:' frontiers ‘ Frontiers in Surgery

ORIGINAL RESEARCH
published: 29 April 2022
doi: 10.3389/fsurg.2022.863633

OPEN ACCESS

Edited by:
Bipin Chaurasia,
Neurosurgery Clinic, Nepal

Reviewed by:

Sandrine de Ribaupierre,

Western University, Canada

S. Ottavio Tomasi,

Paracelsus Medical University, Austria

*Correspondence:
Tolga Turan Dundar
drtolgadundar@hotmail.com

Specialty section:

This article was submitted to
Neurosurgery,

a section of the journal
Frontiers in Surgery

Received: 27 January 2022
Accepted: 28 March 2022
Published: 29 April 2022

Citation:

Dundar TT, Yurtsever |,

Pehlivanoglu MK, Yildiz U, Eker A,
Demir MA, Mutluer AS, Tektas R,
Kazan MS, Kitis S, Gokoglu A,
Dogan I and Duru N (2022) Machine
Learning-Based Surgical Planning for
Neurosurgery: Artificial Intelligent
Approaches to the Cranium.

Front. Surg. 9:863633.

doi: 10.3389/fsurg.2022.863633

Check for
updates

Machine Learning-Based Surgical
Planning for Neurosurgery: Artificial
Intelligent Approaches to the
Cranium

Tolga Turan Dundar ™, Ismail Yurtsever', Meltem Kurt Pehlivanoglu?, Ugur Yildiz?,
Aysegul Eker?, Mehmet Ali Demir?, Ahmet Serdar Mutluer’, Recep Tektas?,
Mevilude Sila Kazan?, Serkan Kitis', Abdulkerim Gokoglu?®, Insan Dogan* and
Nevcihan Duru®

' Bezmidlem Vakif Universitesi, Istanbul, Turkey, 2 Kocaeli University, lzmit, Turkey, ? Private System Hospital, Kayseri, Turkey,
4 Ankara University, Ankara, Turkey, ° Kocaeli Health and Technology University, Basiskele, Turkey

Objectives: Artificial intelligence (Al) applications in neurosurgery have an increasing
momentum as well as the growing number of implementations in the medical literature.
In recent years, Al research define a link between neuroscience and Al. It is a connection
between knowing and understanding the brain and how to simulate the brain. The
machine learning algorithms, as a subset of Al, are able to learn with experiences,
perform big data analysis, and fulfill human-like tasks. Intracranial surgical approaches
that have been defined, disciplined, and developed in the last century have become
more effective with technological developments. We aimed to define individual-safe,
intracranial approaches by introducing functional anatomical structures and pathological
areas to artificial intelligence.

Methods: Preoperative MR images of patients with deeply located brain tumors were
used for planning. Intracranial arteries, veins, and neural tracts are listed and numbered.
Voxel values of these selected regions in cranial MR sequences were extracted and
labeled. Tumor tissue was segmented as the target. Q-learning algorithm which is
a model-free reinforcement learning algorithm was run on labeled voxel values (on
optimal paths extracted from the new heuristic-based path planning algorithm), then
the algorithm was assigned to list the cortico-tumoral pathways that aim to remove the
maximum tumor tissue and in the meantime that functional anatomical tissues will be
least affected.

Results: The most suitable cranial entry areas were found with the artificial intelligence
algorithm. Cortico-tumoral pathways were revealed using Q-learning from these
optimal points.

Conclusions: Al will make a significant contribution to the positive outcomes as its use
in both preoperative surgical planning and intraoperative technique equipment assisted
neurosurgery, its use increased.

