tissue homeostasis and accelerate wound healing, by promoting various
stages of wound repair, including regulating the inflammatory response,
promoting wound angiogenesis, accelerating cell proliferation, and
modulating wound remodeling. Compared with ADSCs, ADSC-EXOs have
the advantages of avoiding ethical issues, being easily stored, and having
high stability. In this review, a literature search of PubMed, Medline, and
Google Scholar was performed for articles before August 1, 2022 focusing
on exosomes from ADSCs, chronic wound repair, and therapeutic potential.
This review aimed to provide new therapeutic strategies to help investigators
explore how ADSC-EXOs regulate intercellular communication in chronic
wounds.
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Abbreviations

ADSCs, adipose-derived stem cells; ADSCs-EXOs, exosomes from adipose-derived stem cells; MSCs,
mesenchymal stem cells; BMMSCs, bone marrow mesenchymal stem cells; EVs, extracellular vesicles;
PM, plasma membrane; MVBs, multivesicular bodies; miRNAs, microRNAs; VEGF, vascular
endothelial growth factor; TGF-β, transforming growth factor-β; MIF, macrophage migration inhibitory
factor; TNF-α, tumor necrosis factor-alpha; MCSF, macrophage colony-stimulating factor; RBP-4,
retinol-binding protein 4; NRF2, nuclear factor erythroid 2-related factor 2; FGF, fibroblast growth
factor; TGF, transforming growth factor; VEGF-A, Vascular Endothelial Growth Factor A; PDGF-BB,
platelet-derived growth factor BB; VECs, vascular endothelial cells; DLL4, Delta-like ligand 4; HIF-1,
hypoxia-inducible factor-1; ECM, extracellular matrix; MMP3, matrix metalloproteinase-3; TIMP1,
tissue inhibitor of metalloprotease 1; HDFs, human dermal fibroblasts.
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Background

The skin, the largest organ in humans, is a natural physical

barrier against external stimulation (1). Loss of the balance

between humans and the environment as a result of illness or

trauma may result in substantial skin damage or even death

(2, 3). Chronic wounds are long-lasting wounds that fail to

achieve complete anatomical and functional repair through

the normal healing process after 1 month of clinical treatment

(4, 5). Chronic wounds, including vascular ulcers (venous and

arterial ulcers), pressure ulcers, and diabetic foot ulcers, have

complex pathogenesis and long disease courses, and are

associated with high disability rates (6). Common features of

chronic wounds include persistent bacterial biofilms, defective

re-epithelization, decreased angiogenesis, and delayed

extracellular matrix (ECM) remodeling (7, 8). Approximately

2.5% of the population in the United States is affected by

chronic wounds (9, 10). According to conservative estimates,

nearly $32 billion is spent on wound care, thus placing

substantial pressure on the economy and healthcare system (11).

Many advanced therapies have been advocated as being

effective for chronic wounds, such as negative pressure wound

therapy; hyperbaric oxygen treatment; and biophysical,

biological, and bioengineered therapies (4). Adipose-derived

stem cells (ADSCs) are considered the most advantageous

therapy for present-day regenerative medicine, given the
FIGURE 1

The production and applications of ADSCs-EXOs. Extracted from adipose tissu
culture. ADSCs-EXOs can apply to the treatment of chronic wound healing.
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abundant sources of adipose tissue, and the cells’ outstanding

proliferative ability and convenient isolation. ADSCs secrete

paracrine factors and differentiate into multiple lineages (12, 13).

Exosomes from ADSCs (ADSC-EXOs) are small, single-

membrane nanovesicles released by ADSCs through paracrine

secretion, and are enriched in proteins, lipids, and nucleic acids

(14–16) (Figure 1). As critical mediators of intercellular

communication, they can alter the behaviors of recipient cells by

transmitting signals and transporting molecules into target cells.

