
TYPE Original Research
PUBLISHED 30 November 2022| DOI 10.3389/fsurg.2022.1040066
EDITED BY

Michele Rizzi,

IRCCS Carlo Besta Neurological Institute

Foundation, Italy

REVIEWED BY

Massimiliano Del Bene,

IRCCS Carlo Besta Neurological Institute

Foundation, Italy,

Matteo Martinoni,

IRCCS Institute of Neurological Sciences of

Bologna (ISNB), Italy

*CORRESPONDENCE

Amir Manbachi

amir.manbachi@jhu.edu

SPECIALTY SECTION

This article was submitted to Neurosurgery, a

section of the journal Frontiers in Surgery

RECEIVED 08 September 2022

ACCEPTED 18 October 2022

PUBLISHED 30 November 2022

CITATION

Abramson HG, Curry EJ, Mess G, Thombre R,

Kempski-Leadingham KM, Mistry S,

Somanathan S, Roy L, Abu-Bonsrah N, Coles G,

Doloff JC, Brem H, Theodore N, Huang J and

Manbachi A (2022) Automatic detection of

foreign body objects in neurosurgery using a

deep learning approach on intraoperative

ultrasound images: From animal models to first

in-human testing.

Front. Surg. 9:1040066.

doi: 10.3389/fsurg.2022.1040066

COPYRIGHT

© 2022 Abramson, Curry, Mess, Thombre,
Kempski-Leadingham, Mistry, Somanathan,
Roy, Abu-Bonsrah, Coles, Doloff, Brem,
Theodore, Huang and Manbachi. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Surgery
Automatic detection of foreign
body objects in neurosurgery
using a deep learning approach
on intraoperative ultrasound
images: From animal models
to first in-human testing
Haley G. Abramson1, Eli J. Curry2, Griffin Mess3,
Rasika Thombre3, Kelley M. Kempski-Leadingham2,
Shivang Mistry4, Subhiksha Somanathan3, Laura Roy5,
Nancy Abu-Bonsrah2, George Coles6, Joshua C. Doloff1,7,
Henry Brem1,2, Nicholas Theodore1,2, Judy Huang1,2

and Amir Manbachi1,2,8,9,10*
1Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore,
MD, United States, 2Department of Neurosurgery, Johns Hopkins University School of Medicine,
Baltimore, MD, United States, 3Department of Biomedical Engineering, Johns Hopkins University,
Baltimore, MD, United States, 4Department of Engineering Science, University of Toronto, Toronto,
ON, Canada, 5Roy Illustration, Des Moines, IA, United States, 6Applied Physics Lab, Johns Hopkins
University, Laurel, MD, United States, 7Department of Materials Science and Engineering, Johns
Hopkins University, Baltimore, MD, United States, 8Department of Electrical Engineering and
Computer Science, Johns Hopkins University, Baltimore, MD, United States, 9Department of
Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States, 10Department of
Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States

Objects accidentally left behind in the brain following neurosurgical
procedures may lead to life-threatening health complications and invasive
reoperation. One of the most commonly retained surgical items is the
cotton ball, which absorbs blood to clear the surgeon’s field of view yet in
the process becomes visually indistinguishable from the brain parenchyma.
However, using ultrasound imaging, the different acoustic properties of
cotton and brain tissue result in two discernible materials. In this study, we
created a fully automated foreign body object tracking algorithm that
integrates into the clinical workflow to detect and localize retained cotton
balls in the brain. This deep learning algorithm uses a custom convolutional
neural network and achieves 99% accuracy, sensitivity, and specificity, and
surpasses other comparable algorithms. Furthermore, the trained algorithm
was implemented into web and smartphone applications with the ability to
detect one cotton ball in an uploaded ultrasound image in under half of a
second. This study also highlights the first use of a foreign body object
detection algorithm using real in-human datasets, showing its ability to
prevent accidental foreign body retention in a translational setting.

KEYWORDS

deep learning, neurosurgery, ultrasound, foreign body object detection, computer

vision
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fsurg.2022.1040066&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fsurg.2022.1040066
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsurg.2022.1040066/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.1040066/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.1040066/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.1040066/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.1040066/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.1040066/full
https://www.frontiersin.org/journals/Surgery
https://doi.org/10.3389/fsurg.2022.1040066
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Abramson et al. 10.3389/fsurg.2022.1040066
Introduction

