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Therapeutic perspectives of
exosomes in glucocorticoid-
induced osteoarthrosis
Bin Lv*†, Zhangrong Cheng†, Yajie Yu†, Yuhang Chen,
Weikang Gan, Shuai Li, Kangcheng Zhao*, Cao Yang*

and Yukun Zhang*

Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China

Exosomes are widely involved in a variety of physiological and pathological
processes. These important roles are also hidden in the physiological
processes related to bone. Chondrocytes, osteoblasts, synovial fibroblasts,
and bone marrow mesenchymal stem cells produce and secrete exosomes,
thereby affecting the biology process of target cells. Furthermore, in the
primary pathogenesis of osteoarthrosis induced by steroid hormones, mainly
involve glucocorticoid (GC), the exosomes have also widely participated.
Therefore, exosomes may also play an important role in glucocorticoid-
induced osteoarthrosis and serve as a promising treatment for early
intervention of osteoarthrosis in addition to playing a regulatory role in
malignant tumors. This review summarizes the previous results on this
direction, systematically combs the role and therapeutic potential of
exosomes in GC-induced osteoarthrosis, discusses the potential role of
exosomes in the treatment and prevention of GC-induced osteoarthrosis,
and reveals the current challenges we confronted.
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Introduction

Glucocorticoids are a class of steroid hormones that play an important role in

regulating the body’s development, growth, metabolism and immune function, and

are also the most widely used and effective anti-inflammatory and

immunosuppressive agents in clinical practice. However, long-term use of

glucocorticoids can induce osteocyte apoptosis, sustained bone destruction, injury and

apoptosis of bone microvascular endothelial cells (BMECs) in the femoral head, and

inhibit angiogenesis accompanied by microcirculation disorders (1, 2). Therefore,

long-term use of glucocorticoids can lead to Glucocorticoid-induced osteoporosis

(GIOP), Osteonecrosis of the femoral head (ONFH) and other osteoarthrosis.

GIOP (Glucocorticoid osteoporosis) is one of the most common and serious adverse

reactions associated with glucocorticoid use, as considered to be the most common

iatrogenic cause of secondary osteoporosis, leading to early and progressive bone loss,

causing osteoarthritis pain and even pathological fractures, with postmenopausal

women and men over 50 years of age at high risk (3). GC mainly acts directly on
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osteoblasts, osteoclasts and osteocytes. GC can reduce the

formation of osteoblasts, promote the apoptosis of osteoblasts

and osteoblasts, and prolong the life span of osteoclasts,

means inhibit bone formation and promote bone resorption.

It also reduces vascular endothelial growth factor bone vessels,

interstitial fluid, and bone strength (4). At present, the clinical

treatment of GIOP mainly includes the combined use of

calcium and vitamin D, and the treatment of anti-

osteoporosis drugs, including bone resorption inhibitors:

bisphosphonates, sex hormone replacement therapy and

thyrocalcitonins, when necessary. And bone formation

promotors: parathyroid hormone amino-terminal fragment

(PTHl-34), fluorine preparations, etc. But long-term use of

these drugs can also lead to adverse reactions such as

gastrointestinal reactions, osteonecrosis of the jaw,

musculoskeletal pain, elevated blood pressure, and kidney

stones (3, 5). Therefore, we need new effective drugs to treat

GIOP. ONFH (Osteonecrosis of the femoral head) is a disease

of mesenchymal cells or bone cells characterized by impaired

subchondral microcirculation, bone necrosis, and

accumulation of microfractures (6, 7). As a disabling and

progressive disease, ONFH is caused by the destruction or

interruption of the blood circulation of the femoral head at

the initial stage, followed by cell necrosis, which eventually

leads to hip joint dysfunction (8, 9). The pathogenic factors of

ONFH mainly involve traumatic (such as femoral neck

fracture, hip dislocation) and non-traumatic (such as

corticosteroids, alcoholism, coagulopathy) risk factors (7, 10–

12). As the most common type of ONFH, steroid-induced

osteonecrosis of the femoral head (SONFH) accounts for

46.03% of the 15,000–20,000 new ONFH cases in China each

year (6, 12). If early intervention is not provided, about 80%

of patients will develop femoral head collapse, hip joint

dysfunction, and permanent disability (13). The exact

mechanism of GC (glucocorticoid)-induced ONFH involves

cell death, vascular damage, or insufficient bone repair (14,

15). As we all know, GC directly induces apoptosis and

inhibits angiogenesis, so it plays a vital role in destroying

bone tissue formation and the occurrence of ONFH (14, 16–

23). ONFH is a chronic disease that seriously affects the life

quality of patients. ONFH, which usually occurs in young

patients, may cause the femoral head to collapse and even

require the replacement of all hip joints, accompanied by

systemic functional defects and serious defects (24–26). So far,

a variety of surgical methods have been used for total hip

replacement and autologous cell transplantation. However, no

treatment can completely cure the disease (27, 28). Besides,

non-surgical treatments for ONFH (such as acetaminophen

and cortisone injection) are not sufficient to prevent joint

damage, and traditional drugs cannot restore the normal

structure and function of the damaged musculoskeletal system

(29). Therefore, it is imperative to explore the pathogenesis of

ONFH in depth and find a new type of treatment that
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contribute to delaying the progression of the disease and

repairing the damage of the bone marrow microenvironment.

