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The management of nephrolithiasis has been complemented well by modern
technological advancements like virtual reality, three-dimensional (3D) printing
etc. In this review, we discuss the applications of 3D printing in treating stone
disease using percutaneous nephrolithotomy (PCNL) and retrograde intrarenal
surgery (RIRS). PCNL surgeries, when preceded by a training phase using a 3D
printed model, aid surgeons to choose the proper course of action, which
results in better procedural outcomes. The 3D printed models have also
been extensively used to train junior residents and novice surgeons to
improve their proficiency in the procedure. Such novel measures include
different approaches employed to 3D print a model, from 3D printing the
entire pelvicalyceal system with the surrounding tissues to 3D printing simple
surgical guides.
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Introduction

Recent technological advancements have been extensively

applied in medicine to improve the overall effectiveness of the

care received by the patients. Technologies such as additive

manufacturing and augmented reality have been broadly

adopted to supplement surgeon expertise provide better

overall success rates and reduce co-morbidities. 3D printing

has been used to print anatomically accurate models of the

human organs to be treated. These models help in viewing

the 3D geometry of the organ instead of just the 2D model

through different imaging like computed tomography (CT)

scans. Also, the models are used for preoperative training and

preparation. Complex procedures are hard to learn for junior

residents because of their steep learning curve and limited

case volume. These reasons render 3D models an attractive

alternative to train residents and improve procedural

expertise. In urology, numerous studies have highlighted its

effectiveness as a medium for not only resident education but

patient education as well as a part of pre-operative guidance,

planning and counselling (1). Amongst published literature on

applications of 3D printing in urology nearly 56% have used

pre-operative surgical planning as their primary outcome. The

most common being planning of procedure on kidneys such

as partial nephrectomy (2–6). The second most common

being prostate cancer related surgery (7–9).

Surgical management of urolithiasis involves the use of

complex procedures. The three main endourological

procedures are percutaneous nephrolithotomy (PCNL),

retrograde intrarenal surgery (RIRS), and extracorporeal

shockwave lithotripsy (ESWL). PCNL is the most efficacious

option for a stone size greater than 20 mm or for stones

located in the lower pole of the renal pelvis (10). For stone

burdens smaller than 20 mm, any one of the three procedures

can be chosen based on the surgeon’s preference (11). The

total stone clearance rate of PCNL is around 92%, which is a

significant advantage over other endourologic procedures;

nonetheless, a morbidity rate of 26% has limited PCNL’s

wider adoption (12). The most concerning sequelae associated

with PCNL are mortality and nephrectomy, reported as 5/

10,000 and 2/1000, respectively (13, 14). In general, the

learning curve for PCNL is between 20 and 100 operations,

with experienced urologic departments reporting 1.8%

morbidity. The Figure 1 shows the process involved in three-

dimensional (3D) printing of patient-specific kidney model.

PCNL training can be done using models that fall into three

broad categories: virtual reality trainers, artificial models, and

models using animal organs. Virtual reality trainers are

expensive (∼$100,000), and animal models do not accurately

replicate the human anatomy and are single-use and require

stringent cleaning measures (15–17). The previous literature

describes that the three-dimensional models help urologists

with PCNL training. But, the necessity of this procedure for
Frontiers in Surgery 02
large stone sizes has created a need for exploring

technological advancements that can help improve the

procedure’s success rate. These are especially the technologies

that can simulate the patient’s conditions preoperatively.

Because of the incredible anatomical accuracy of the printed

models and the low costs associated, 3D printing has had a

significant impact in urology among the wide range of

simulation technologies. It has been used successfully to

enhance patient education, preoperative planning, and

simulation-based training (18–21). This review explores the

studies to describe the success achieved using 3D printing

technology and future avenues that can be pursued to

improve the usage of the technology in endourology (12).