Keywords: approaches, neurosurgery, neurosurgical planning, machine learning, cranial approaches, artificial
intelligence (Al), brain tumor
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INTRODUCTION

The gold standard surgical strategy for the majority of intra-
axial tumors is maximum tumor resection with minimal loss of
neurological function (1). The tumoral mass effect on the brain
tissue was eliminated while reaching the histological diagnosis
with surgical resection. Aggressive surgery also increases
radiotherapy and chemotherapy effectiveness in patients who
require them by reducing the tumor burden. Subcutaneous tissue
incision, craniotomy size, and dura are standardized. However,
surgical access to intraparenchymal tumors may vary according
to the surgeon’s experience and dexterity, technical possibilities,
tumor location, and size. Arachnoid dissection, sulcal, and gyral
dissection are generally used in direct transcortical approaches
while reaching the tumoral tissue. Identification and preservation
of anatomical land marks such as fiber tracts, arterial and venous
vessels, and basal ganglia are the basis of the surgical strategy for
preserving brain functions [(1-3)].

The developments in neuroanatomy, neurophysiology, and
pathology, which started with the use of anesthesia and
antisepsis in the early 1900s and continued with the use of
radiography and new operating instruments, have developed
modern neurosurgery (1). Today, a safe postoperative clinical
outcome is provided by the analysis of preoperative imaging
modalities, the evaluation of data obtained from intraoperative
neurophysiological monitoring or imaging modalities (e.g., USG
or MRI), and also postoperative ICP, EEG, and biochemical
examinations (4, 5). Decision-making mechanisms for the
approach to be used for brain tumors of different localizations
and sizes are based on clinical guidelines, analyses, and statistics
of previous cases.

Artificial intelligence (AI) has risen to prominence in the
medical literature in recent years, and its usage is expanding
beyond diagnosis to treatment on a daily basis. Al is the name
given to machine systems, particularly computer systems, that
can replicate human brain cognitive abilities such as learning,
reasoning, and self-correction. In the simplest terms Al refers to
systems or robots that resemble human intelligence to execute
tasks and can improve themselves iteratively based on the
data they collect. Al is working just like a simulation of the
human brain intelligence and the goal of Al inspired by brain
science is to develop systems that have features such as decision-
making, lifelong learning, learning by association, long and short-
term memory, recognition, classification of learned abilities, and
interacting with the environment. In general, Al systems function
by processing huge amounts of data, producing correlations and
patterns, and using these outcomes to make predictions for future
situations. In addition, AI has abilities such as creating and
transferring knowledge and self-learning (6-8). Machine learning
focuses on how to construct intelligent computer programs (or
computational models) that automatically learn and understand
the massive amounts of data and turn it into knowledge and
action with experience (9).

There are two basic approaches based on the availability of
labels in machine learning: supervised learning (labeled data) and
unsupervised learning (unlabeled data). In supervised learning
algorithms, the model tries to learn the relationship between the

desired output and the input features (6). It can be used in daily
practice for risk prediction (10) and reveals the effect of clinical
prognosis by evaluating different factors (demographic or social
changes) on treatment (6).

Unsupervised learning algorithms are mainly used to identify
and investigate the unknown patternsin the input data. The
model mines for rules, identify patterns, and summarizes
meaningful findings (6, 7). On the other hand, unsupervised
learning does not require prior knowledge of the output values
and the data are unlabeled. When compared to supervised
learning algorithms, these algorithms ensure more complex
processing tasks. It can be used for diagnostics, patient selection,
identifying symptom clusters associated with specific diseases,
selecting optimal treatment strategies based on demographic
or genetic features, pattern identification or recognition in
radiological or photographic images, and other data in daily
practice (6, 8).

Reinforcement learning is an interactive machine learning
system (or framework) that detects how an Al agent takes action
and interacts with the environment to make some sequence of
decisions (6, 8, 9). It aims to achieve maximum reward from
the rightful actions of the AI agent. AI agent takes action for
reaching the goal by maximizing the total reward, and the RL
model keeps continues to learn until finding the best solution.
When the AI agent acts, it rewards the system for the correct
output and punishes it for the incorrect output. RL can be used
as a control algorithm to optimize the use of scarce resources
in specific situations, such as the selection of patients to be
discharged based on clinical logistics requirements and surgical
aids or robots.