Luckily, the discovery of exosomes may have great potential

and multiple advantages in the pathogenesis, prevention, and

treatment of GC-induced osteoarthrosis (30–33).

Exosomes are naturally derived 50–150 nm nanocapsules

that are secreted by cells and commonly found in blood, urine,

saliva, cerebrospinal fluid, pleural fluid, and milk. Exosomes

play an important paracrine effector role in cell-to-cell and/or

cell-to-tissue communication and cross-species communication

by transferring proteins and genetic material to target cells (34,

35). Exosomes usually contain various biologically active

molecules, such as protein, RNA (mRNA, microRNA, and

other non-coding RNA), DNA (mitochondrial DNA

[mtDNA], double-stranded DNA [dsDNA], single-stranded

DNA, and viral DNA), Lipids, amino acids, and metabolites.

These different components play a key role in signal

transduction between cells and regulate the microenvironment

of nearby or distant cells (36–38). As a new type of biological

vesicles, Exosomes have multiple advantages and are

considered to be suitable tools for the treatment of various

diseases including cancer. First of all, most cells can secrete

exosomes and retain the characteristics of parental cells.

Secondly, unlike a single protein or small molecule, exosomes

contain molecules with heterogeneous functions but lack the

complexity of cells and organs. In addition, exosomes show

many benefits in terms of biocompatibility, immunogenicity,

stability, pharmacokinetics, biodistribution, and cellular uptake

mechanisms. Bone-derived exosomes are believed to be

essential for intercellular communication between bone cells.

The exosome-mediated transfer of nucleic acid or protein

cargo between bone cells can bypass the space barriers

between different cells and play a vital role in the crosstalk

between bone cells that regulate bone homeostasis. Since

exosomes are a new biological vesicle that regulates the bone

formation, we summarized the characteristics of exosomes,

listed the known functions of exosomes in bone homeostasis,

and discussed the clinical potential.

In this article, we will mainly through the example of GC-

induced GIOP and ONFH introduce the mechanism of

exosomes in GC-induced osteoarthrosis and describes the latest

achievements in the treatment of GC-induced osteoarthrosis by

exosomes. Then, we introduced how exosomes act on GC-

induced osteoarthrosis in different aspects. Finally, we

discussed the problems that must be solved in the clinical

application of these methods and the future research direction

of exosomes in the treatment of GC-induced osteoarthrosis.

As a new and potential substance that can be used for early

intervention and treatment of GC-induced osteoarthrosis,

exosomes have been found to play an important role in the

pathogenesis of osteoarthrosis caused by GC. We summarized

the roles of exosomes in the three main mechanisms of GC-

induced osteoarthrosis (Figure 1).
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FIGURE 1

(A) Exosome-deriving cells and application of exosome to defect sites, achieving promotion of cell proliferation, modulation of immune response,
and attenuation of apoptosis. (B) Biology and functions of exosomes in Glucocorticoid-induced Osteonecrosis of the Femoral Head (ONFH).
Exosomes can be regarded as vehicles for delivering antigens, proteins and RNA to modulate immune responses, gene expression, and
metabolic processes. Exosomes are also involved in the transfer of lipids to recognize TLRs, thus participating in tissue repair.
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The role of exosomes in GC-induced
apoptosis

Studies have shown that GC can directly act on osteoblasts,

osteoclasts and osteocytes, reduce the formation of osteoblasts

and promote the apoptosis of osteoblasts and osteoblasts. For

osteoblasts, activation of glucocorticoid receptors up-regulates

the expression level of P53 in mouse osteoblast cell line

Mc3t3-e1, thereby enhancing the transcriptional activity of

P53 and leading to up-regulation of pro-apoptotic genes P21,

PUMA and NOXA. Finally, Mc3t3-e1 cells were induced

apoptosis and cell cycle arrest (39). Deng’s study found that

dexamethasone can down-regulate the expression of P-PI3K

and P-Akt to inhibit the activation of PI3K/AKT signaling

pathway. The expression of Bax, caspase3, caspase9 and bcl-2

could be decreased and the expression of Bcl-2 could be

increased to reduce dexamethasone induced osteoblast

apoptosis by removing the expression of GSK3β, the

downstream target of PI3K/AKT (40). In addition, GCs’ dose

has different effects on bone cells. Low dose GC treatment

can lead to autophagy of bone cells, while under high dose

GC stress, bone cells may undergo apoptosis or necrosis (41).

Accumulated studies have shown that GC leads to the

occurrence and development of ONFH through a variety of

mechanisms, and GC-induced bone cell apoptosis is one of

the most important ways (42, 43). Under the action of GC, a

large number of bone cells undergo apoptosis, leading to loss
Frontiers in Surgery 03
of bone strength, and disease progression eventually leads to

the collapse of the femoral head (8). The research of

Hamamura and Saito et al. showed that the increase of bone

cell apoptosis is related to endoplasmic reticulum (ER) stress.

