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Background: Performing axillary lymph node dissection (ALND) is the current standard

option after a positive sentinel lymph node (SLN). However, whether 1–2 metastatic

SLNs require ALND is debatable. The probability of metastasis in non-sentinel lymph

nodes (NSLNs) can be calculated using nomograms. In this study, we developed an

individualized model using machine-learning (ML) methods to select potential variables,

which influence NSLN metastasis.

Materials and methods: Cohorts of patients with early breast cancer who underwent

SLN biopsy and ALND between 2012 and 2021 were created (training cohort, N 157

and validation cohort, N 58) for the development of the nomogram. Three ML methods

were trained in the training set to create a strong predictive model. Finally, the multiple

iterations of the least absolute shrinkage and selection operator regression method were

used to determine the variables associated with NSLN status.

Results: Four independent variables (positive SLN number, absence of lymph

node hilum, lymphovascular invasion (LVI), and total number of SLNs harvested)

were combined to generate the nomogram. The area under the receiver operating

characteristic curve (AUC) value of 0.759 was obtained in the entire set. The AUC

values for the training set and the test set were 0.782 and 0.705, respectively. The

Hosmer-Lemeshow test of the model fit accuracy was identified with p = 0.759.

Conclusion: This study developed a nomogram that incorporates ultrasound (US)-

related variables using the ML method and serves to clinically predict the non-metastatic

status of NSLN and help in the selection of the appropriate treatment option.

Keywords: breast neoplasms, sentinel lymph node, nomogram, ultrasound, machine learning

INTRODUCTION

In 2020, breast cancer was surpassed lung cancer as the world’s most commonly diagnosed cancer.
This is despite being arguably negligible in men (1). The most common route of breast cancer
metastasis is lymphatic spread within the axilla. Axillary lymph node dissection (ALND) and
sentinel lymph node biopsy (SLNB) are the main axillary surgeries for breast cancer (2). ALND
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could completely remove the metastatic lymph nodes, clarify the
TNM stage of the cancer, and inform the prognosis (3). However,
ALND can cause many complications, such as lymphedema,
hematoma, sensory abnormalities, and limitation of upper limb
movement (4, 5). Furthermore, approximately 50% of patients
with positive sentinel lymph nodes (SLNs) are found to have no
additional nodal metastases (6).

The possibility of exempting ALND in early breast cancer
(cT1-2N0) has been widely explored in several clinical trials
(7–10). This suggestion has essentially achieved good follow-up
data reports. According to St. Gallen guidelines of 2017, women
with 1 or 2 positive SLNs who have had breast conservation
can avoid ALND and receive whole breast radiation and
adjuvant systemic therapies only (11). However, with the limited
randomized, multicenter clinical trials and strict inclusion
criteria, proper selection of axillary surgeries for patients who fail
to meet the criteria has become a priority of many clinicians.

The prediction of the risk of non-sentinel lymph nodes
(NSLNs) metastasis determines the selection of axillary surgery.
Previous reports show that nomograms have been developed
and are validated as the commonly used method of predicting
cancer prognosis. The Memorial Sloan-Kettering Cancer
Center (MSKCC) nomogram (12) is undoubtedly the most
authoritative nomogram. Different cancer centers have validated
and confirmed MSKCC nomogram as a robust method of
predicting NSLNs metastasis (13, 14).

Multivariate logistic regression is the most common method
of incorporating variables into cancer prognostication. Machine
learning (ML) is an emerging tool for predicting cancer prognosis
that is making significant contributions in different cancer fields
(15, 16). It is a learning process, which utilized techniques, such
as decision trees (DTs), artificial neural networks (ANNs), and
support vector machines (SVMs). Ayer et al. applied the ANN
technique in the prediction of breast cancer susceptibility (17)
while Zeng et al. predicted the breast cancer recurrence through
SVMs (18). Further, Madekivi et al. filtered the variables by
a gradient-boosted trees model to develop a final model for
predicting NSLNs (19). All these studies show ML as a feasible
and superior cancer prediction method. The aim of our study
was to employ ML-based statistical methods to select variables
with potential influence on NSLN metastasis status. The study
ultimately developed an individualized prediction model that
could guide clinicians for a better choice of cancer treatment
options for different patients.