The classical neurosurgical techniques that reduce patient
discomfort and the risk of neurological morbidity, provide
shorter hospital stays, and the use of technological developments
that support these techniques have been at the center of
neurosurgery for decades (11-13). The cranial neurosurgical
approaches and their modifications have been standardized
for about the last 150 years (1, 11). This study aims to
define a machine-learning algorithm to estimate optimal
surgical pathways. By using a reinforcement learning approach
to solve the path planning problem, the suggested method
saves computational time by skipping unrelated cranial areas
that were present in screenings while also boosting planned
trajectory accuracy.

Q-learning is the most known and frequently used RL
algorithm. In Q-learning, agent and environment are two
important variables. The agent is an algorithm that takes actions
based on the environment. The environment is the system in
which the agent makes decisions and learns from its actions.
The agent learns by interacting with its environment as a human
would. The achievement of the agent’s set goal is defined as
the reward. Areas that should not go or touch are defined as
penalty areas. Actions are defined as such activities performed
by the agent. The reward is a measure of the success or failure
of the agent. It follows by creating a reward table (14, 15).
The agent begins searching for the target at random locations
throughout the defined environment, analyzes its future steps,
and records its successes and failures. This is the case until the
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agent discovers the first reward. As soon as the agent gets to a
target location, it recalls its position before arriving at the target
and records this value in the Q-Table where it has accumulated
its own experiences (15-17). The agent develops policy, which is
a decision-making strategy.

This article proposes a new heuristic-based surgical path
planning algorithm for neurosurgery. The new heuristic
estimates accurate optimal surgical paths avoiding critical
structures in the brain. It computes the proper entry points
on the scalp and then searches for different paths that

reach the beginning location of the tumor and finds the
optimal linear surgical paths. Then the extracted optimal
linear paths from the new heuristic are used as an entry
point or an environment [depending on the path width
(dimension)] of the Q-learning algorithm for finding nonlinear
access paths. Especially while finding nonlinear trajectories,
usage of the new proposed heuristics output can save
computational time by skipping unrelated cranial areas that were
present in screenings while also boosting planned trajectory
accuracy. Moreover, the extracted nonlinear trajectories can

g Y

K Stage 1: The new heuristic-based model /

Agent

Paths/Points
extracted

State Reward from Stage 1

St Rt

Environment

Stage 2: Q-learning

FIGURE 1 | The proposed system architecture for finding linear and nonlinear access paths for neurosurgery.

FIGURE 2 | (A,B) Cavernoma appearance on axial (A) and coronal (B) contrast-enhanced T1 cranial MRI images. (C,D) The anatomical relationship of the
corticospinal tract, superior fronto occipital fasciculus, and corpus callosum transverse fibers with the cavernoma is shown in sagittal and axial MRI tractography
images. Due to the mass effect of the cavernoma, displacement of the superior fronto occipital fasciculus was observed.

CORTICOSPINAL
TRACTUS
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improve clinical outcomes because they ensure minimally
invasive approaches.

METHODS

The study involved a retrospective MRI analysis with no risk to
the patients. This study was approved by the Institutional
Clinical Non-Interventional Research Ethics Board (E-
54022451-050.05.04-41353). These authors reviewed the
cases together and reached a consensus in any disputed
case. All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Declaration of Helsinki and its later amendments or
comparable ethical standards. For this type of study, formal
consent was not required.