Specifically, the accumulation of misfolded or unfolded

proteins induces phosphorylation of protein kinase-like

endoplasmic reticulum kinase (PERK), activates the unfolded

protein response (UPR), and helps cells adapt to ER under

mild ER stress conditions Stress (44). Among the three main

signal pathways of ER stress, the PERK (protein kinase RNA-

like ER kinase)/CHOP (CCAATenhancer-binding protein

homologous protein) pathway is considered to be closely

related to apoptosis. CHOP can inhibit the expression of Bcl-

2, increase the level of lytic caspase-3, and cause cell apoptosis.

More and more studies have shown that exosomes play a

crucial physiological and pathological role by influencing cell

apoptosis, and the same role also occurs in bone physiology

(45, 46). For example, exosomes from human umbilical cord

mesenchymal stem cells (HUCMSC) can reduce apoptosis of

bone marrow mesenchymal stem cells (BMSC) in osteoporotic

rats through Mir-1263/Mob1/Hippo signaling pathway (47). In

another study, EXOs derived from adipose-derived MSCs

(ADSCs-EXOs) prominently reduced H/SD (hypoxia and

serum deprivation)-induced apoptosis in the osteocyte-like cell

line MLO-Y4 cells by increasing the ratio of Bcl-2/Bax,

reducing the production of reactive oxygen species and

cytochrome c, and activating caspase-9 and caspase-3

subsequently (48). A research report from S3 shows that
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exosomes (PRP-EXOS) derived from PRP (Platelet-rich plasma)

promote the expression of BCL-2 under ER stress through the

AKT/BAD/BCL-2 signaling pathway. The ability to prevent

GC-induced apoptosis in ONFH rats (49). PRP-exos

significantly enhances the activation of the AKT and ERK

signaling cascade, on the one hand, it promotes the

angiogenesis of the bone microenvironment; on the other

hand, it promotes the expression of anti-apoptotic proteins

such as bcl-2 (50). Secondly, the study of S. Zhang et al.

observed that exosomes were activated by CD73-mediated AKT

and ERK signals to increase the expression of chondrocyte

proliferation and anti-apoptotic related genes (51). Guo et al.

discovered for the first time that exosomes secreted by human

synovial-derived mesenchymal stem cells (SMSC-Exos) can be

internalized into bone marrow-derived stromal cells (BMSCs)

and enhance their proliferation and anti-apoptotic ability. In in

vivo experiments, they found that infusion of SMSC-Exos can

reduce GC-induced trabecular bone loss, bone marrow

necrosis, and fat cell accumulation. The infusion of SMSC-Exos

can effectively prevent GC-induced ONFH in the rat model. At

the same time, in vitro cell experiments also found that SMSC-

Exos can reverse the anti-proliferative effect induced by GC

(52). According to reports, SMMSC-Exos derived from

SMMSC significantly reduced glucocorticoid (GC)-induced
FIGURE 2

Procedures for preparation of exosomes.
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adipocyte aggregation, bone marrow necrosis, and trabecular

bone loss, and to a certain extent reversed bone cell

proliferation arrest and BMSC cells apoptosis (52). Micro-CT

analysis also showed that SMMSC-Exos significantly improved

the trabecular bone microstructure and mineral density of

ONFH (ONFH) induced by GC in rats (52).In addition,

exosomes produced by MSC can prevent bone cell apoptosis in

hypoxia/serum deficiency models and glucocorticoid-induced

osteonecrosis models (48, 53) (Figure 2).

The numerous pieces of evidence indicate that exosomes

from various sources can inhibit GC-induced apoptosis of

osteoblasts and bone cells, and reverse osteonecrosis to a

certain extent, which shows the great potential of exosomes in

the early treatment of osteoarthrosis caused by GC.
The role of exosomes in GC-induced
vascular damage

In the pathogenesis of osteoarthrosis caused by GC, GC

damage to vascular endothelial cells is another main way. A

considerable number of studies have shown that:

glucocorticoids can induce injury and apoptosis of bone

microvascular endothelial cells (BMECs) of the femoral head,
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which is closely related to the development of osteonecrosis and

osteoporosis, leading to a hypercoagulable state and abnormal

microthrombosis in the area of ONFH, and severely reducing

the blood supply of trabecular bone (22, 54–58). The work of

Greenberger et al. 2010 found that: GC treatment can inhibit

the expression of VEGF-a in ECS and subsequent

angiogenesis (59). Vascular damage is manifested by

decreased function of circulating angiogenic cells, decreased

migration function, and VEGF protein secretion (60).

Therefore, inhibition of endothelial cell (EC) apoptosis is

necessary to maintain the integrity of blood vessels and prevent

the further development of GC-induced osteoarthrosis (61).