Leaving behind surgical items in the body is considered a

“never event” (1), yet it markedly burdens both patients and

hospitals with millions of dollars spent every year on medical

procedures and legal fees, costing $60,000 to $5 million per

case (2–4). Nearly 14 million neurosurgical procedures occur

annually worldwide (5), and in each craniotomy surgeons may

use hundreds of sponges or cotton balls to clear their field of

view. Thus, it is unsurprising that surgical sponges are the

most commonly retained items (6). Unfortunately, retained

foreign body objects may lead to life-threatening immunologic

responses, require reoperation, or cause intracranial textilomas

and gossypibomas, which mimic tumors immunologically and

radiologically (7–10). Locating cotton balls on or around the

brain becomes increasingly challenging as they absorb blood,

rendering them visually indistinguishable from the surrounding

tissue. Unlike larger gauze pads, which are often counted using

radiofrequency tagged strips (11), cotton balls are small (closer

to 10mm in diameter), must be counted manually by nurses in

the operating room as they are placed in and extracted from

the open wound, and may leave behind a small torn strip of

cotton. There is therefore an unmet need for an intraoperative,

automatic foreign body object detection solution that can be

streamlined into the neurosurgical workflow. Due to their

prevalence in surgical procedures and the difficulties associated

with tracking their use, cotton balls serve as an excellent model

of retained foreign bodies inside the cranial cavity.

Although seeing the contrast between blood-soaked cotton

balls and brain tissue poses a challenge, they can be

distinguished by listening to them. Prior work has

demonstrated that ultrasound is able to capture the different

acoustic characteristics between these materials and interpret

them via filtering and logarithmic compression to display

distinctly on an ultrasound image (12). More specifically,

ultrasound captures the difference in the acoustic impedance

between brain parenchyma and cotton as a result of their

distinct densities and the speed at which sound travels

through them (acoustic impedance is the product of material

density and speed of sound). Ultrasound is non-invasive, non-

radiating, clinically available, inexpensive, portable, and able

to display images in real time. Therefore, ultrasound is an

optimal modality for visualizing and localizing retained cotton

during neurosurgery.

Deep learning (DL) has shown promise in object

localization within an image (13); therefore, a DL algorithm

using ultrasound images holds exceptional potential as a

solution to fill this clinical need. However, medical images

have notably high resolution, complexity, and variability as a

result of alternative patient positions and respiration artifacts.

In general, ultrasound is widely considered as a relatively

difficult imaging modality to read, as specialized sonographers

must undergo years of training for certification to operate
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clinical machines, and the same goes for trained radiologists

to read these images. Hence, DL with medical ultrasound

images (e.g., diagnosis, object detection, etc.) can be

particularly complicated and computationally expensive. A

previous DL approach to cotton ball detection used a model

called YOLOv4 (14) and reported an accuracy of 60% (15).

Here we present a highly accurate (99%), rapid (<0.5 s)

ultrasound-based technology for both detection and

localization of retained cotton in brain tissue (see summary

Figure 1). We demonstrate the necessity of its inclusion in

clinic via human studies, as a cotton ball not initially visible

to a neurosurgeon in the surgical site was clearly observed in

ultrasound images and subsequently removed from the cavity.

This algorithm was able to identify that cotton ball.

Ultrasound images acquired using a clinical ultrasound

machine may be loaded into a web application hosted on a

local server or captured with a smartphone camera using a

custom app, which both reach a trained deep neural network

that performs nonlinear regression and outputs the same

image with one bounding box enclosing a cotton ball (if one

exists). By localizing retained surgical objects within an

ultrasound image, this method can distinguish between small

fragments of cotton and folds in the brain parenchyma. It

also could bring ease during long and intensive surgeries by

alerting a clinician who may not be trained in sonography to

a particular region of interest in an image, thus acting as an

assistive device. First ever in-human studies show that this

algorithm is already clinically relevant and ready to be

incorporated seamlessly into neurosurgeries, with broad

implications in medicine. This study paves the path for

improved patient outcomes, minimal surgical errors, and

reduction of the need for revisionary procedures and

associated healthcare costs.
Materials and methods

Data acquisition

Animal study setup
The algorithm used throughout this study was developed

and tested using ex vivo porcine brain images. Porcine brains

(Wagner Meats, Maryland, USA) were obtained and imaged

with implanted cotton balls within 24 h of euthanasia. Prompt

post-mortem imaging was necessary to avoid transformations

in the acoustic properties of the brain tissue (16), which

would change how the ultrasound machine interprets the

image. These brain samples (N ¼ 10) were placed in a

rubber-lined acrylic container filled with 1X pH 7.4

phosphate-buffered saline (PBS, ThermoFisher) to minimize

artifacts in the recorded images. For imaging, an eL18-4 probe

was used with a Philips EPIQ 7 (Philips, Amsterdam,

Netherlands) clinical ultrasound machine (Figure 2).
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FIGURE 2

Experimental setup. Both animal studies and in-human studies were conducted. Animal images were acquired by setting an ex vivo porcine brain in a
rubber-lined acrylic box, placing cotton balls within the brain, and immersing in saline. An eL18-4 probe of a Philips EPIQ 7 ultrasound machine was
used to capture these images (left-hand side). The human studies were performed during neurosurgical procedures using an Aloka Alpha 7 machine
and UST-9120 probe. The cranial cavity was scanned for retained cotton balls (right-hand side).