Radiologic Imaging

MRI Technique and MR Tractography

MRI was performed with a 1.5-T system (Magnetom Avanto;
Siemens, Erlangen, Germany). First, routine brain MRI protocol
included T1-weighted (T1W; TR/TE = 460/14ms) and T2-
weighted (T2W; TR/TE = 2,500/80 ms) sequences in the axial
and coronal planes, and fluid-attenuated inversion recovery
(FLAIR) images (TR/TE = 8,000/90ms) in the axial plane
with 5-mm-thick sections. The DTI protocol consisted of
a single-shot, spin-echo, echo-planar sequence with the fat
suppression technique: TR/TE = 2,700/89 ms; matrix, 128 x
128; field of view, 230 mm; and slice thickness, 5mm. DTI
was acquired before the administration of contrast media
and 30 diffusion-encoding directions were used at b =
1,000 s/mm?. After that, TIW 3D magnetization-prepared
rapid gradient echo (TR/TE/TI = 12.5/5/450 ms) volumetric
sequences with and without contrast medium (gadolinium-
diethylenetriamine pentaacetic acid, 0.1 mmol/kg body weight,
intravenously) was applied. The Syngo.via console (software

version VB30A_HF06; Siemens) was used for the postprocessing
of DTI data sets, after which the ADC and color-coded
FA maps were reconstructed. Sending 30-way DTI images
(30 diffusion-encoding directions) to Syngo.via console and
performing tractography with MR Neuro 3D function. The DTI
data sets and 3D MR images were analyzed using freeware for
diffusion tensor analysis and fiber tracking (Syngo.via console).
To depict the motor tracts, the seed area was placed on the
cerebral peduncle where the corticospinal tract (CST) is known
to run while observing the color-encoded fiber orientation
map. Cortical target regions were carefully placed in the
suspected primary motor area. We used the two-regions-of-
interest method (i.e., seed and target regions) to demonstrate
on—well the descending fibers from the primary motor area to
the cerebral peduncle.

In MR tractography, the blue coding shows the corticospinal
tract with a top-down (craniocaudal) course, the red coding for
the transverse course in the corpus callosum and subcortical
areas, and the green coding for the anteroposterior front-
occipital tracts.

Algorithms

By using all the new heuristic and Q-learning algorithms
together, we extract not only linear but also nonlinear access
paths. Our model works in two stages, in the first stage
the new heuristic is used to find linear paths and in the
second stage the Q-learning algorithm is used to find nonlinear
paths. We also handle different path dimensions (i.e., each
cell contains nxn points) such as 16 x 16, 32 x 32, 40
x 40, and 64 x 64 to prove the accuracy of our method.
Especially for 16 x 16 and 32 x 32 dimensions, the pathways
are so narrow, whence the entry points of these paths are
taken as reference entry points for the Q-learning algorithm.
For larger dimensions, the extracted paths are used as an
environment of the Q-learning algorithm, and then the AI
agent takes action and finds the best possible nonlinear

FIGURE 3 | Labeling using contrast-enhanced T1 axial image of cranial MRI. (A) Superior sagittal sinus marked in red at the vertex’s midline. (B) Superior sagittal
sinus marked with red in the midline in the supraventricular area, precentral gyrus marked with green, postcentral gyrus marked with turquoise, superficial cortical
veins marked with pink on the left and dark yellow on the right adjacent to the bilateral frontal lobes. (C) Right basal ganglia and thalamus marked with yellow in the
right cerebral hemisphere at the ventricular level; left basal ganglia and thalamus marked with light red in the left cerebral hemisphere at the ventricular level, Broca’s
area in the left frontal lobe with light yellow, Wernicke's area posterior to Sylvian fissure marked with orange; The anterior cerebral arteries are marked in light green
anteriorly in the midline, the corpus callosum splenium in green and the sinus rectus in blue in the midline posteriorly. (D) Right postcentral gyrus marked red,
cavernom/tumor marked yellow-green, pericallosal artery marked blue on the midline and posterior inferior frontal artery marked blue.

Frontiers in Surgery | www.frontiersin.org

April 2022 | Volume 9 | Article 863633


https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles

Dundar et al.

Cranial Artificial Intelligent Approaches

surgical access paths. Figure 1 illustrates the proposed system
architecture for finding linear and nonlinear access paths
for neurosurgery.