Similarly, exosomes also play an important role in the

physiological and pathological processes related to endothelial

cells. The study by Hu GW et al. pointed out that exosomes

secreted by mesenchymal stem cells derived from human

induced pluripotent stem cells can reduce limb ischemia by

promoting angiogenesis in mice (62). Anderson et al. reported

that MSC-derived exosomes contained abundant angiogenesis-

related proteins that promote endothelial cell proliferation and

angiogenesis (63, 64). And the team also detected the

promotion of angiogenesis and tissue repair (including bone

formation) by exosomes in both in vivo and in vitro

experiments (65).In an animal experiment with osteoporotic

rats as the experimental object, eight weeks after implantation

of MSC-derived exosomes, the experimental group of rats

detected the strong formation of blood vessels and bone tissue

that was not in the control group (62). In addition, Yokota

et al. proved that exosomes can accelerate the surgical

angiogenesis of vascular implantation into the necrotic bone by

injecting PRP-containing exosomes (66). In addition, activated

platelets can also promote the proliferation and migration of

bone mesenchymal stem cells (BMSCs) and ECS, thereby

promoting bone formation and capillary formation (67). Qi

et al and other studies have also shown that in ovariectomized

rat models, exosomes secreted by iPS-derived MSCs can

promote the regeneration of bone defects by enhancing

angiogenesis and bone formation (68). Zuo et al. used miR-26a

transfected human CD34 + stem cell-derived exosomes and

found that miR-26a-CD34+-exosome enhanced the ability of

human umbilical vein endothelial cells to migrate and form

blood vessels, indicating that this kind of exosomes can prevent

glucocorticoid-induced necrosis of the femoral skull by

promoting angiogenesis and osteogenesis (69). These findings

provide a novel method for vascular remodeling and bone cell

proliferation in soft tissues to enhance early tissue repair.
The role of exosomes in GC-induced
insufficient bone repair

The pathogenesis of ONFH caused by GC is in addition to

inducing osteoblast apoptosis, damage to vascular endothelial
Frontiers in Surgery 05
cells also involves its inhibition of bone formation (70–73).

Previous research reports pointed out that GC has complex

stimulating and inhibiting effects on bone metabolism. During

normal bone formation, an appropriate amount of endogenous

GC signal is necessary. For example, a study by Phillips JE

showed that a small dose of dexamethasone (Dex) can promote

the differentiation of several osteoblasts in the oval system.

However, the use of high-dose GC significantly reduced the

patient’s bone mass and lowered bone density, which ultimately

greatly promoted the occurrence and development of ONFH

(73–75). Similarly, another study also showed that GCs down-

regulated the expression of osteogenic marker molecules

Runt-related transcription factor 2 (RUNX2) and alkaline

phosphatase, and was associated with the decrease of bone

density and the rupture of trabecular bone (75). Interestingly,

the findings of Ekstrom et al. found that fusion of monocyte-

derived exosomes with MSC can trigger the up-regulation of

two osteogenic markers: RUNX2 and BMP-2. This

phenomenon and two other studies both show that exosomes

can interact directly with bone cells, thereby affecting the

process of bone formation (76, 77). Of course, the evidence that

exosomes play an important role in osteogenesis is not limited

to this limited study. As we all know, bone remodeling is a

complex process that mainly involves two steps:

osteoclastogenesis (used to remove damaged bone tissue) and

osteogenesis (used for bone formation). Current research reports

have shown that exosomes play an important role in these two

steps. Published reports indicate that the transfer of exosome-

specific proteins, mRNA, and miRNA is the main mechanism

of exosome-mediated bone remodeling. This crosstalk

establishes a new network of cell-cell interactions during bone

homeostasis (78). For example, the study of Cui, Y, and her

colleagues found that mature osteoblast-derived exosomes may

trigger the mutation of miRNA expression profile, and then

cooperatively inhibit the expression of Axin1, the core

component of the Wnt signaling pathway, and finally, β-catenin

is up-regulation, leading to enhanced osteogenic differentiation

(79). Besides, Let-7-rich exosomes derived from osteoblasts can

also enhance osteogenic effects by regulating AT-hook 2

(HMGA2) and AXIN2 (79, 80). The proliferation induced by

MSC-derived exosomes has also been reported, and the MAPK

pathway may be a key factor in the activity of osteoblasts

mediated by exosomes (81).In addition to physiological

conditions, exosomes also exhibit important functions related to

osteogenesis under pathological conditions. The research results

of Furuta et al. showed that during fracture healing, exosomes

derived from bone marrow stem cells express MCP-1, MCP-3,

SDF-1, angiogenic factors, mRNA, and miRNA, and jointly

promote bone Reshape (82).At the same time, exosomes may

also increase osteoblast-related proteins (RUNX-2, ALP, OCN,

and OPN) and some genes (miRNA-196a, miRNA-27a, and

miRNA-206) to enhance the proliferation and differentiation of

osteoblasts (83). In addition to the participation of osteoblasts
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in bone remodeling, osteoclasts also play an important role, and

the proper balance between the two is the key to complete

thigh remodeling. Exosomes also play an important role in

mutual signal communication between osteoblasts and

osteoclasts. The inactivation of the RANK-RANKL signaling

pathway in osteoblasts can release exosomes containing miR-

503-3p, thereby inhibiting the formation of osteoclasts. In

animal experiments, in the CD9−/− mouse femoral fracture

model (in which the production of exosomes was inhibited), the

formation of callus in the experimental group was significantly

delayed compared with the control group. However, this

delayed effect can be corrected by local injection of exosomes

(82).Similar functions of exosomes in promoting fracture repair

and bone remodeling have also been verified in a mouse model

of osteoporosis (62). This series of research results suggest that

exosomes may play an irreplaceable role in the process of bone

remodeling and bone repair, and these phenomena may be

occurring in the bone repair process of ONFH caused by GC.