Table 1 summarises the recent studies related to three-

dimensional (3D) printing in endourology.
3D Printing for retrograde intrarenal
surgery (RIRS)

Orecchia et al. (22) introduced a set of 3D printed models of

the upper urinary tract and stones that were designed to

improve the training process. Anonymised Digital Imaging

and Communication in Medicine (DICOM) files from

Computerised Tomography (CT) scan were collected from

patients with renal stone cases. Six cases were selected based

on the type and complexity of the pelvicalyceal system. The

3D triangulated mesh was formed using these files, which

were then optimized by an expert 3D modeler and exported

in stereolithographic (.stl) format. Stones were produced in

two categories; soft stones with 1:1 chalk and water ratio by

weight and hard stones with 1.5:1 chalk and water ratio. Six

different training models, each costing between €200–400,

were obtained, showing great anatomical accuracy. Five expert

urologists conducted several trials using hard and soft stones.

Each model was employed over 50 times without any loss of

integrity due to repetitive strain or heat transfer from the

laser fiber. It was proposed that this model can be used as a

training tool in every surgical step of RIRS, thus helping

improve surgical expertise among the trainees.
3D Printing for percutaneous
nephrolithotomy (PCNL)

PCNL is considered one of the most complex procedures to

treat renal calculi with a steep learning curve. With limited

hands-on training, it is hard for surgeons to gain competency,

and hence, several studies have investigated the role of 3D

printed models in providing preoperative guidance (26).

Bruyere et al. (12) treated a 65-year-old man with a 12 mm

radio-opaque renal stone using a training model before the

actual PCNL procedure. The model was fabricated using a
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FIGURE 1

Process involved in three-dimensional (3D) printing of patient-specific kidney model.
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rapid prototyping machine by Z-Corporation, which was fed with

an STL file obtained by advanced three-dimensional modeling

software. Rapid prototyping created an abdominal cavity, and a

balloon was inserted between the kidney and the abdomen to

replicate the kidney movement during respiration. Two

urologists performed PCNL on the model before the patient’s

surgery. The procedure followed on the model was precisely

replicated by the urologists on the actual patient, resulting in a

successful procedure. The model was used six different times

for training before the silicone was damaged.

Knezevic et al. (31) used standard CT imaging to carry out

3D printing and produce a high-fidelity physical model of the

kidney and a complex renal stone. They reported multiple

benefits of using 3D models over standard CT images: better

treatment decision-making for the patients, supplement

standard educational material, understanding the condition

and need for surgery, and better preoperative preparation for

the surgeons. The 3D model highly resembled the actual

anatomy of the kidney and the stone. Xu et al. (23) used 3D

printing to enhance the stone-free rate for the treatment of
Frontiers in Surgery 03
staghorn stones. This study had twelve patients with stones

larger than 4 cm involving the renal pelvis and at least three

major calyces. Also, all the patients were in the age group of

18–70 years with an average age of 50.6 ± 12.6 years. Each of

the models’ stones had an average CT Hounsfeld unit (Hu)

value of 850 Hu. Full staghorn stones are challenging to treat

because these are large stones that occupy all the renal pelvis

and at least two major calyces (32). The 3D printed model

was used for preoperative preparation and training. Patient-

specific 3D models were printed, and each patient had three

identical models printed, with stone models printed with

gypsum and kidney models with silicone. These models were

used to choose the ideal calyx to puncture, and the entire

procedure was performed on the model.

Post-operative CT scans were performed on the models to

check the volume of the residual stones. The stone volumes

(measured in cubic millimeters) were compared between the

model and the patient preoperatively, and the values were

found to be close for all 12 patients. When measured post-

operatively, the stone volume in patients showed a significant
frontiersin.org
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TABLE 1 Summary of recent studies related to three-dimensional (3D) printing in endourology.

Author Sample
size

Materials used Findings

Retrograde intra-renal surgery (RIRS)

Orecchia et al. (22) – Water-soluble polyvinyl alcohol for scaffold; white
thermoplastic polyurethane for pelvicalyceal system

Each step of the procedure was meticulously simulated to resemble real-life
scenarios closely. Because of the anatomical complexities of each model and
type of stone, surgeries of increasing difficulty were replicated with relative ease

Percutaneous nephrolithotomy (PCNL)

Bruyere et al. (12) 1 (65 y.o.) Silicone Rapid prototyping is beneficial for resident education because it allows for
creating a large number of models for research and surgical training.