FIGURE 1

Foreign body object detection in neurosurgery. This study demonstrates the ability of medical ultrasound to locate foreign bodies, specifically cotton
balls, retained in the brain post-surgery. Source: Laura Roy, CMI.

Abramson et al. 10.3389/fsurg.2022.1040066
Different sizes and locations of the cotton balls were imaged

to mimic a neurosurgical procedure, including a control group

with no cotton balls. Cotton balls were trimmed to diameters

of 1, 2, 3, 5, 10, 15, and 20 mm. Approximately the same

number of still images were captured for each size of cotton

ball, with more control images to stress the importance of

recognizing true negatives (i.e., understanding when there is
Frontiers in Surgery 03
not a cotton ball in the image). One saline-soaked cotton ball

was implanted in the porcine brain per true positive image.

To improve the variability among the images, the cotton ball

was implanted at depths between 0 mm (placed directly

underneath the transducer, above the brain) to approximately

40 mm (placed at the bottom of the container, beneath the

brain). During imaging, the probe was moved and rotated
frontiersin.org
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around the outer surface of the brain to provide additional

variability in the location of the cotton ball in the ultrasound

image.

Additionally, experiments ensured that the acoustic

properties of cotton in an ex vivo setting were representative

of an in vivo setting, i.e., when soaked in blood during

neurosurgery. Ultrasound imaging compared a 20 mm

diameter cotton ball soaked in PBS with one soaked in

Doppler fluid (CIRS, Norfolk, VA, USA, Model 769DF).

Doppler fluid is designed to mimic the acoustic properties of

blood. These images were compared visually by eye and by

average pixel intensity value of the cotton ball, which would

help ensure the DL algorithm could recognize cotton retained

in an in vivo setting. The acoustic properties of cotton, PBS,

and Doppler fluid were also assessed to confirm that the

images should look similar based on the equation for acoustic

impedance, which is used by the ultrasound machine to

translate sound waves into image pixels.

Finally, other materials were tested using the technology

developed here as well. A latex glove fragment (5 mm

diameter), a stainless steel rod (5 mm diameter and 18 mm

length), and an Eppendorf tube (7 mm in diameter and

30 mm in length) were placed on or around a porcine brain,

imaged using ultrasound, and tested using the same methods

as the cotton balls.

In vivo human studies
Ultrasound images of live human brains (N ¼ 2) were

captured prior to closing the cranial cavity following (1) an

aneurysm surgery and (2) a glioblastoma tumor resection.

These images were acquired as part of a standard protocol by

the neurosurgeon. Images were de-identified prior to being

provided for evaluation of cotton ball presence, and this

evaluation was conducted post-operatively (i.e., not as a part

of the surgery).

The ultrasound machine available to the operating rooms

was the Aloka Prosound Alpha 7 with a UST-9120 probe

(Hitachi Aloka Medical America, Inc., Wallingford, CT). For

the purposes of this study, a 10 mm diameter cotton ball was

momentarily placed in the location of suturing or tumor

removal, and saline was used to eliminate potential air

bubbles prior to capturing the ultrasound images, which

proceeded as follows. First, the neurosurgeon tasked with

acquiring the ultrasound images identified the region of

interest, i.e., the surgical site where a foreign body was known

to have been placed. In a general case without a known

cotton ball placement, this region of interest would be the

open cranial cavity. The ultrasound probe was placed at the

start of this window, with the depth adjusted to avoid image

artifacts due to skull bone (Figure 2). During these surgeries,

cine (moving) image scans were captured and later saved

slice-wise as still images, although still images may be

acquired as these are the input to this study’s custom
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algorithm. The probe was tilted in increments of 15�, taking
care again to avoid bone reflections. To ensure that the entire

region of interest is checked for cotton ball presence, the

neurosurgeon translated the probe across the contour of the

anatomy. The neurosurgeon slid the probe in 1cm increments

in both the anterior-posterior and lateral directions until the

entire exposed surface of the brain was covered. Once the

cotton ball intentionally placed in the cavity was removed, a

follow-up ultrasound scan captured another set of true

negative images. During the second patient’s procedure,

another cotton ball was visible on the ultrasound images.