This hypothesis has also been confirmed by research by Zuo

and his colleagues. Their experiments suggested that miR-26a-

CD34+-exosome enhanced the osteogenic differentiation of

BMSCs under the influence of GC. Finally, miR-26a-CD34

+-exos increased the vascular density and small bone density of

the femoral head in the GC-induced ONFH mouse model,

thereby inhibiting the progression of ONFH and promoting

bone repair (69). Shang-Chun Guo et al. also found that SMSC-

Exos can improve bone mineral density and trabecular bone

microstructure of GC-induced ONFH rats. Immunohistochemical

staining for osteocalcin showed that MPS (methylprednisolone)
TABLE 1 Function of RNA family in glucocorticoid-induced osteonecrosis o

Class Molecule Vitro study Vivo study Biological e

miRNA miR-26a BMSCs GC-induced
ONFH rats

promoted the o
trabecular bone

miR-548d-5p hBMSCs / suppressed the
their osteogenic

miR-27a-3p MC3T3-E1
cells

/ decreased adeno

miR-8485 BMSCs / activated Wnt/b
miRNA-122-5p BMSCs ONFH rabbits down-regulated

attenuated ONF

IncRNA lncRNA-KLF3-
AS1

OA
chondrocytes

OA mice induced chondr
axis.

lncRNA HOTAIR MSCs / Regulated osteo
traumatic ONF

lncRNA-Miat rMSCs / promoted osteo
cells via VEGF

circRNA circUSP45 BMSCs SD rats sponged miR-1
GIONFH

circ19142/
circ5846

MC3T3-E1
cells

/ induced osteoge

circFOXP1 MSCs Wistar rats promoted prolif
modulated non

circRNA0010729 HUVECs / regulated hypox
circRNA0003575 HUVECs / promoted the p

silencing
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was injected into the thigh The osteogenic response of bones is

reduced, but SMSC-EXOS significantly inhibits this effect (52).

Another study found that exosomes rich in miR-122-5 down-

regulate SPRY2 through the RTK/Ras/mitogen-activated protein

kinase (MAPK) signaling pathway, thereby delaying the

development of ONFH (84).

In the past few decades, exosomes are involved in many

biological processes related to bone metabolism, including

angiogenesis, cell differentiation, immune regulation,

metabolic balance, and development (36, 85–88). However,

exosomes are not simple nucleic acid or protein molecules,

but microvesicles containing a variety of substances including

RNA, DNA, protein, and lipids. While there are extensive

biological functions, exosomes are also highly heterogeneous,

involving different sources and different contents. Therefore,

since exosomes work through each of the molecules

contained, understanding the mechanism of action of each

content is crucial for further understanding and application of

exosomes. We reviewed the roles played by different contents

of exosomes derived from cells related to bone metabolism

and the molecular mechanisms of their effects and

summarized the possible roles of various substances in GC-

induced osteoarthrosis (Table 1).
The role of miRNA

As one of the most studied contents in exosomes, miRNA

released by exosomes has been shown to play an important
f the femoral head.

ffects Ref.

steogenic differentiation of BMSCs, increased the vessel density and
integrity in the GC-induced ONFH

(69)

dexamethasone-induced adipogenic differentiation of hBMSCs, enhanced
potential.

(99)

matous polyposis coli (APC) expression, activated β-catenin pathway (89)

-catenin pathways, promoted chondrogenic differentiation of BMSCs (92)
SPRY2, promoted the proliferation and differentiation of osteoblasts,
H development

(153)

ocyte proliferation, inhibited chondrocyte apoptosis via miR-206/GIT1 (109)

genic differentiation and proliferation, targeted gene SMAD7 in non-
H

(110)

genesis of rMSCs while silencing, modulated the function of endothelial (114)

27-5p through PTEN/ AKT signal pathway, reduced osteogenesis in bone (126)

nic differentiation (127)

eration and differentiation of MSCs, preserved the MSC multipotent state,
-canonical Wnt and EGFR pathways

(128)

ia-induced HUVECs via miR-186/HIF-1a axis (130)
roliferation and the angiogenesis ability of oxLDL-induced HUVECs while (131)
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role in multiple physiological processes of bone metabolism. For

example, exosomes derived from myoblasts enter pre-osteogenic

cells and promote osteoblast differentiation through miR-27a-

3p-mediated β-catenin pathway activation (89). Young MSC

exosomes can rejuvenate senescent HSCs through autophagy-

related miR-17 and miR-34a cell-to-cell transfer, while miR-

23b and miR-92a can effectively treat OA (Osteoarthritis) (90,

91). Furthermore, the exosomes of chondrocytes may promote

the chondrogenesis and differentiation of BMSCs by activating

the Wnt/β-catenin pathway, which is related to the inhibition

of GSK-3β expression by miR-8485 in the exosomes (92).