METHOD

Patients and Data Collection
The clinical data of patients who underwent surgery between
January 2012 and May 2021 at Zhongshan Hospital (an
affiliate of Fudan University) and Shanghai Public Health
Center (Zhongshan Hospital South Branch) were collected and
retrospectively analyzed. A total of 532 patients were screened (n
= 532). The inclusion criteria were postoperative pathologically
confirmed diagnosis of primary breast cancer, no history of other
tumors, and that the patient has received both SLNB and ALND.

The exclusion criteria were lack of preoperative breast
ultrasound (US) or pathological information, patients were
not preoperatively staging as clinical T1-2N0 or had received
neoadjuvant therapy, only axillary surgery without breast tumor
resection in our hospital, and a negative pathological result of
SLNs. Only 215 patients were retained by the exclusion criteria.
The working protocol of our study is as shown in Figure 1.
The ethical approval of this study was granted by the ethics
committee of Zhongshan Hospital and Shanghai Public Health
Center. There was no additional informed consent required from
the patients because this was a retrospective study.

The SLNs were identified before surgery using Methylene blue
dye, and blue-stained nodes were removed and sent for frozen
pathology to the Pathology Department. It was stained with H&E
and microscopically examined by an experienced pathologist.
Routine H&E analysis was performed for all additional nodes
identified by ALND.

The collected clinical and medical information of patients
included the patient age, breast tumor location, postoperative
pathological features [histology, estrogen receptor (ER)
status, proliferation index (Ki-67), progesterone receptor (PR)
status, human epidermal growth factor receptor 2 (HER-2)
overexpression, lymphovascular invasion (LVI), Scarff-Bloom-
Richardson (SBR) grade, total number of SLNs harvested, T stage,
number of positive SLNs, and number of NSLNs metastasis]
and ultrasonic parameters of tumor and axillary lymph nodes
[sizes, mass echogenicity, regular or irregular tumor margin,
presence or absence of lymph node hilum, and color Doppler
flow imaging (CDFI)].

Statistical Analysis
Clinical and pathological variables associated with the risk of
lymph node metastasis were assessed on the basis of their
clinical importance and predictors identified in previously
published articles (20, 21). Categorical variables were reported
as integers and proportions. The continuous variables were
described as means [±standard deviation (SD)]. Collinearity for
all explanatory variables was assessed using a correlation matrix
and plausible interaction terms were also tested. Therefore,
interaction terms were excluded in the multivariate analysis. To
relax the assumption of a linear relationship between continuous
predictors and the risk of NSLN metastasis status, continuous
predictors that include the patient age, tumor size, and number
of SLNs, etc., were categorized after evaluation using restricted
cubic splines (22). Regarding the strong U- or S-shaped relation
between continuous predictors and NSLNs metastasis results, the
value of the turning in the graph was used as the dividing point
(Supplementary Figure S1).

Patients were randomly sampled into the training and
validation sets in the ratio of 7:3. To select the strongest predictive
model, three ML methods were trained in the training set. These
ML methods were random forest (RF) (23), SVMs (24), multiple
iterations of the least absolute shrinkage, and least absolute
shrinkage and selection operator (LASSO) regression (25). The
best hyper-parameter forMLmodels was 10-fold cross-validation
to avoid overfitting. The best classification model was selected to
compare the performance of the ML methods.
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FIGURE 1 | The working flow of this study.

We created a nomogram that could make a linear predictor in
patients who were easily accessible to clinicians on the basis of the
best-performing model. Further, we assessed the discriminating

ability and predictive accuracy in both the validation and entire
sets using the ROC curves (C-index and calibration curves)
(26, 27). Finally, the decision curve analysis (DCA) was used
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to support the clinical decisions of the prepared prediction
model (28). All the statistical analyses were carried out using
the R software (version 3.6.3, http://www.r-project.org). The R-
software packages used for statistical data analysis were “caret,”
“rms,” “glmnet,” “randomForest,” “e1071,” “kernlab,” “pROC,”
“rmda,” and “ResourceSelection.” A two-sided p < 0.05 was
considered statistically significant.