Thus, that cotton ball was found and removed in order to

acquire images absent of any foreign body objects. Later, the

de-identified images annotated by clinicians were checked for

presence of a cotton ball using the developed web application.
Data preprocessing

All images were annotated with ground truth bounding

boxes surrounding cotton within the brain by researchers who

conducted the study. The ground truth porcine brain images

served as data for the DL model, split randomly but evenly by

cotton ball diameter into 70% training set, 15% validation set,

and 15% test set. Images were processed using anisotropic

diffusion, which emphasizes edges while blurring regions of

consistent pixel intensity, scaled from (768, 1024, 3) to (192,

256, 3) to decrease the computational power required to

process each image, and normalized to pixel intensity values

between 0 and 1. Each pixel in an image has an associated

red, green, and blue color value, thus lending to the 3-

dimensionality of the image. Intraoperative neurosurgical

images in humans captured with a lower resolution probe

additionally underwent contrast-limited adaptive histogram

equalization (CLAHE) with a clip limit of 2.0 and a tile grid

of side length 4 to increase image contrast.
Algorithmic design

To ensure DL was in fact the optimal method for localizing

cotton balls within ultrasound images, multiple less

computationally expensive methods were implemented for

comparison. These included thresholding and template

matching. Because cotton appears brighter than most brain

tissue in ultrasound images, an initial threshold at half the

maximum of all grayscale pixel values was attempted (17).

Additionally, Otsu thresholding was implemented as a

method for identifying a natural threshold in the image (18).

Finally, the average pixel values within ground truth bounding

boxes of the training set images were calculated, and the

images in the test set were thresholded at the 95th percentile

of these averages. To implement template matching, four
frontiersin.org
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examples of different cotton balls were cropped from training

set images to serve as “templates.” These template images

were moved across each image of the test set at various scales

from 25% to 200% the size of the template, and the location

with the highest correlation value (most similar pixels) was

taken to be the location of the cotton ball in the test set

image (19). As an additional method for comparison,

CSPDarknet53 (20), the DL backbone of YOLOv4 used in

Mahapatra et al. (15), was implemented.

Ultimately, a fully automated DL algorithm for object

localization was developed and packaged in a web application.

DL is implemented in the form of neural networks, which are

series of differentiable functions called “layers” that transform

an input into a desired output. Convolutional neural networks

(CNNs) are tailored towards image analysis. A CNN known

as VGG16 (21) has shown success at reducing large medical

image files to a few meaningful numbers. Here, a custom

version of this model was used to predict four numbers from

each ultrasound image representing: (1) the x value of the top

left corner of the annotated bounding box, (2) the y value of

the top left corner of the bounding box, (3) the width of the

bounding box, and (4) the height of the bounding box.

The VGG16 model was customized by fine-tuning it and

appending additional layers. When fine-tuning, pre-trained

weights are used throughout most of the model except for the

final few layers. These weights tell the network what to look

for in an image. In a typical neural network, the initial layers
FIGURE 3

Network architecture. A convolutional neural network known as VGG16 was u
dropout. Vertically and horizontally displayed number values indicate the 3-d
array (where the depth of 3 represents red, green and blue values assigned to
represent the x and y coordinates of the upper left corner of the predicted
represents a function applied to the preceding layer as indicated in the lege
max pooling layers used a 2� 2 stride size; and dropout was 50%.
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tend to look more broadly at curves and lines, while the latter

layers are trained to recognize high-level features specific to

the task at hand, such as textures and shapes. By learning

new weights for the last few layers, the network is able to be

applied to new tasks; this process is known as fine-tuning

(22). Thus, the network designed here implemented VGG16

using ImageNet weights (which are included in the Keras DL

package (23)) for all layers except the last four, which

remained “unfrozen,” or trainable. Additionally, five layers

were appended to the VGG16 network: four dense layers split

by a dropout layer (Figure 3). All convolutional layers and

the first three dense layers used ReLU activation (22), while

the final dense layer used sigmoid activation (22). The

dropout layer was implemented with 50% dropout. Unlike

convolutional layers, which learn local patterns, dense layers

are fully connected and therefore learn global patterns in the

data. Dropout layers help to regularize the model, i.e.,

improve its ability to generalize across images beyond the

training set (22). A data generator shuffled the training set as

it prepared batches of 64 images for each training step. The

network passed each of the training set images through its

layers 50 times, where each pass through the set is known as

an epoch. Each of the 50 epochs had bnimgs=64c steps. An

Adam optimizer (24) was implemented with a learning rate of

0.001. This parameter indicates the amount by which the

weights in the model can change after each epoch, where a

smaller learning rate also implies that the network learns
sed as a backbone with an additional dense network split with a layer of
imensional sizes of each layer (navy blue). The input is a 192� 256� 3
each pixel) that is transformed to an output that is 1� 4. These 4 values
bounding box as well as the width and height of the box. Each arrow
nd. Convolutional layers were implemented with a 3� 3 kernel size;
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FIGURE 4