Xu et al. (23) 12 Stones: Gypsum, Kidneys: Silicone Correlation and consistency analyses revealed a high degree of consistency
between patients and 3D-printed models.

Ali et al. (24) – Calyces and bones: Polylactide, Kidneys, and Torso:
Silicone

Forty second-year residents were separated into groups A and B (A – trained
using a simulator and B – trained using the 3D printed models). Residents who
used the 3D-printed PCNL models performed better under all metrics.

Vernez et al. (25) – Thermoplastics Twelve urology residents split into groups A and B (A – used CT scans and 3D
models, B – used CT scans alone). Group A scored more in the questionnaire,
implying that the 3D model is a good training resource for residents and
fellows

Atalay et al. (26) 5 Acrylonitrile butadiene styrene (ABS) Residents were 86% and 88% better at determining the number of anterior and
posterior calyces, respectively, 60% were better at the understanding stone
location, and 64% were better at determining the optimal entry calyx into the
collecting system.

Kuroda et al. (27) 1 (46 y.o.) - Precise simulation of the procedure using a 3D printed model helped perform a
safe and effective procedure for lithiasis in allograft kidneys and ureter.

Turney et al. (28) – Water-soluble polyvinyl plastic coated with silicone
(PVC was then dissolved to obtain a cavity)

This silicone PCNL training model accurately replicates the anatomic
architecture and orientation of the human renal collecting system. It provides a
safe, clean, and effective training model for fluoroscopy-guided PCNL access.

Golab et al. (29) 1 (51 y.o.) Polylactic Acid (PLA) Surgical guide printing proved to be very effective during the surgery and is
cheaper than printing the entire pelvicalyceal models. The quality of the 3D
printout obtained using fused deposition molding was good, and hence an
industrial-grade printer is not a requirement.

Ghazi et al. (30) – Polyvinyl alcohol The model, tested both by experts and novices, was rated highly for its realism
and educational effectiveness, with novices agreeing unanimously that the
model should be used preoperatively

Zeeshan Hameed et al. 10.3389/fsurg.2022.862348
reduction from the preoperative values. Xu et al. (23) study

findings showed that mean postoperative stone volume of

1399.9 ± 1298.7 mm3 for the models (MPoSVM) from the

most precise puncture simulation. The mean patients’

postoperative stone volume (MPoSVP) averaged 1,605.7 ±

1,600.5 mm3. Postoperative stone volume for the patients

(PoSVP) and postoperative stone volume for the models

(PoSVM) had a Pearson product-moment correlation

coefficient of 0.972 ( p <0.001, 95% confidence interval (CI) =

0.900-0.992), and the Bland-Altman plot of PoSVP to PoSVM

showed % consistency 205.8 (−725.5–1137.1) with 100%

points within the limit of agreement. These findings indicate

that the simulation’s results can be reliably applied in realtime

for the actual patient.

Ali et al. (24) used 3D printed models exclusively for

training and compared the training outcomes using the 3D

printed models to those of the URO Mentor™ simulator. The

pelvicalyceal system was 3D printed, and the kidney model’s

silicone scaffold was made through polymerization by coating

over the printed pelvicalyceal system. Forty second-year
Frontiers in Surgery 04
residents were recruited for the study, and two groups were

made, with group A being the simulator group and group B

being the 3D printed model group. Five different models were

printed and used for the study, and the models were

reassembled and repaired after each session of five residents.

After the training, each resident was given a self-administered

questionnaire with eight questions, each of which was to be

scored between 1 and 10. Group A total average was 65.20,

and for group B, it was 76.18.