In the first stage (Stage 1), the proposed heuristic-based
algorithm, first, the three dimensions (x, y, z) of given MRI
images in DICOM format are extracted. The first two dimensions
denote the matrix rows and matrix columns in pixels, respectively
and the third dimension denotes the number of axial TI-
weighted MR images of the patient with brain tumors. After
that, all the surfaces (top, bottom, right-side, left-side, front,
and back) of the axial T1-weighted MR images are divided
into cells (e.g., each cell contains 16 x 16 points), and
then it is calculated how many cells can take place in these
DICOM files. For each dimension of the given MR images,
different processes are utilized to calculate all points over
each cell, ie., the x-axis, y-axis, and z-axis do not change
for the top and bottom surfaces, the left-side, and right-
side surfaces, and front and back surfaces, respectively. The
number of total cells gives all the possible starting entry points.
Later, the proposed algorithm searches for all paths that reach
the beginning location of the tumor (the coordinate points
for the tumor and eloquent areas are labeled with Labelme
[(18); https://github.com/wkentaro/labelme] which is an image
annotation tool) (Algorithm1 in Supplementary Material),
and then the coordinate points in each path are extracted
(Algorithm 3 in Supplementary Material). Because of the huge
search space and the computation time cost, while calculating
the optimum paths the number of all the possible starting
entry points has been reduced in four stages. In every stage,
the coordinate points over the calculated paths are compared
with the labeled critical structures one by one, if these points
intersect with these structures the penalty score of the related
path is increased. At the end of the comparison, all penalty
scores are sorted in ascending order. Finally, at the end of

the fourth stage, the top 20 (this number of paths is optional
and can be changed) paths are extracted (Algorithm5 in
Supplementary Material).

The new heuristic-based surgical path planning algorithm
finds the best optimal n-paths which include all the path points
(coordinates), then these paths are used in the second stage
(Stage 2-Q-learning algorithm) for finding nonlinear paths.
The Q-learning algorithm seeks to find the best action in
the given current state. The Q-table is utilized to select the
best action based on the g-value, and after each episode, it is
updated with the new g-values. While updating g-values, they
are adjusted based on the difference between the new g-value
and old g-value by using “learning rate” and “discount factor”
parameters. The learning rate is defined as the weight of how
much we consider the new value, and the gamma is a discount
factor and balances the immediate and future reward. With
the “np.max” function, the maximum of the future reward is
taken, and this value is applied to the reward for the current
state (Eq. 1).

NewQ[state, action] = Q[state, action] + learning rate
* (reward + gamma * np.max(Q[new_state,:]) — Q[state,
action]) (Eq.1)

The agent interacts with the environment (is extracted in
Algorithm 6 in Supplementary Material) in two ways exploiting
(selecting action with the highest value by referencing the Q-
table) and exploring (random action selection). Before starting
the Q-learning algorithm, all the points (coordinates) on
the paths are classified by using the corresponding labeled
structures. Thus, the points of all structures belonging to
the same class (label value) in different layers are gathered
under an array. All the points are considered as a node,
and then the reward and penalty scores are assigned to
nodes in each class by considering the penalty score of the
critical structures, and “1” penalty score is assigned to all

425 X747 Pixel:168.00  X:205 Y:329 2:125 (px) X:-22.83 Y:56.06 2:62.35 (mm)

03

FIGURE 4 | The research algorithm was created for time efficiency compared with the time-consuming RL algorithm. The goal is to find the most ideal cranial entry
points. Machine learning was not used in this method. Cranial entry points were scored using the equivalent areas and tumor location in Table 1 and compared with
each other. With this algorithm, it was possible to sort by five most ideal entry points, 10 entry points, or worst entry points. In addition, this algorithm provided a linear
access path to tumor tissue in the shape of a rectangular prism or cylinder. The entrance area in the images was determined as 1.5 cm?. The algorithm has been
adjusted to allow this area to be increased or decreased. This algorithm can be useful in tubular operative systems or rigid endoscopic systems. In this study, we took
these points (the most ideal 4,900 points) as the starting points of RL. Image (A,B) are the ideal best rated and image (C) the worst-rated sample entry points.
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TABLE 1 | Some major surgical landmarks and their functions for transcortical approaches.