Evaluation using intersection over union (IoU). (A) An ultrasound image from the test set indicates the overlap of ground truth annotation of the
cotton ball (magenta) with the predicted result by the CNN (sea green). (B) The extent of overlap is assessed by computing the area of overlap
divided by area of union, known as the IoU.
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more slowly. The loss function used to train and optimize the

network was mean squared error. Results were evaluated

using the intersection over union (IoU), which is the ratio of

the overlap in predicted and ground truth bounding boxes to

the combined total area of these boxes (Figure 4). An

accurate prediction was considered one with an IoU over 50%

(25). In addition to running the custom network on the

randomly assigned training, validation, and test sets described

above, stratified 5-fold cross validation (CV) was implemented

to avoid overfitting. This method divided the entire set of

images collected into five groups with randomly but evenly

distributed cotton ball sizes. Each group took a turn as the

test set, with the other four serving together as the training

set. Mean IoU, accuracy, sensitivity, and specificity were

calculated for each of the five models trained and averaged to

get a final, cross-validated result. CV was performed on each

of the compared neural networks. Gradio (26), a Python

(RRID:SCR_008394) package, was used to develop an intuitive

web-based interface that fits into the clinical workflow. The

smartphone application was designed using Flutter, powered

by Dart (27). All training was performed using a NVIDIA

RTX 3090 GPU using Keras (23) and Tensorflow (28) (RRID:

SCR_016345).
Results

In addition to highly accurate cotton ball detection in ex

vivo porcine brains, the trained algorithm was able to detect

cotton balls in in vivo human studies and other medical

foreign objects placed in an ex vivo setting. This algorithm
Frontiers in Surgery 06
has demonstrated its importance in human surgery by

locating a cotton ball that was then removed from a patient,

not having been known to exist prior to imaging as it was

visually indistinguishable from surrounding brain tissue.

The acquired dataset of ex vivo porcine brain ultrasound

images was large and diverse, both of which are necessary

qualities for a successful deep learning model. In total, 7,121

images were collected from 10 porcine brains (see Table 1 for

a more detailed breakdown). Thresholding and template

matching methods that were implemented as control

algorithms to verify the necessity for DL were performed both

with and without images where a cotton ball was present (i.e.,

true negatives were either included or excluded). These non-DL

methods would likely always report a cotton ball existing, so

true negatives were excluded to ensure comparison to the best

possible results of thresholding and template matching.

However, results including and excluding true negatives for

these non-DL methods are both shown for robustness.

Specificity is unable to be calculated in cases where true

negatives do not exist. Results of each algorithm are displayed

in Table 2 and Figure 5. Given that an accurate result is

defined here as one with an IoU greater than 50% (25), no

control algorithm reached a mean IoU that could be

considered accurate without the use of DL. The neural network

backbone commonly used in YOLOv4 implementations,

CSPDarknet53, surpassed this threshold by 2% using stratified

5-fold CV. The standard VGG16 network without our

customization also resulted in a mean IoU of 0.52 using CV.

Ultimately, the tailored network using a VGG16 backbone

and custom dense network described above reached both

sensitivity and specificity values of 99% on a hold-out test set.
frontiersin.org
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It also resulted in a median IoU of 94%+ 0:09 and mean IoU

of 92% on this test set (Figure 6A). Importantly, the algorithm

was 99% accurate (Figure 6B) and correctly identified 92% of

the true negative images as not containing a retained foreign

body object. Both the training and validation losses (mean

squared error) were low at 0.00087 and 0.0018, respectively.

When the training and validation losses are similar to each

other and low values, the algorithm performs well on all

images, whether or not it has “seen” the image before (30).

Example predictions of bounding boxes on the ultrasound

images are shown in Figure 7.
TABLE 1 Number of images acquired of each size cotton ball for
training, validation, and testing of the model.

Cotton ball diameter (mm) No. of images

0 mm 1,456

1 mm 986

2 mm 878

3 mm 622

5 mm 773

10 mm 820

15 mm 825

20 mm 641

Total 7,121

Training 4,898

Validation 1,046

Testing 1,057

TABLE 2 Results of Algorithms Tested.

Algorithm TN images? Mean Io

Threshold at half maximum Yes 0.17

Threshold at half maximum No 0.41

Otsu Thresholding Yes 0.11

Otsu Thresholding No 0.21

Threshold at 95th percentile Yes 0.18

Threshold at 95th percentile No 0.46

Template matching Yes 0.07

Template matching No 0.19

CSPDarknet53 (YOLOv4 backbone) Yes 0.50

5-fold CV of CSPDarknet53 Yes 0.52

VGG16 alone Yes 0.89

5-fold CV of VGG16 Yes 0.52

Custom network Yes 0.92

5-fold CV of custom network Yes 0.94

Control algorithms included thresholding and template matching methods. The thresho

images in the training set. These control algorithms were either performed with or witho

YOLOv4 backbone, CSPDarknet53, was implemented for comparison as well. Our custo

network was additionally implemented and evaluated using stratified 5-fold cross validati
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Stratified 5-fold cross validation of this model reported

higher average results than the single reported model. As

shown in Table 2, the mean IoU was 0.94 (from 0.93, 0.93,

0.94, 0.95, and 0.95, which were the separate models’ means),

while each of the sensitivity, specificity, and accuracy rounded

from four significant figures to 100%.