The Mann-Whitney U-test revealed a significant difference

between groups (U = 16, p < 0.05). Groups A and B did the x-

ray-guided puncture during the first half of the training. The

following indices received the highest scores from the

participants: x-ray guided pelvicalyceal system puncture (7.30

vs. 8.10); Guidewire placement (6.60 vs. 9.00); Identification

of the correct calyx for a puncture (8.70 vs. 9.60);

Nephrostomy tube placement (8.00 vs. 9.88); Kidney anatomy

evaluation using x-ray imaging (8.60 vs. 9.85); Tissue model

feedback (8.40 vs. 9.96); Discussion of post-training errors

(7.70 vs. 9.94). Following the main stage, group B performed
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an extra assignment with the following marks: US-guided

pelvicalyceal system puncture (8.9), Tract dilatation (9.1),

Lithotripsy Skill (9.6). This ability was not examined in Group

A since it was not available on the simulator utilised. The

study shows that the group that used 3D printed PCNL

models performed better on all metrics, and this model can

be an effective tool that can facilitate preoperative training.

A pilot study by Vernez et al. (25) assessed the educational

utility of the 3D printed model by separating 12 residents and

fellows into two different groups where one group used the

model and the CT scans (group A), and the other group

relied on the CT scans alone (group B). The questionnaire

gauged the members’ familiarity with the stone shape,

location, and orientation and their ability to locate the

optimal calyx of entry to formulate a proper operative plan.

The average trainee questionnaire scores for Group A and

Group B were 38/50 and 29/50, respectively (p = 0.15). Group

A demonstrated stronger familiarity with stone shape and

orientation (8.2/10 vs. 6.2/10, p = 0.097), greater ability to

select appropriate calyx of entry (8.17/10 vs. 5.2/10, p = 0.11),

and higher overall confidence in completing PCNL (6.7/10 vs.

4.67/10, p = 0.12). The renal model was deemed beneficial by

all trainees (6/6) who used it.

Another pilot study by Atalay et al. (26) generated

anatomically accurate models of five patients, which were

manufactured using fused deposition modeling (FDM), an

additive manufacturing process. Acrylonitrile butadiene

styrene (ABS) was used to create the models due to its

toughness, high radiodensity, impact resistance, and low cost.

The cost per model was roughly $100, and the print time was

2 h per model. Ten residents evaluated the five patients,

initially using CT scans and intravenous urography images

and then using the 3D models. After both evaluations, each

resident completed a questionnaire with 40 questions to assess

their ability to estimate the number of anterior and posterior

calyces, find the stone location, and determine the optimal

entry calyx for the surgery. An experienced urologist with

over 100 PCNL surgeries had already decided on the

procedure. Hence, the residents were graded based on their

responses in the questionnaire, with each correct answer

receiving 5 points and a wrong answer losing 1 point.

Following the model presentation, recognising the number of

anterior and posterior calyces increased by 52% (p = 0.018)

and 76% (p = 0.009), respectively, knowing stone position

improved by 28% (p = 0.035), and predicting the best

entrance calyx into the collecting system improved by 64%

(p = 0.020). When paired with 2D data, all residents felt that

the models may help with surgical planning and could be

used as teaching aids in complicated procedures.

Kuroda et al. (27) presented a case of a 46-year-old man

who successfully had antegrade ureteroscopy for lithiasis in

his allograft ureter. At a planned follow-up, 15 years following

transplantation, computed tomography (CT) revealed a
Frontiers in Surgery 05
12 mm renal stone in the transplanted kidney’s renal pelvis.

During follow-up, the patient had extensive hematuria as the

stone had migrated to the ureter and caused hydronephrosis.

Because the allograft kidney is denervated, ureteral stones do

not cause considerable discomfort in kidney transplant

patients. This frequently results in a delay in detecting stone

disease, which can lead to renal failure and graft loss.

Asymptomatic hematuria in our case allowed us to detect

hydronephrosis and ureteral stone. The transplanted ureter

had hydronephrosis and a 15 mm stone, as shown by

ultrasound and non-contrast CT. A 3D printed model was

used to assess the condition, and the puncture of the upper

renal calyx was decided to be the best approach to access the

stone. The surgery was carried out as planned, and a stone-

free status was achieved without any complications. Antegrade

URS for stone disease in the allograft ureter was successfully

performed using accurate simulation and 3D imaging.