Approach
Frontal Gyrus Rectus, Distal AntComA

Caudate nucleus

Fornix

Inferior Frontal Gyrus (pars opercularisandriangularis)

Anterior perforate substance Optic tract Precentral gyrus Broadman 44
Temporal Crus cerebri, pca, uncus

Lateral sulcus
Optic radiation Hippocampus
Visual word form area
Arcuate fasciculus
IFOF cuneus
Parietal superior  Superior anastomotic vein (trolard)
Postcentral gyrus
Parietal operculum
Heschl’s gyrus
Superior longitudinal fasciculus Il
Arcuate fasciculus Language
Insula Periinsular sulcus
Lenticular nucleus
Arcuate fasciculus (lat to claustrum)
IFOF (btw claustrum and putamen)
Veins Vein of Labbé (inferior anastomotic vein)
Basal vein of Rosenthal
Superficial sylvian vein
Superior sagittal sinus and another main sinuses
Arteries ICA and main branches

Basiler arter and main branches

Bottom up attention (goal directed), memory, learning, sleep, emotion, language

Memory
Langage (If), theory of mind (bilat), visuospatial cognition (rt)
Corticospinal tract vascular supply

Optic pathwayMemory pathway
Identifying words

Language (It), visuospatial cognition (rt)
Language (It), visuospatial (rt)

Sensitive patnway

Sensitive pathway
Connection speech
Language (It), visuospatial (rt)
Language (It), visuospatial (rt)

Language (If), visuospatial (rt)
Language (If), visuospatial (rt)
Temporoparietal drainage

main venous drainage

TABLE 2 | Gives the details in the intermediate steps of the proposed heuristic for the case study.

Cell Dimension

The number of all possible paths

The n-optimal paths in the “SECOND_PATHS_INDEX” sequence

The number of checked points in “SECOND_PATHS_INDEX” sequence
The m-optimal paths in the “THIRD_PATHS_INDEX” sequence

The number of checked points in “THIRD _PATHS_INDEX” sequence
The l-optimal paths in the “FOURTH_PATHS_INDEX” sequence

16 x 16 32 x 32 40 x 40 64 x 64
745,984 675,840 641,920 544,768
80 80 80 80
46,727,360 83,222,240 112,560,000 76,212,160
40 40 40 40
58,339,960 146,084,080 137,648,480 85,084,960
20 20 20 20

Number of MRI slice.

other nodes where the agent can interact in. Each node
has a neighboring node. If a node is not on the edge or
corner, it has eight neighboring nodes (right, left, up, down,
bottom-right, bottom-left, top-right, and top-left) over the
same layer. The same node has 18 different neighboring
nodes over the one upper layer (9 neighboring nodes)
and one lower layer (9 neighboring nodes) (Figure5). The
penalty scores of all these 27 different nodes are assigned
by considering the penalty score of each class. Then Q-
learning algorithm is executed over these nodes to find the
best possible nonlinear surgical access paths (Algorithm 7 in
Supplementary Material).