Besides, recent studies have also highlighted the importance

and significance of microRNA (miRNA) in the pathogenesis,

prevention, and treatment of GC-induced osteoarthrosis (31,

32). One study showed that exosomal miRNAs promote

osteoarthrosis development by influencing osteoblasts,

osteoclasts and bone matrix through oxidative stress (OS)

mediation. Exogenous antioxidants can help prevent or delay

the development of osteoarthrosis, while the antioxidant

balance in the body is disrupted (93). But Chen et al. detected

the expression of Mir-425-5p in bone marrow mesenchymal

stem cells (MSC) by quantitative reverse transcriptase-

polymerase chain reaction (qRT-PCR) and the expression of

TNF by ELISA, and the results showed that Mir-425-5p could

regulate cell apoptosis, proliferation and differentiation

induced by TNF. ANXA2 is a target of Mir-425-5p and is

involved in TNF-induced apoptosis, proliferation and

differentiation of MSC cells. It was concluded that Mir-425-

5P could enhance osteoporosis in mice (94). The above

studies indicate that the mechanism of miRNA action on

osteoporosis still needs further study. The above study

indicates that the current research on the mechanism of

miRNA action on osteoporosis is limited, and it is necessary

to conduct in-depth basic and clinical research.

Wu et al. verified three up-regulated miRNAs (miR-210-3p,

miR-320e, and let-7c) by comparing the expression of miRNA

in non-traumatic ONFH and femoral neck fractures (95).In

previous research evidence, Let-7 in osteoblast-derived

exosomes has been shown to enhance osteogenesis by

regulating AT-hook 2 (HMGA2) and AXIN2 (79, 80). This

indicates that there are still a large number of miRNA that

may have a potentially important role in bone repair and

bone remodeling in ONFH, waiting to be discovered and

explained. ONFH caused by overuse of glucocorticoids

accounts for the majority of non-traumatic ONFH. The

decrease in the proliferation of mesenchymal stem cells is

related to the pathogenesis of glucocorticoid-induced ONFH,

and this mutual connection may be involved in the exosomes

released by mesenchymal stem cells. Bian et al. compared the

expression of miRNA in human mesenchymal stem cells

treated with and without dexamethasone. The study found

that 11 up-regulated (miR-16-5p, miR-103a-3p, miR-107,

miR-196a/b-5p, miR-378d, miR-1268a/b/f/g, miR-4289) and 6
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down-regulated (miR-24-3p, miR-378a/h/I, miR-4448, miR-

4634) miRNA were found between the two different

concentrations of dexamethasone treatment groups. For

further analysis, they injected methylprednisolone (21 mg/kg)

subcutaneously into C57BL/6J mice and found that miR-21-

3p and miR-652-5p were up-regulated and miR-34b-3p, miR-

34c-5p, miR-148a-3p, miR-196a-5p, and miR-206-3p are

down-regulated, which are predicted to be involved in

osteogenic differentiation (96). Hao et al. found that miR-708

may enhance the osteogenic effect of mesenchymal stem cells

and inhibit their adipogenic differentiation ability by targeting

Smad3 (8). Yamasaki et al. confirmed that miR-210

(angiogenic miRNA) is highly expressed in non-invasive

ONFH and may regulate angiogenesis in ONFH (56, 97, 98).

Sun et al. confirmed that miR-548d-5p promotes the

osteogenic differentiation of mesenchymal stem cells by acting

on PPARγ, and may inhibit glucocorticoid-induced ONFH

(99). In addition, miR-27 has also been shown to inhibit

adipogenesis and enhance bone formation by regulating the

expression of GREM1 and PPARγ (83, 100–103). These

findings indicate that miRNAs secreted in the bone marrow

microenvironment play an irreplaceable role in the

pathogenesis of steroid-induced ONFH and the balance

between osteogenic differentiation and adipogenic

differentiation of mesenchymal stem cells.
The role of lncRNA

As a regulatory RNA, long non-coding RNA (lncRNA) has

been shown to play a key role in various cellular physiological

functions including cell proliferation, invasion, metabolism,

apoptosis, and stem cell differentiation. Recent studies have

shown that lncRNA is directly involved in the pathogenesis of

many orthopedic diseases and also plays an important role in

the process of bone development and regeneration. For

example, long non-coding RNA (lncRNA) has been shown to

be an important exosomal content in OA, widely involved in

the regulation of various pathological and physiological

processes (103, 104). Exosomes from adipose-derived stem

cells (ADSCs-EXOS) have been verified that play an effective

part in the repair of different tissues and organs. ADSCs-

EXOS have also been confirmed to help in the treatment of

osteoporosis (105). However, Wang et al. believed that

compared with ADSC-EXOS, KCNQ1OT1-ExOS, as a kind of

lncRNA closely related to cell proliferation, migration and

apoptosis, had a more significant inhibitory effect on TNF-α

-induced cytotoxicity and apoptosis (106).