Cotton balls soaked in saline were visually similar to those

soaked in blood-mimicking Doppler fluid when captured

using ultrasound imaging (see Figure 8). A visual comparison

was used to avoid assuming which features were identified by

the deep learning algorithm, which uses hidden layers to

locate foreign objects. It was also noted that there was only a

1.5% difference in average pixel value between the lighter

cotton regions on the ultrasound images as displayed in

Figure 8. Although the speed of sound through Doppler

fluid (1,570 m/s (31), CIRS, Norfolk, VA, USA) is faster than

that of saline solution (approximately 1,500 m/s (32)), these

fluids are comparable to the speed of sound through brain

tissue (1,546 m/s (33)) but importantly are distinctly different

when compared to the speed of sound through a cotton

thread (3,130 m/s (34)). The high speed of sound through

cotton implies that the fluid in which this material is soaked

would have little influence on its visualization via ultrasound

imaging. Although typically Doppler fluid is used to measure

flow, the comparison between the acoustic properties of blood

and Doppler fluid also indicates that these fluids are similar

when stagnant as well, which would be the case during a

surgery. Blood and Doppler fluid have similar speeds of

sound (1,583 and 1,570 m/s, respectively), densities (1,053 and

1,050 kg/m3, respectively), attenuation coefficients (0.15 and
U Sensitivity Specificity Accuracy

0.21 0.0 0.16

0.39 — 0.39

0.06 0.0 0.04

0.09 — 0.10

0.24 0.0 0.19

0.48 — 0.49

0.003 0.0 0.003

0.008 — 0.008

0.56 0.0 0.46

0.77 0.0 0.62

0.99 0.98 0.99

0.40 0.60 0.45

0.99 0.99 0.99

1.0 1.0 1.0

ld at the 95th percentile was calculated using the bounding boxes of ground truth

ut true negative (TN) images, i.e., images known not to contain a cotton ball. The

m network is a VGG16 backbone with an additional Dense network. Each neural

on (CV). The final custom algorithm achieved a mean IoU of 0.92, or 0.94 after CV.
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FIGURE 5

Algorithm comparison. (A– D) Non-deep learning algorithms were implemented to predict the location of a cotton ball in a neurosurgical ultrasound
image. These included (A) Thresholding at half the maximum pixel intensity value; (B) Otsu thresholding; (C) Thresholding at the 95th percentile of
the average pixel value within the ground truth bounding box of a training set; and (D) Matching the input image to a template image of a cotton ball.
(E) CSPDarknet53 is the backbone of the YOLOv4 algorithm, which is known for object detection and classification. (F) VGG16 is often employed for
object localization and was implemented as in (29). (G) A custom network was employed using a VGG16 backbone and additional dense network as
described.

FIGURE 6

Accuracy assessment. (A) A distribution of Intersection over Union (IoU) values of the test set is shown for each implanted cotton ball size. Vertical
boxplot lines indicate the 10th and 90th percentiles, while the boxplot itself indicates the 25th, 50th, and 75th percentiles. (B) Accurate predictions
have IoU values greater than 50%. Here the percentage of accurately predicted bounding boxes are split by cotton ball size.
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0.10 dB/(cm MHz), respectively), viscosities (3 and 4 mPa�s,
respectively), particle sizes (7 and 5mm, respectively), and

backscatter coefficients (0 and 10�30, respectively) (31,35,36).

They differ primarily in that blood is non-Newtonian whereas

Doppler fluid is Newtonian, though this characteristic does

not affect intraoperative ultrasound imaging when the blood

is stagnant in the cranial cavity (36). As a result, it is

understood that the echo generated by still Doppler fluid

would accurately represent an echo generated by blood.

The algorithm, without any changes or additional training,

was also able to detect other objects placed in or around the

brain. As shown in Figure 9, it localized a fragment of a

latex glove with an IoU of 0.88, a short rod of stainless steel
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with an IoU of 0.68, and an Eppendorf tube with an IoU of

0.40. Although these objects were visually distinguishable

from the brain tissue unlike cotton balls, this experiment

proves that the ultrasound-based technology described here

is beneficial in numerous use cases.

Importantly, the algorithm demonstrated the ability to

prevent accidental foreign body retention and to detect cotton

balls in ultrasound images captured during human

neurosurgical procedures. The cotton balls placed deliberately

for visualization via ultrasound during the cases (one per

case) were accurately identified (see Figure 10). During the

second case (Patient 2), when intending to capture a true

negative image, an initially unidentified foreign body object
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FIGURE 7

Example predictions. (A) No cotton ball is present in this image, nor is one predicted to be present. Predictions of implanted cotton balls with
diameter sizes of (B) 1 mm, (C) 2 mm, (D) 3mm, (E) 5 mm, (F) 10mm, (G) 15mm, and (H) 20mm in a fresh porcine brain model are shown by
bounding boxes.