Experimental Results

To find the best possible linear and nonlinear surgical paths,
the proposed new heuristic and Q-learning algorithms were
executed, respectively. As a case study, we used (512 x 512 x
144) axial T1-weighted MRI images of one patient with a brain
tumor in DICOM format, then 16 x 16, 32 x 32, 40 x 40, and
64 x 64 path dimensions were evaluated for the new heuristic
algorithm. These dimensions correspond to the cell parameter
(n is equal to 16, 32, 40, and 64, respectively in each case) given
in Algorithm 5 in Supplementary Material. For each case, we
extracted 20 optimal linear paths, and the extracted linear paths
for 16 x 16 and 32 x 32 dimensions were so narrow for executing
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the Q-learning algorithm. So, we used the entry points of these
paths as reference starting (entry) points of the second stage. For
the 40 x 40 and 64 x 64 dimensions, each 20 extracted linear path
composed the environment of Stage 2. While finding linear paths,
the heuristic checked millions of coordinate points. All steps
given in Algorithm 5 in Supplementary Material were applied
one by one to 16, 32, 40, and 64 cell dimensions. We picked 80,
40, and 20 optimal paths for the second, third, and fourth path
index sequences, respectively. The findings in the intermediate
steps are given in Table 2. The first column in the table gives
information about the intermediate steps in Algorithm 5 in
Supplementary Material: the number of all possible paths, the
number of checked points in the sequence, and the chosen
parameters to indicate the number of optimal paths. The second
column in the table gives more details for each cell dimension
(Table 2).

While the total of 40 linear paths extracted from the 16 x 16
and 32 x 32 dimensions was used as reference starting points in
Stage 2, the total of 40 linear paths extracted from the 40 x 40
and 64 x 64 dimensions was also used as an environment. Then
the extracted nonlinear paths were observed by neurosurgeons.
The best path was obtained from the 16 x 16 dimension and are
given in Figure 4.

DISCUSSION

In this study, we proposed new system architecture which
includes two stages to find linear and nonlinear access paths
for neurosurgery. In the first stage of the model, linear paths
were found, then these paths/or entry points were utilized
for finding nonlinear paths in the second stage. We proposed
a new heuristic-based surgical path planning algorithm for
finding linear paths. Moreover, the Q-learning algorithm was
used to find the nonlinear access paths by using the extracted
linear paths from the new heuristicc. We performed a Q-
learning algorithm over cranial MRI scans to learn which steps
ensure reaching the beginning location of the tumor with
maximum rewards. Touching the critical structures is assigned
as a penalty while reaching the tumor tissue is defined as
a reward. As an environment, the entire head is taken into
account, so the possibility of nontraditional surgical methods
was not ignored (different access routes that may be suitable
for open face or endoscopic procedures). Some neural fiber
routes, arteries, veins, and dural sinuses have been identified
as structures that should be avoided (Table 2). The algorithm
aims to reach the tumor while avoiding these critical locations
(evaluated as penalty scores), and uses Q-Table helps to find
the best action for each state in the brain. The state that
expresses the current status (position) of the AI agent in the
environment is the x, y, z coordinated location in cranial MRI
(14-17).

The borders of the preoperative brain tumor lesion (reward)
were determined as the contrast-enhancing area in T1 contrast
MRI imaging (19). Tracts with diffusion tensor imaging (DTI),
arterial anatomy with contrast-enhanced MRI angiography (CE-
MRA), and those with tumor tissue (20) superficial cortical

vessels and dural sinuses are used in surgical planning
with MRI venography (21) (Figure2). DICOM images in
the respective sequences were imported into the labeling
program (labelme 4.6.0, https://github.com/wkentaro/labelme).
Functional anatomical areas were marked and labeled by the
radiology and neurosurgeon specialist (Figure 3). The pixel and
voxel values of the anatomical point and the anatomical structure
of the point were listed by labeling (22, 23). This gave us the
advantage of trading in a cubic system with matrixes.