RESULTS

Demographic and Clinical Characteristics
Clinicopathological information of 215 patients with breast
cancer after surgical operation was assessed between January
2012 and May 2021. Patients who participated were grouped
into two groups based on the presence or absence of NSLNs
metastasis. The observed clinicopathological characteristics of
both metastasis and non-metastasis patients are presented in
Table 1. All patients are Asian. The median age of patient was
56 years. The patients with tumors located in the upper-outer
quadrant were 51.2%. Largely, all participating patients (97.6%)
were at the T1-T2 stages and showed no difference in histology,
ER, PR, and ki-67 or HER-2 status. A small proportion of
patients in stage T3 were included as the preoperative assessment
was T1-T2 but the postoperative pathology confirmed stage T3.
However, the ultrasonic features (longitudinal diameter of lymph
node, lymphatic echogenicity, and absence of lymph node hilum)
and pathological features (LVI, number of positive SLNs, and
proportion of positive SLNs) in the two groups were statistically
different (p < 0.05).

Predictive Model and Factors Selection
All participants were randomly divided into two groups (training
and validation cohorts) in the ratio of 7:3. The explanatory
variables were transformed into categorical forms. The US
transverse and longitudinal diameter of tumor or lymph were
highly correlated, so only the largest diameter was retained.
No other significant interaction was found. There were no
statistical differences between the variables in both the training
and validation sets (p > 0.05; Supplementary Table S1). Three
ML algorithms were performed in the training set. The best
SVM model was obtained when nine candidate variables were
selected, as shown in Figure 2A. RF was effective in feature
selection and the removal of redundant features. The RF model
obtained the highest accuracy (0.689) with five predictive features
(Figure 2B). The LASSO could select significantly predictive
features but the results may not be identical each time. In this
study, we conducted 500 times iterations and selected the features
with more than 300 repeated occurrences. Then, these features
were sequentially introduced into the logistic regression model
to calculate the AUC values. The results showed that the final
model with four predictive factors had the highest AUC of 0.705
in the validation set (Figure 2C). Comparisons of the predictive
performance of validation sets among the three algorithms
models (with each optimal variable and tuning parameter) are
shown in Figure 2D and Supplementary Table S2. It turned
out that the LASSO regression model demonstrated the highest
performance. In detail, the relative weights of the final variables

in the LASSO-based logistic regression model are displayed in
Figure 2E.

Nomograms and Model Performance
The four independent factors used to create a predictive
nomogram were the number of positive SLNs (1–2, 3–4, or ≥5),
the total number of SLNs harvested (≤2, 3–5, or ≥6), absence
of lymph node hilum (no/not described or yes), and LVI (no
or yes). According to the sum of the assigned points for each
factor in the nomogram, a higher total score was associated with
the absence of NSLN metastasis (Figure 3). The c-index in the
logistic regression was equal to the area under the ROC curve. In
Figure 4A, an AUC value of 0.759 is achieved in the entire set,
while AUC values of 0.782 and 0.705 are obtained in the training
and validation sets, respectively. The Hosmer-Lemeshow test was
used to assess the accuracy of model fit and no departure from
perfect fit was identified (p = 0.759). The sample bootstrapped
calibration plot for the prediction is also presented in Figure 4B.

Clinical Application Evaluation
Decision curve analysis showed that using this nomogram
provides an additional benefit when the threshold probability
of the entire set is between 0 and 87% (Figure 5). A similar
observation was also reported in entire and test cohorts.
Therefore, the nomogram model can predict the probability of
NSLN metastasis in patients with breast cancer to facilitate early
clinical intervention and support personalized postoperative
cancer rehabilitation.