Recent studies have shown that ADSC-EXOs had therapeutic

effects in many aspects of disease, including wound healing (17,

18), organ diseases (19, 20), neurodegenerative diseases (21, 22),

and cancer (23, 24). In regeneration and wound healing, ADSC-

EXOs modulate persistent inflammation, angiogenesis, and ECM

reconstruction. ADSC-EXO have functions resembling those of

the parental stem cells, but are safer and more efficient in clinical

applications, thus decreasing cell transplantation risks (25, 26).
Adipose-derived stem cells

Mesenchymal stem cells (MSCs) have been a promising tool

in tissue engineering and regenerative medicine (27, 28) since

bone marrow mesenchymal stem cells (BMMSCs) were first

discovered by Alexander Friedenstein in the late 1960s (29).

MSCs have been successfully applied in corneal regeneration
e, ADSCs were collected and processed to obtain ADSCs-EXOs by cell
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FIGURE 3

The biogenesis of each subtype of EVs. Apoptotic bodies (800–
5,000 nm in size) are the result of the disintegration of apoptotic
cells. Microvesicles (200–1,000 nm in size) arise from the plasma
membrane. Exosomes (30–150 nm in size) originate from
endosome.
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(30), wound healing, and skin rejuvenation (12, 28, 31). In their

earlier studies, Friedenstein and colleagues demonstrated that

MSCs, possibly derived from the mesoderm, can differentiate

into various mesenchymal tissue lineages, such as osteoblasts,

chondrocytes, adipocytes, myoblasts, and even neurons (32,

33) (Figure 2). In addition, these pluripotent cells can be

isolated from a variety of tissues, such as adipose tissue,

muscle, blood vessels, skin, and bone marrow (34, 35).

Among all these mesenchymal stem cells, ADSCs appear to

be the most advantageous for clinical applications. Compared

with other types of tissues, adipose tissue is available in

relatively large quantities in humans. Furthermore, many

ADSCs can be isolated from adipose tissue. Prior studies have

indicated that 500 times more stem cells can be harvested

from adipose tissue than from equal amounts of bone marrow

(36, 37). In comparison with BMMSCs, ADSCs are relatively

easily obtained, owing to their subcutaneous localization.

Furthermore, patients tend to feel more comfortable with less

donor site morbidity (12, 38). Moreover, ADSCs have higher

proliferation ability than BMMSCs (39).

In recent studies, the roles of ADSCs in wound repair

treatment have been confirmed. For example, ADSCs are

crucial in wound repair in diabetic foot ulcers by enhancing

VEGFR3-mediated lymphangiogenesis (40). In addition,

ADSCs prevent scar formation and promote wound repair in

skin-deficient mice by activating the PI3K/Akt pathway (41).

However, barriers to the use of ADSCs must be addressed,

such as their potential oncologic properties (42). Interestingly,

ADSC-EXOs, the main factors through which ADSCs exert

their biological effects (43), cannot actively contribute to

tumorigenesis as adipose cell-free derivatives (44).
FIGURE 2

The differentiation of mesenchymal stem cells. Mesenchymal stem cells
osteoblasts, chondrocytes, adipocytes, myoblasts, and even neurons.
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Characteristic of exosomes

Extracellular vesicles (EVs) are membrane-contained

vesicles secreted by cells from multiple organisms (45). On

the basis of their contents, size, and membrane composition,

three primary subgroups of EVs have been defined: apoptotic

bodies, microvesicles, and exosomes (46) (Figure 3). EVs

generally refer to vesicles ranging from 150 to 1,000 nm

released by budding from the plasma membrane (PM) (47).

The term “exosomes” was initially used to describe 40–

1,000-nm vesicles released by all types of cultured cells and
can differentiate into various mesenchymal tissue lineages, such as
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exhibiting 5′-nucleotidase activity (48). Nevertheless, in the

late 1980s, this term was used for small (30–100-nm)

vesicles of endocytic origin, which are released outside cells

as a result of the fusion of multivesicular bodies (MVBs)

with the PM during reticulocyte differentiation (47, 49).