Recent research results indicate that lncRNA also plays an

important regulatory role in the pathogenesis and repair of

ONFH. LncRNA was found to be differentially expressed in

ONFH tissues, bone marrow mesenchymal stem cells and

bone microvascular endothelial cells which isolated from
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ONFH patients (9, 107, 108). Functional research has further

clarified its important role in the survival of osteoblasts

closely related to ONFH and the osteogenic differentiation of

bone marrow mesenchymal stem cells. Liu et al. reported that

MSC-Exos mainly up-regulated Col2a1 and proteoglycan

levels through lncRNA-KLF3-AS1.239 released from

exosomes, and down-regulated the expression of MMP13 and

Rux2, which promoted the survival of IL-1β-treated

chondrocytes (109). According to reports, as a differentially

expressed lncRNA isolated from steroid-induced ONFH

patients, forced expression of RP11-154D6 can promote the

increase in the expression of osteogenic differentiation

markers (osteocalcin (OCN) and RUNX2) and reduce the

expression of adipogenic differentiation markers (such as

lipoprotein lipase (LPL) and peroxisome proliferator-activated

receptor gamma (PPAR gamma)), these effects ultimately lead

to enhanced bone formation (108). In another study, Wei

et al. found that HOTAIR can negatively regulate the

proliferation and osteogenic differentiation of mesenchymal

stem cells by regulating the expression of miR-17-5p and

Smad7, and can be used as a therapeutic target for non-

invasive ONFH (110). Wang et al. used the reconstruction of

the coding-noncoding gene co-expression (CNC) network to

reveal the key role of two lncRNAs (HOTAIR and RP1-

193H18.2) in regulating the osteogenic and adipogenic

differentiation of bone marrow MSCs (111). In addition, Yu

et al. analyzed the BMEC (bone microvascular endothelial

cells) of patients who underwent a conventional total hip

replacement and exposed the cells to hydrocortisone (0.1 mg/

ml) for 24 h using the co-expression analysis technology of

non-coding RNA and related mRNA, the results reveal that

FoxO transcription factors are closely related to the regulation

of angiogenesis (112, 113). Furthermore, the overexpression of

MIAT in the bone marrow microenvironment may lead to

steroid-related ONFH by inhibiting the osteogenic

differentiation of MSC, and this process can be blocked by

the epigenetic silencing of MIAT by HXTL (114). Fan and

colleagues confirmed that MALAT1 can protect human

osteoblasts from dexamethasone-induced cell death.

Specifically, MALAT1 prevents steroid-induced ONFH by

regulating PPM1E-AMPK-NRF2-oxidative stress and the miR-

214-ATF4 axis (32).
The role of circRNA

Circular RNA (circRNA) is a member of the non-coding

RNA family. Unlike linear RNAs such as miRNA or lncRNA,

it forms a covalently closed continuous loop, making them

resistant to digestion by RNA exonuclease. Accumulated

evidence shows that circRNA can perform biological functions

by acting as a microRNA sponge, encoding proteins, and

binding to proteins (115–121). Research on circRNA is later
Frontiers in Surgery 08
than most linear RNAs, but in recent studies, circRNA has

also been found to be involved in bone metabolism in many

diseases (including GC-induced osteoarthrosis).

For instance, Feng et al. found that hsa_circ_0006859 in

exosomes of osteoporosis patients can inhibit osteoblast

differentiation and promote adipose decomposition of human

bone marrow mesenchymal stem cells (hBMSCs).

Hsa_circ_0006859 acts, as a competitive endogenous RNA

(ceRNA) of Mir-431-5p, directly binds to Mir-431-5p and

promotes the expression of ROCK1 which was confirmed as a

novel target gene of Mir-431-5p (122).

Generally, the weakened osteogenic differentiation and

increased adipogenic differentiation of BMSCs are closely

related to the formation of ONFH (102). Xiang et al. have

identified 90 up-regulated and 141 down-regulated

differentially expressed circRNAs in steroid-induced ONFH

(SONFH) BMSCs (123). Further functional studies have

found that circRNA immunoglobulin superfamily member 11

can promote osteoblast differentiation in BMSC osteogenesis

through glycogen synthase kinase 3β/β-catenin signaling

pathway, and knocking down this circRNA can increase

miR199b-5p expression (123–125). In addition, some studies

have found that circRNA plays a key role in the regulation of

bone metabolism mainly by acting as a molecular sponge of

miRNA. For example, Kuang et al. proved that in the steroid-

induced ONFH rat model, circRNA ubiquitin-specific protease

45 can upregulate phosphatase and tensin homologs by

binding to miR-127-5p, thereby inhibiting the protein kinase

B pathway and regulate the bone mass of rats (126). In

addition, the mode of action of the miRNA-mRNA axis

targeted by circ19142/circ5846, circ19142 and circ5846 have

been shown to act as sponges for miR-7067-5p in osteoblast

differentiation (127). Besides, circRNA FOXP1 has also been

shown to play a key role by acting as a sponge for several

miRNAs in the regulation of MSC differentiation, which is

closely related to the pathogenesis of ONFH (128). Although

there are few studies on another important pathogenic

mechanism (adipogenic differentiation of mesenchymal stem

cells) that affects osteogenesis, The above observation results

also show that there is a close correlation between circRNA

and SONFH, which can be used for follow-up research and

clinical treatment, and provides a good guide for finding

therapeutic targets. In another core pathogenic mechanism of

ONFH, endothelial cell damage and angiogenesis disorder,

circRNA has also been shown to play an important biological

role (129). For example, CircRNA0010729 mediates the

apoptosis and proliferation of vascular endothelial cells by

targeting the miR-186/hypoxia-inducible factor-1α axis (130).