DISCUSSION

The axillary surgery has been de-escalating since the awareness
grows in breast cancer (29). Systemic treatments, such as
chemotherapy therapies, are recognized as important control
measures of cancer recurrence rather than the local therapy, such
as the extent of surgical excision. The National Surgical Adjuvant
Breast and Bowel Project (NSABP) b-32 trial (7) first investigated
the necessity of ALND in patients with negative SLN. This trial
found that SLNB alone without further axillary dissection is an
appropriate therapy for the targeted patients. This report has
been widely accepted in clinical practice to the point where
it has become a surgical routine. Nevertheless, breast surgeons
still explore the surgical indications. The After Mapping of the
Axilla, Radiotherapy or Surgery (AMAROS) trial (8) revealed
that ALND and axillary radiotherapy after a positive SLN
provide comparable axillary control for patients with early breast
cancer. The American College of Surgeons Oncology Group
(ACOSOG) Z0011 (9) suggested that early breast cancer patients
with 1 or 2 SLN metastases, breast-conserving lumpectomy,
and whole-breast irradiation can be exempted from ALND.
Furthermore, International Breast Cancer Study Group (IBCSG)
23-01 (10) trial argued the necessity of ALND in patients with
micrometastatic SLN (metastases <2mm). The discussion for
sparing ALND is rooted in resultant series of complications that
include range ofmotion, lymphoedema, pain, and sensory defects
(4, 5, 30). In contrast, SLNB can significantly lower the morbidity
of such complications (31). Furthermore, clinical data indicated
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TABLE 1 | Differences in clinicopathological characteristics between the patients with and without NSLNs metastasis.

Metastasis (n = 96) Non-Metastasis (n = 119) all (n = 215) P-value

Age 56.3 (12.2) 55.7 (11.7) 56 (11.9) 0.703

Tumor location

UOQ 51 (53.1%) 59 (49.6%) 110 (51.2%)

LOQ 18 (18.8%) 25 (21.0%) 43 (20.0%)

UIQ 15 (15.6%) 25 (21.0%) 40 (18.6%)

LIQ 12 (12.5%) 10 (8.4%) 22 (10.2%) 0.58

Ultrasonic features

Transverse diameter of tumor (mm) 23.5 (10.3) 21.5 (9.1) 22.4 (9.7) 0.115

Longitudinal diameter of tumor (mm) 14.6 (5.8) 14.4 (5.9) 14.5 (5.9) 0.672

longitudinal/transverse axis ratio of tumor 1.7 (0.5) 1.5 (0.5) 1.6 (0.5) 0.052

Tumor margin

regular 8 (8.3%) 7 (5.9%) 15 (7.0%)

irregular 88 (91.7%) 112 (94.1%) 200 (93.0%) 0.666

Tumor CDFI 0.8 (0.1) 0.8 (0.1) 0.8 (0.1) 0.593

Transverse diameter of lymph nodes (mm) 11 (7.1) 9.5 (7.1) 10.2 (7.1) 0.16

Longitudinal diameter of lymph nodes (mm) 6.1 (4) 4.9 (3.8) 5.5 (4) 0.024

Longitudinal/transverse axis ratio of lymph nodes 1.6 (0.9) 1.5 (1) 1.5 (1) 0.923

Lymphatic echogenicity

None 17 (17.7%) 32 (26.9%) 49 (22.8%)

High 18 (18.8%) 37 (31.1%) 55 (25.6%)

Low 59 (61.5%) 49 (41.2%) 108 (50.2%)

Moderate 2 (2.1%) 1 (0.8%) 3 (1.4%) 0.018

Absence of lymph node hilum

No or not described 82 (85.4%) 113 (95.0%) 195 (90.7%)

Yes 14 (14.6%) 6 (5.0%) 20 (9.3%) 0.031

Pathological features

Histology

Ductal 92 (95.8%) 116 (97.5%) 208 (96.7%)

Lobular 3 (3.1%) 3 (2.5%) 6 (2.8%)

Others 1 (1.1%) 0 (0%) 1 (0.5%) 0.516

Estrogen receptor status

Negative 16 (16.7%) 21 (17.6%) 37 (17.2%)

Positive 80 (83.3%) 98 (82.4%) 178 (82.8%) 0.994

Progesterone receptor status

Negative 31 (32.3%) 32 (26.9%) 63 (29.3%)

Positive 65 (67.7%) 87 (73.1%) 152 (70.7%) 0.475

Proliferation index (Ki-67)

<14% 19 (19.8%) 24 (20.2%) 43 (20.0%)

≥14% 77 (80.2%) 95 (79.8%) 172 (80.0%) 1

Her-2 overexpression

Negative 71 (74.0%) 90 (75.6%) 161 (74.9%)

Positive 25 (26.0%) 29 (24.4%) 54 (25.1%) 0.902

Lymphovascular invasion

No 61 (63.5%) 100 (84.0%) 161 (74.9%)