FIGURE 8

Acoustic comparison of cotton balls. (A) Experiments in this study were performed with saline-soaked cotton balls. (B) To ensure that cotton would
not be visualized differently on an ultrasound machine when absorbing blood rather than saline, the saline-soaked cotton balls were compared to
Doppler fluid-soaked cotton balls. Doppler fluid mimics the acoustic properties of blood. (A, B) are visually similar.
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was able to be seen in the operation site. This final ultrasound

scan informed the neurosurgeons that they should explore the

cavity once again. Following an extensive search, a small

cotton ball approximately 5 mm in diameter was located

underneath a gyral fold. This patient, undergoing a second

brain surgery already this year, was protected from a third

surgery that could have resulted from a retained cotton ball.

This algorithm was tested post-operatively on the images

captured during this surgery and accurately located both

cotton balls (Figure 10). From left to right, the IoUs of the

example images for Patient 1 in Figure 10 were 0.86 and 0.91.

The IoUs of Patient 2’s image with two cotton balls present

were 0.72 for the larger cotton ball and 0.69 for the smaller,

hidden cotton ball. The image on the right-hand side displays

only this smaller, once hidden cotton ball, and the algorithm

predicted its presence with an IoU of 0.83. The algorithm was

unable to identify true negative images for the human studies.
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However, the Aloka UST-9120 probe used to capture these

images has an operating frequency of 7MHz, compared to the

Philips eL18-4 operating frequency of 11MHz. Decreased

frequency corresponds to lower resolution, thus indicating an

approximately 50% loss in image quality of the human study

compared to the ex vivo study.

The algorithm was implemented into intuitive web and

smartphone applications. A clinician may upload an image to

either application, after which the application runs the trained

algorithm in the back-end. In 0.38 s, the web application is

able to predict, localize, and display bounding boxes on the

captured ultrasound images (see Supplementary Video

Figure S11). The smartphone application offers the additional

feature of being able to capture an image of the screen of an

ultrasound machine and immediately check this image for

cotton balls, running in approximately 1 s (see

Supplementary Video Figure S12).
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FIGURE 10

Algorithmic implementation in humans. The trained model, without any changes beyond initial contrast enhancement of the images, was used to
detect cotton balls in a human brain following neurosurgery. The top two example images were taken towards the end of an aneurysm surgery.
The bottom two images were captured following a tumor resection procedure. One cotton ball was known to be placed within the cavity (left),
and upon removal of this object a second cotton ball was found (right). This study prevented accidental retention of an unidentified foreign body
object. Intentionally placed cotton balls had a diameter of 10mm prior to placement within the cavity, which alters the shape. The initially
unseen cotton ball in Patient 2 was 5mm in diameter.

FIGURE 9

Algorithmic implementation using other materials. The trained model, without any changes, was used to detect (A) latex glove fragments, (B) a
stainless steel rod, and (C) an Eppendorf tube implanted into the brain.
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Discussion

The ultrasound-based technology presented here identifies

cotton balls in the absence of injections, dyes, or radiofrequency

tags and is based on clinical workflow. Cotton balls, a common

item used in the operating room, serve as a model for foreign

body objects that may lead to severe immunologic responses if

retained post-surgery. Overcoming the visual barriers of
Frontiers in Surgery 10
distinguishing blood-soaked cotton from brain tissue, ultrasound

imaging captured what other modalities could not: the

contrasting acoustic properties of cotton in relation to brain

tissue. Using thousands of acquired ex vivo porcine brain images

demonstrating this contrast, a deep neural network learned the

unique features of cotton in an ultrasound image and

successfully output bounding boxes to localize the foreign bodies

with a median IoU of 0:94+ 0:09 and 99% accuracy. This
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algorithm automated the translation of over 700,000 data points

(the number of pixels in each image prior to preprocessing) to

four simple numbers describing the location and size of a

retained surgical item in the brain. Because gossypibomas may

result from fragments of cotton (37), the work here takes

caution in localizing pieces of cotton down to 1mm in diameter.

The potentially life-saving capability of this study was exhibited

explicitly during the second in-human data collection. The

neurosurgeons had placed a cotton ball, taken an ultrasound

scan, and subsequently removed it, yet there remained an

unidentified foreign body object clearly visible in the image.

Upon searching, they located a cotton ball that had been tucked

behind a gyral fold and not initially seen by the surgeon. This

object was found because they elected to perform an

intraoperative ultrasound. In the future, implementing the

algorithm developed here will ensure rapid and confident

diagnosis of a retained foreign object.