Furthermore, circRNA0003575 is up-regulated in human

umbilical vein endothelial cells (HUVEC) induced by oxidized

low-density lipoprotein and promotes HUVEC proliferation

and angiogenesis (131). Although there is no research on

circRNA directly targeting endothelial cells in the bone
frontiersin.org

https://doi.org/10.3389/fsurg.2022.836367
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Lv et al. 10.3389/fsurg.2022.836367
marrow microenvironment, these findings also indicate that

circRNA may play an important role in the activation

mechanism of ONFH. The above research results indicate that

circRNA plays a unique role in the formation of ONFH, and

due to its unique stability, may play an irreplaceable role in

the treatment of ONFH.
The role of protein

As a kind of exosomal load, many types of specific cell

proteins have been shown to contribute to the communication

and signal transduction between cells (132–137). In the study

of bone-related exosomal proteins, Tsuno et al. used 2D-

DIGE and mass spectrometry to identify serum exosomal

proteins extracted from the healthy group and the OA group.

They found that the exosome between the OA group and the

healthy group has 21 spots in the somatic protein profile with

different intensities, such as cathepsin F and Igalpha-2 chain

C region, indicating the potential role of these proteins in OA

(138). At the same time, recent studies have also discovered

the role of exosomal proteins in regulating the biological

response of chondrocytes. Zhang et al. found the expression

of CD73/ecto-5’-nucleotidase in MSC-derived exosomes and

found that the CD73 inhibitor AMPCP or the non-selective

adenosine receptor antagonist theophylline can reduce MSC

Exosomes-induced phosphorylation of AKT and ERK in

chondrocytes (139). The results above indicate that the role of

the protein-loaded exosomes in the differentiation and

development of bone cells still needs further exploration,

although the existing evidence has suggested its regulation of

cartilage and MSC.
The role of DNA

Since the study of exosomal DNA is later than the study of

RNA, only a small amount of literature has reported that

carrying cytoplasmic DNA in exosomes can prevent cell

senescence and cell death caused by DNA damage (140, 141).

Moreover, exosomal DNA can exert effects because cells can

secrete exosomes and remove harmful DNA in the

extracellular matrix. In addition to double-stranded DNA,

exosomes also contain single-stranded DNA, but we still

know little about the biological role of this DNA. Therefore, it

is necessary to study the expression and function of these

DNAs in the bone marrow microenvironment.
Conclusions and outlooks

Exosomes carrying contents like DNA or RNA family serve

as crucial vehicles for intercellular communication. Although
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there is a broad range of potential applications and uses of

exosomes, it still appears to be some problems of methods

for exosome isolation and analysis. Primarily, the quantities

of exosomes released by mammalian cells is relatively low

and the purification of exosomes is burdensome. Enhancing

the ability to load a variety of cargoes and targeting

capabilities without corrupting exosomes is also very

important for the utility of this delivery technology. It is

hoped that more researchers will participate in the

exploration of these problems from bench to bedside in the

future. Exosomes show important regulatory effects in

different stages and different pathological mechanisms in

osteoarthrosis caused by GC, which shows the usefulness and

potential of exosomes in the treatment of steroid-related

osteoarthrosis. Up to now, take GC-induced ONFH’s

treatment for example, it has mainly relied on drug therapy,

core decompression, interventional therapy, and cell therapy

as early intervention methods, but usually, 65%–85% of

patients will continue to develop femoral head collapse (85).

Once it develops into the terminal stage of the disease, total

hip replacement surgery becomes the only viable option, and

this will bring tremendous pressure on the patient’s economy

and life. Furthermore, for those young patients, ONFH often

means that multiple revision surgeries may be required in the

future (because the life of the prosthesis is limited), which

aggravates the patient’s physical and psychological burden.

Therefore, as a promising alternative to the traditional

treatment of osteoarthrosis, exosomes have many

incomparable advantages in the early intervention of

osteoarthrosis, and they have received widespread attention as

a new treatment for osteoarthrosis (34, 142, 143). Firstly,

exosomes have multiple advantages in immunogenicity, and

allogeneic exosome injection may not cause obvious

complications and rejection in terms of immunogenicity (66).

Secondly, exons show good stability and pertinence, because

they maintain the properties of their parent cells for a long

period and maintain their inherent integrity, which makes

them more effective in the treatment of osteoarthrosis. Easily

target cells without causing systemic adverse reactions (144–

146). Finally, exosomes also show certain advantages in

biodistribution and pharmacokinetics. Due to their small size,

these nanoparticles can easily reach the wound site.

Exosomes can be transformed to express specific surface

molecules and can selectively bind to molecules

overexpressed on target cells, and exosomes can use their

unique functions to extend their half-life (147–152).

However, exosomes still face many challenges before entering

clinical applications, and the main resistance comes from the

separation and purification of exosomes, the modification of

exosomes, and the heterogeneity of exosomes. Concerning

the role of exosomes in GC-induced osteoarthrosis, research

on the underlying mechanism and diagnostic/therapeutic

applications have just begun. Although there are still many
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problems to be solved in this field, we speculate that

technological advancement will give an optimistic outlook for

the treatment of GC-induced osteoarthrosis based on

exosomes.
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