Exosomes can be isolated from most biological fluids and

cell types, such as saliva, urine, semen, nasal lavage fluid,

plasma, and serum (50–53).

Exosomes contain many functional proteins, mRNAs,

microRNAs (miRNAs), and complete organelles (Figure 2),

which are released into the cytoplasm and mediate

communication among target cells through surface membrane

proteins (54, 55).

As the primary mediators of information transmission,

miRNAs regulate the genes of recipient cells through self-

degradation and re-expression; consequently, exosomes

secreted by different cells vary in their biological functions

(56). Current research on stem cell paracrine factors has

indicated that exosomes secrete thousands of nutritional

factors, such as stem cell factors, insulin-like growth factor I,

vascular endothelial growth factor (VEGF), and transforming

growth factor-β (TGF-β) (57). The uptake of exosomes by

recipient cells occurs by fusion with the cell membrane,

endocytosis, or receptor-ligand interaction. Adhesion-

associated molecules on the surfaces of exosomes, such as

glycoproteins, exosomal tetraspanin complexes, and integrins,

determine the types of recipient cells (16, 58, 59).
Inflammatory functions of
ADSC-EXOs

ADSC-EXOs have immunomodulatory and anti-

inflammatory effects, which remove necrotic tissue and

pathogenic microorganisms from wounds, and consequently

control local damage (60–62). ADSC-EXOs inhibit the

differentiation and activation of T cells, thus inhibiting the

release of the inflammatory factor IFN-γ and the proliferation

of T cells (63, 64). ADSC-EXOs decrease adipose

inflammation and obesity by regulating the phenotypic

polarization of macrophages (65). Moreover, miRNAs, small,

endogenous, non-coding nucleotides contained in ADSC-

EXOs, play major roles in regulating metabolism and cell

growth (66). One study has found that miRNA-451a enriched

in ADSC-EXOs successfully promotes M1-to-M2 polarization

of macrophages by downregulating macrophage migration

inhibitory factor (MIF) (67). MIF is a pleiotropic pro-

inflammatory mediator that participates in immune regulation

in vivo (68). Some studies have indicated that inhibition of

MIF suppresses the activation of macrophages and the

expression of inflammatory factors, such as NO, tumor

necrosis factor-alpha (TNF-α), and IL-6, thereby decreasing

inflammatory responses and ameliorating arthritis and
Frontiers in Surgery 04
articular cartilage injury (68–70). Furthermore, ADSC-EXOs

release many immunomodulatory proteins, such as TNF-α,

macrophage colony-stimulating factor (MCSF), and retinol-

binding protein 4 (RBP-4) (71). Macrophages and proteolytic

enzymes are released after the destruction of cells, and

subsequently digest cell debris and necrotic tissue, thus

providing a suitable environment for wound repair (72–74).

ADSC-EXOs have been found to contribute to wound healing

in rats with diabetic foot ulcers, particularly in the presence of

overexpression of nuclear factor erythroid 2-associated factor

2 (NRF2). The expression of oxidative stress-associated

proteins and inflammatory cytokines is diminished (75).