Yes 35 (36.5%) 19 (16.0%) 54 (25.1%) 0.001

SBR stage

I 2 (2.1%) 1 (0.8%) 3 (1.4%)

II 48 (50.0%) 72 (60.5%) 120 (55.8%)

III 46 (47.9%) 46 (38.7%) 92 (42.8%) 0.259

T stage

≤2 cm 39 (40.6%) 63 (52.9%) 102 (47.4%)

2–5 cm 54 (56.2%) 54 (45.4%) 108 (50.2%)

≥5 cm 3 (3.1%) 2 (1.7%) 5 (2.3%) 0.18

Number of SLNs harvested 5 (2.8) 5.4 (3.6) 5.2 (3.3) 0.728

Number of positive SLNs 2.7 (1.8) 1.7 (1.1) 2.1 (1.5) 0

Proportion of positive SLNs 0.6 (0.3) 0.4 (0.3) 0.5 (0.3) 0

UOQ, Upper-outer quadrant; LOQ, Lower-outer quadrant; UIQ, Upper-inner quadrant; LIQ, Lower-inner quadrant; CDFI, color Doppler flow imaging; SBR grade, Scarff-Bloom-

Richardson grade; SLNs, sentinel lymph nodes.
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FIGURE 2 | Predictive model and factors selection. (A) The line graph shows the relationship between the number of candidate features and the accuracy in support

vector machines (SVMs) model. (B) The line graph shows the relationship between the number of selected features and the accuracy in random forest (RF) model. (C)

The line graph shows the relationship between the number of features and the area under the curve (AUC) values in the least absolute shrinkage and selection

operator (LASSO)-based logistical model. (D) ROC curve analysis of machine-learning algorithms for prediction of non-sentinel lymph nodes (NSLN) without

metastasis in the validation set. (E) The dot plot shows the coefficients of variables in the final model. LVI: lymphovascular invasion; totalSLN: total number of SLNs

harvested; LnHilum: absence of lymph node hilum; SLNp: number of positive SLNs.

that the majority of patients with positive SLNs had no additional
nodes metastasis (6), which is consistent with our finding that
roughly 55% of all patients had nometastasis. Despite the various
clinical trials that explored the necessity of ALND, it is still
apparent that the inclusion of patients is relatively stringent and
the precise individualization of the choice is still pondering.

Previous studies have been conducted to predict NSLN
metastasis (12, 20, 32–36). The MSKCC model is a widely
acknowledged tool that incorporates eight variables (12). The
variables combined in the MSKCC model were pathological size,
ER status, multifocality, tumor type, tumor nuclear grade, LVI,
method of detection, and the number of positive and negative
SLNs with an AUC of 0.77 for the validation cohort. That
the number of positive SLNs in the MSKCC model had the
highest weight that is consistent with the findings of our study.
The MSKCC model has been validated in various countries,
for instance, in Australia where an AUC of 0.66 was obtained
from the inclusion of 526 patients (14). The model of MD
Anderson Cancer Center (33) is another frequently mentioned
model. This model added two variables of SLN metastasis size
and extracapsular extension, which are tied with the emphasis on

SLNmicrometastasis status. These variables were excluded in this
study because some patients did not have SLNmetastatic size as a
result of the limitations of our pathology department. In contrast,
the Helsinki University model (20) included a prediction variable
of HER-2 status instead of PR status. Despite the fact that
HER-2 positive is generally associated with NSLN positivity, the
relationship between HER-2 status and NSLN positivity remains
controversial (37), and the current study yielded no statistically
significant differences.

Preoperative assessment of axillary lymph burden in breast
cancer is routinely performed using different imaging techniques.
US is considered to be themost recommended imaging technique
owing to its inexpensive, convenience, and absence of radiation
exposure. The Sentinel Node vs. Observation after Axillary
Ultrasound (SOUND) trial (38) is exploring the potential
possibility of US as a replacement for SLNB. Previous studies have
also suggested that the inclusion of US parameters in the model
could improve its predictive capacity (39, 40). Zhu (40) suggested
that the Doppler resistance index and the extent of extension of
the enhancing lesion were correlated with lymph nodemetastasis.
Qiu et al. (39), on the other hand, incorporated three US-based
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FIGURE 3 | Nomogram for prediction of the absence of non-sentinel lymph nodes (NSLN) metastasis. SLNp: number of positive SLNs; LVI: lymphovascular invasion;

LnHilum: absence of lymph node hilum; totalSLN: total number of SLNs harvested.