Ghazi et al. (30) created a Simulated Inanimate Model

(SIM) of an idealised pelvicalyceal system and staghorn stones

from DICOM images of multiple patients. This model was

mainly composed of polyvinyl alcohol with different polymer

concentrations and degrees of cross-linking to replicate the

exact human tissue properties. Five experts (four urology, one

interventional radiology) and ten novices (eight urology, two

interventional radiology) participated in the study and

answered two questionnaires with questions rated on a 5-

point Linkert scale. The realism of the model and its

educational effectiveness received scores of 4.25/5 and 4.75/5,

respectively. The most significant educational impact of the

model was to teach and refine technical skills (4.71) and

evaluate performance (4.57). All novices agreed that training

on this model should be done preoperatively. The experts

performed significantly better in metrics including mean

fluoroscopy time, the number of percutaneous access

attempts, and the number of needle repositioning, which

implies that novices benefit the most from the model in terms

of improving technical skills and their expertise in the

procedure.

Turney et al. (28) used 3D printing to produce an

anatomically accurate human renal collecting system to train

fluoroscopy-guided PCNL access. 3D models for the collecting

system were printed using water-soluble polyvinyl alcohol

plastic and then covered in the anatomically correct

orientation in silicone. The silicone was dried, and then the

printed model using water-soluble plastic was flushed out to

create calyceal cavities. The model was then filled with a

contrast medium, sealed with waterproof tape, and covered

using a layer of dense form to replicate the tissues between

the skin and the kidney. The material costs of the model are

low (∼$100), but the capital costs of the Mimic software used

to reformat the images and extract the collecting system

anatomy and the 3D printer ($3200) are high. The print time

is roughly between 1 and 2 h. The advantages of this model
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are that it replicates the human anatomy accurately, is clean and

relatively cheaper, and aids complex and high-risk PCNL

procedures for planning and forming an excellent

preoperative plan. But this model is not suitable for

ultrasonographic imaging due to model composition, the

consistency of the foam and silicone does not precisely

replicate human tissue and organs, and even though the

model is recommended for multiple uses (∼20), once the tract

is dilated, the contrast leaks out and cannot be reused.

Nevertheless, the model provides a good training platform,

can supplement CT scans, and is significantly better and

cheaper than most other alternatives for PCNL training.

While most 3D printed models try to resemble the kidney

and stone anatomy, Golab et al. (29) explore the use of 3D

printed guides to aid during the surgery. The PCNL

procedure was performed with the assistance of a personalised

3D printed surgical guide used to precisely insert the needle

into the renal collecting system. The procedure was performed

on a 51-year-old woman with a congenital anomaly in the

form of horseshoe kidneys that further complicated the PCNL

procedure. The CT scan images were loaded onto the 3D

Slicer software to produce 3D virtual models of structures that

may interfere with the needle path. The external skin surface,

kidney stone, collecting system, veins, and bowel were

segmented. A safe needle insertion path was also established,

and the surgical guide was created with Geomagic Design 3D.

A location on the spinous processes (i.e., the L1–L4 vertebrae)

was projected on the guide surface to obtain the exact

placement of the surgical guide on a flat skin surface. The

printed and gas-sterilized surgical guide was placed on the

patient’s body. After performing fluoroscopic guidance, the

needle was inserted into the kidney through the external

channel to a pre-calculated depth. The needle precisely

reached the calculus in the renal pelvis as predicted

preoperatively, and the procedure was completed. The surgical

guides have the advantage of simple design and cheaper

overall model production.
Conclusion

3D printing is a relatively new technology and has not been

extensively used to treat nephrolithiasis. But, the studies
Frontiers in Surgery 06
conducted so far clearly show that this technology is helpful

to visualise the patient anatomy better and aid in preoperative

planning, training of residents, and improving the expertise of

junior residents in procedures to treat nephrolithiasis. Due to

the steep learning curve, more importance to patient care,

stricter regulations, and tighter budgets, 3D printed

anatomically accurate models can be very helpful in training

the residents and help them overcome the initial experience

barrier to a certain extent.
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