ADSC-EXOs have comparable properties to those of their

parent cells. They can improve graft retention by upregulating

early inflammation and angiogenesis (76). Similarly, ADSC-

EXOs upregulate the expression of macrophage inflammatory

protein-1α and monocyte chemoattractant protein-1, thus

promoting early inflammation (76). Further research on

immunomodulation and anti-inflammation of ADSC-EXOs in

chronic wounds is needed.
Angiogenesis regulation
by ADSC-EXOs

Another function of ADSC-EXOs in wound repair is

promoting angiogenesis, a dynamic process delivering

sufficient nutrients and oxygen to the tissue. Emerging new

capillaries, macrophages, and loose connective tissue

contribute to granulation tissue formation. The elevated

glucose levels in patients with diabetes can destroy the

balance between vessel growth and maturation (77). In

chronic wounds, perturbations in vascular integrity decrease

vascularity and capillary density (78). VEGF, angiopoietin,

fibroblast growth factor (FGF), and transforming growth

factor (TGF) are key angiogenic cytokines in wound

angiogenesis. Among these factors, VEGF-A is considered one

of the most potent angiogenic factors in wounds (79). This

protein, which is produced by many cells such as

macrophages, binds its receptors on endothelial cells and

subsequently induces migration, proliferation, and vessel

growth. Mice deficient in VEGF-A 6, 7, or Flk1 8 succumb to

a lack of angiogenesis early in development (80–82). ADSC-

EXOs possess a higher ability to enhance angiogenesis in fat

grafting by regulating VEGF/VEGF-R signaling and activating

the protein kinase A (PKA) signaling pathway (83, 84). In

addition to growth factors that mediate wound healing, such

as VEGF-A and platelet-derived growth factor BB (PDGF-

BB), ADSC-EXOs are enriched in miRNA-125a and miRNA-

31 (85). ADSC-EXOs transfer miRNA-125a and miRNA-31

cargo into vascular endothelial cells (VECs), and consequently

downregulate the expression of angiogenesis inhibitor Delta-

like ligand 4 (DLL4), thereby promoting VEC proliferation
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and angiogenesis (86). Lu et al. have found that ADSC-EXOs

containing miRNA-486-5p promote angiogenesis and

accelerate cutaneous wound healing (87). In addition, ADSC-

EXOs inhibit the overexpression of the anti-angiogenic gene

hypoxia-inducible factor-1 (HIF-1) after chronic wound injury

(88). We propose that ADSC-EXOs significantly affect

angiogenesis, a possibility requiring further investigation.
Proliferation and ADSC-EXOs

ADSC-EXOs have a beneficial effect in accelerating cell

proliferation, which is crucial for the treatment of chronic

wounds. For example, exosomes from miRNA-199-3p-

modified ADSCs contribute to the proliferation and

migration of endothelial tip cells (89). Moreover, ADSC-

EXOs facilitate osteosarcoma progression by increasing

COLGALT2 expression in osteosarcoma cells (90). In the

cell proliferation stage, fibroblasts stimulate wound healing

by proliferating and synthesizing large amounts of ECM

components, such as collagen and elastic fibers, under the

stimulation of trauma (78). ADSC-EXOs are internalized

by fibroblasts and affect cell migration, proliferation, and

collagen synthesis by promoting gene expression of N-

cadherin, cyclin 1, proliferating cell nuclear antigen, and

collagen type I and III. In a dependent manner, higher

doses of exosomes can achieve faster migration rates (91).

Choi et al. have found that ADSC-EXOs promote the

proliferation and differentiation of dermal fibroblasts

through microRNAs inhibiting genes including NPM1,

PDCD4, CCL5, and NUP62, thereby contributing to the

regeneration of skin fibroblasts (92). Moreover, miRNA-21

is highly expressed in adipose-derived stem cell exosomes

and has been found to enhance the migration and

proliferation of HaCaT cells by increasing matrix

metalloproteinase-9 expression through the PI3K/AKT

pathway (93).
ECM remodeling and ADSC-EXOs

ADSC-EXOs regulate remodeling of the ECM. During

the wound remodeling stage, fibroblasts differentiate into

myofibroblasts, and the granulation tissue gradually

becomes fibrotic; collagen gradually increases; the wound

begins to contract; and scar tissue is eventually formed.

ADSC-EXOs promote collagen remodeling through the

synthesis of collagen types I and III in early stages of

wound healing. In late stages, they inhibit collagen

formation and decrease scarring (94). ADSC-EXOs prevent

fibroblast-to-myofibroblast differentiation by increasing the

ratio of collagen III to collagen I, as well as the ratio of

TGF-β3 to TGF-β1. Moreover, ADSC-EXOs increase the
Frontiers in Surgery 05
expression of matrix metalloproteinase-3 (MMP3) in skin

dermal fibroblasts by activating the ERK/MAPK pathway,

thus resulting in a high ratio of MMP3 to tissue inhibitor

of metalloprotease 1 (TIMP1), and facilitating remodeling

of the ECM and diminished scarring during wound

healing (92). More research on wound remodeling is

needed to achieve the goals of clinical application of

ADSC-EXOs.