FIGURE 4 | Nomogram prediction model validation. (A) ROC curves are used for all sets. AUC values for training set (red), validation set (green), and entire set (blue)

are 0.782, 0.705, and 0.759. (B) The bootstrapped calibration plot and Hosmer-Lemeshow test for the training set.
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FIGURE 5 | The decision curve analysis (DCA) curve shows the decision analysis for the entire set, the training set, and the validation set.

variables of cortical thickness of SLN, transverse diameter of SLN,
and lymph node hilum status in their nomogram, with an AUC
of 0.864. This is consistent with the findings obtained in this
study. However, the validity of the model is challenged by its
dependence on adjustable parameters by the operator.

Apart from predicting NSLN status based on imaging features,
such as ultrasound or clinical features, the role of molecular
markers has also been explored. Metalloprotease-1 (41) and
cytokeratin 19 mRNA copy (42, 43) have been suggested to
be highly correlated with NSNL metastasis. Prediction models
based onmolecular markers usually showed a high specificity and
sensitivity, but the time taken for intraoperative measurements
and the high cost may be the reasons why they are difficult
to extend.

Our nomogram provides an individual prediction of the
probability of having negative NSLNs for patients with positive
SLNs. A woman with 2 positive SLNs, out of 5 SLNs harvested,
the preoperative US showed the presence of lymph node hilum
and pathology revealed tumor LVI, might be considered to have a
20% risk of having negative NSLNs, which implies that the patient
is at high risk of additional nodes metastasis and ALND should
be recommended clinically. However, the study result is limited
and requires much more validation before it can be applied to
clinical reasoning.

Machine learning has been applied to different tumors as
an innovative method for cancer prediction and prognosis (15,
16). It provides excellent accuracy through a continuous ML
approach. According to Ayer et al. (17), a prediction model that
enrolled 48,774 patients yielded an AUC of 0.965 and could
distinguish malignant from benign mammographic findings.
Such precision is unfathomable in alternative models. Typically,

an AUC above 0.7 is regarded as reasonable. Madekivi et
al. (19) narrowed down to seven variables by utilizing XG-
Boost’s capabilities for self-learning and eventually developed
a nomogram with an AUC of 0.80. This study compared the
performance of three ML methods, and the best classification
model was selected. To reduce the number of variables, LASSO
conducted 500 times iterations and selected the features with
more than 300 repeated occurrences. This showed a well
predictive effectiveness in the validation cohort.

The inclusion of US-related variables and the application
of the ML approach are the two aspects of innovation in our
prediction model. Eventually, the four variables included in the
development of the nomogram were the number of positive
SLNs, total number of SLNs harvested, LVI, and lymph node
hilum status. The AUC values of 0.759 and 0.705 were used for
the training and validation cohorts, respectively. Therefore, in
comparison with other previous studies, the validation cohort in
this study had a higher AUC value for the fewer variables. The
continuous predictors were categorized using restricted cubic
splines, which are better suited for the daily practice of clinicians.
However, some limitations of the study were noted. First, the
number of patients enrolled in this study is far from satisfaction.
The inclusion criteria entailed only the patient who received both
SLNB and ALND and this dramatically reduced the number.
The nomogram lacked external validation due to the limitation
in numbers, which meant that patients had to be studied as a
single center although we included patients in multicenter. This
study was short of a large sample that is technically required for
ML to support a more convincing result. On the other hand,
our pathology department was failed to accurately depict the size
of SLN metastases at the beginning, owing to the inclusion of
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patients over a long time interval. This was significantly regretted
because the existing literature already supports a relationship
between SLN metastasis size and NSLN status.

Overall, the trend of de-escalation of axillary surgery is
inevitable. However, the selection of appropriate patients remains
a crucial issue to be addressed. It is essential to have some
multicenter, prospective trials, such as Z0011, to upgrade the
guidelines. This study revealed more areas that need future
research to validate our findings.
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