There has only been one previous report of an algorithm for

the automatic detection of foreign body objects (15). However,

the dataset acquired in Mahapatra et al. (15) was

unrepresentative of a clinical setting and showed minimal

variation between images, which risks overfitting. In contrast,

the work described here captured all images in a manner more

conducive to deep learning: sizes and locations of implanted

cotton in the brain were all varied, and deformation of cotton

as it absorbed saline additionally added shape variability to the

images. Another benefit of this work is that all ex vivo images

were acquired in a rubber-lined container to attenuate noise

and avoid artifacts. Additionally, this technology is intended for

clinical implementation; therefore an ultrasound machine

readily available and approved for hospital use, a Philips EPIQ

7, was used. Further, this algorithm accurately localizes any size

cotton ball without the added computational expense of

labeling cotton size as in YOLOv4, which was used in

Mahapatra et al. (15), since this label is redundant in medical

images with known scales. To show that the custom neural

network described here improved upon Mahapatra et al. (15),

the backbone of YOLOv4 (i.e., CSPDarknet53) was trained and

tested on the newly acquired image dataset. YOLOv4 is

typically implemented to identify multiple different types (or

classes) of objects in an image, and therefore is

computationally expensive in comparison to our smaller,

custom network. CSPDarknet53 is specific to localization rather

than classification. Therefore, because the specific task here is

to localize cotton balls rather than distinguish or classify

different objects within the cranium, we did not re-implement

the additional layers (known as the neck and head) of

YOLOv4. CSPDarknet53 was approximately half as accurate as

our custom network. Our study also demonstrated the first

working example of automated foreign body object detection in

humans.

There are a few limitations to this work that serve as future

steps in establishing this technology in the clinic. Currently, the
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algorithm will identify only one cotton ball per image. If there

are two, for example, it will identify one of them, and upon

its extraction out of the brain, identify the other. Clumped

cotton balls also appear to the neural network as one singular,

larger object as demonstrated in Figure 10 Patient 2; though

importantly, it recognized the presence of a foreign body.

Future work should allow for multi-object detection. In

addition, a few modifications can make for improved clinical

translation following the first two successful implementations

in humans reported here. For example, a database of

ultrasound images with cotton balls used during human

neurosurgery should be acquired and tested with a fine-tuned

version of the algorithm presented. This database should

incorporate all of the brands of clinical machines and types of

probes one might find in a neurosurgical setting. The

somewhat low accuracy of in vivo data compared to ex vivo

results is likely due to the decreased image quality, which was

cut in half in vivo due to unavailability of a more modern

system or higher frequency probe, and due to the use of a

curvilinear probe as opposed to linear, which the algorithm

had never seen in training.

Foreign body objects could be localized using this algorithm

regardless of the anatomical region, for example in abdominal,

vascular, or orthopedic procedures, etc. (38–43). Beyond cotton

balls, ceramic, silicone, metal, or hydrogel implants may trigger

foreign body responses that demand prompt care (44,45). One

of the first steps in treatment would be localization of the

foreign body object, which could be accomplished with this

technology. In this study, the ex vivo data collected

demonstrated the same accuracy, sensitivity, and specificity

whether or not images were filtered in pre-processing, though

the methods used show promise in increasing accuracy when

blurrier or poorer quality images were captured such as the

in vivo data. As was demonstrated by the detection of other

foreign bodies and success in humans, this algorithm is flexible

as trained, and its applications could be expanded using simple

fine-tuning methods. Anatomical modifications that may have

occurred during surgery, which one might imagine could

impact clinical translation, did not cause a noticeable issue. This

algorithm searches for cotton rather than patterns in brain

tissue, and neurosurgeons are unlikely to considerably change

the gyral folds that may be present. Additionally, the

neurosurgeon added saline to the cranial cavity, thereby

removing any potential air gaps that could distort the images in

vivo. Similarly, pooled blood resulting from the surgery did not

and would not effect the ultrasound images because it has a

similar speed of sound as saline or water, meaning that it is

anechoic or hypoechoic whereas cotton is hyperechoic.

Therefore, the blood would serve to further distinguish the

cotton from the surrounding anatomy. Following the scanning

protocol presented ensures the entire region of interest will be

covered. This work could additionally benefit ultrasound uses in

industry such as nondestructive testing (46,47).
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Conclusions

Ultrasound is an inexpensive, non-ionizing, and well-

established imaging modality across medical fields. It provides

insight into the acoustic properties of different structures in the

body, including foreign objects left behind during brain

surgery. This work described a rapid and accurate technology

that uses ultrasound imaging and is capable of localizing such

foreign objects intraoperatively in humans. The importance of

this work is emphasized by the fact that a cotton ball not seen

by the neurosurgeon during a human procedure was located as

a result of conducting ultrasound imaging for this study,

thereby preventing immunologic reactions in the patient,

expensive follow-up surgery, and a potential malpractice lawsuit.
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