Wound healing is a complex and dynamic physiological

process that can generally be divided into four highly integrated

and overlapping stages: hemostasis, inflammation, proliferation,

and remodeling. These phases and their biophysiological

functions must occur in an appropriate sequence at a specific

time. Otherwise, interruptions, abnormalities, or prolongations

in the process may result in delayed or chronic wound non-

healing. ADSC-EXOs are extensively involved in the above-

mentioned wound repair process through their release of various

bioactive molecules (95, 96).

All types of wounds may begin as small cuts and have the

potential to evolve into chronic wounds. The repair process of

chronic wounds usually begins with a normal acute wound.

Similar features can be found in chronic wounds, although

they are classified into different categories according to

etiology. Persistent infections, excessive levels of

proinflammatory cytokines, as well as senescent cells that do

not respond to reparative stimuli lead to chronic wounds.

Definitive evidence has indicated that wound dressing along

with ADSC-EXOs alleviates diabetic and infectious wound

healing (97) (Figure 4).
Challenges and prospects

The exosome field has advanced remarkably rapidly. Extensive

evidence has indicated that ADSC-EXOs have robust effects on

multiple stages of chronic wound repair tissue regeneration as

critical mediators of intercellular communication. For example,

in a diabetic mouse model of delayed wound healing, ADSC-

EXOs enhance skin collagen production, angiogenesis, and cell

proliferation; inhibit apoptosis; promote skin barrier function

repair; and decrease inflammation in skin lesions (98). Given

these properties, ADSC-EXOs may have promise in applications

in chronic wound repair, skin anti-aging therapy, and scarless

cutaneous repair. ADSC-EXOs show positive effects in

preventing skin aging through protecting human dermal

fibroblasts (HDFs) against ultraviolet B-induced photoaging

damage (99, 100). Wang and colleagues have demonstrated that

ADSC-EXOs promote wound repair in diabetic mice during

angiogenesis and remodeling (101). In genetic therapy, ADSC-

EXOs have been found to be a new therapeutic target for curing

PD in patients (102).

Despite the positive results obtained in pre-clinical studies,

multiple issues must be considered before clinical application of
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FIGURE 4

Potential mechanisms of ADSCs-EXOs regulating wound healing. ADSCs-EXOs might accelerate chronic wound repair by up-regulating early
inflammation, promoting angiogenesis, enhancing proliferation, and regulating extracellular matrix (ECM) remodeling.
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ADSC-EXOs. First, animal models for research are unable to

fully reproduce the complexity of human chronic wounds,

and clinical trials are scarce. Pigs or guinea pigs have skin

structure somewhat similar to that in humans, thus providing

a better animal model than mice in ADSC-EXO studies.

Second, because they induce both effective pro-tumor and

antitumor immune responses, ADSC-EXOs must be very

carefully assessed in terms of safety and efficacy. Finally,

technical issues such as extraction and purification of ADSC-

EXOs must be simplified. The delivery and application

methods are also worthy of consideration to achieve the

development of large quantities of ADSC-EXOs capable of

long-term storage of for clinical applications. Finally, although

ADSC-EXOs appear to be a promising therapy for multiple

diseases, further investigation and comprehensive information

on isolating and identifying ADSC-EXOs is needed for

widespread applications in clinical practice.
Conclusion

In summary, chronic wound repair is a well-orchestrated

process involving numerous factors participating in a
Frontiers in Surgery 06
sequence of steps. ADSC-EXOs appear to be a potential

therapeutic agent for chronic wounds by promoting various

stages of wound healing, including decreased oxidative

stress, increased neo-vascularization, enhanced collagen

deposition, and less scarring. With continuing discoveries in

this field, ADSC-EXOs involved in various biological

functions are expected to hold promise for treating a wide

variety of disorders.
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