We used (512 x 512 x 144) axial T1-weighted MRI images
of one patient with a brain tumor in DICOM format as a case
study. We utilized 16 x 16, 32 x 32, 40 x 40, and 64 x 64
path dimensions to evaluate the success of the proposed system
architecture. In the first stage, 20 optimal linear paths were
extracted for each dimension by using the new heuristic-based
algorithm. The optimal nonlinear path was extracted by using
the starting points found in the 16 x 16 path dimension. For the
16 x 16 path dimension, the proposed heuristic found 745,984
possible entry points. The areas in Table 2 and the target tumor
tissue were accepted as reference points. This algorithm gave
input fields of desired diameter and size. These 745,984 linear
paths were compared according to the reward and penalty points.
By using the intermediate steps, the 20-optimal linear paths were
chosen. Then the starting points of these paths were used as
reference entry points of the Q-learning algorithm (Figure 4) in
the second stage. Then, a matrix size of 78,030 x 78,030 was
created and worked on 50 x 25 x 78,030 points for Q-learning.
Extracranial areas were excluded. It was enough to find 500,000
epoch paths in a 16 x 16 x 35 environment, and it almost took
70 min. The Q-learning algorithm returns as the best way “node”
(Figure 5). Then, the positions of these node values in the matrix
were found and the x, y, and z coordinate values were reached.
Thus, the coordinates representing the best path were extracted
from the DICOM images. The most ideal transcortical tumoral
pathway was revealed in Figure 6.

On the other hand, all the paths have been shown in
DICOM format, thus the usage of MR images in DICOM
format has provided data protection while also allowing us to
use it in postprocessing systems (OsiriX MD v12.5.0-SNRTech
Workstation). One of the achievements of this study is that all
the extracted linear and nonlinear paths in DICOM format can
be seen in any neuronavigation software. The neuronavigation
device utilized in the operating room has been evaluated for
availability, but the proposed system is not yet used on a patient
during surgery (neuronavigation system). Following the requisite
assessment and approval, future work would be used as an
intraoperative guide.

The number of studies on artificial intelligence and
neurosurgery has risen considerably in recent years (24, 25).
In this article, the proposed artificial intelligence-based system
architecture was utilized to find the most optimal surgical
paths for preoperative patient images that were labeled on the
3-dimensional coordinate plane with cranial MRI voxel values.
The results (linear and nonlinear paths) obtained with this basic
system architecture (framework) can be used with intraoperative
neuronavigation as well as road maps in tubular, endoscopic,
robotic, and augmented reality.
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processing.

FIGURE 5 | The most ideal cortico-tumoral approach is recommended by RL. Images were added one after another to show the nonlinear pathway. RL extracted the
most optimal pathway by performing a random-onset point analysis of the entire intracranial area. Demonstration of the approach reaching the tumor from the base of
the postcentral sulcus. (A) howing the pathway in coronal sections. (B) Showing the pathway in sagittal sections. (C) Showing the 3-dimensional pathway with image
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FIGURE 6 | The figure illustrates the proposed system architecture for finding
linear and nonlinear access paths for brain surgery.

The mathematical equation of any case provides the advantage
of measure and control tools to use in. Many current technical
types of equipment and treatment algorithms have evolved

through the mathematical equations defined in the past centuries.
Introducing Preoperative neuroanatomical points and functions
as data to artificial intelligence will highlight patient-specific
surgical approaches. The near future will be based on artificial
intelligence, which will employ an excessive amount of data,
and the relationship between these data will allow surgery to be
performed with greater accuracy.

Perioperative monitoring and use of cranial anatomy and
functions contribute to a positive outcome. In future work,
new methods based on artificial intelligence would be used
to analyze data for each stage of neurosurgical interventions,
and these initiatives would be maximized. Simultaneously,
that will allow patients to benefit from the experience of
an unlimited number of clinics and surgeons in personal
treatment planning.

Limitation of Study

The first limitation is the manual segmentation of anatomical
points. This took a lot of time for both the surgeon and the
radiologist. Points were marked in 144 axial images. The second
limitation was that we could not create fusion MRI images. We
aimed to make a single fusion MRI sequence of T1 contrast axial,
DTI, TOF, and venography sequences and use it. However, we
could not use the fusion images we obtained as DICOM data.
Fusion sequence MRI would enable us to use anatomical accuracy
at a single point level. This caused the third limitation of the
study, the necessity of specifying four points in the labeling.
It made the processing points coarser and larger. Our fourth
limitation is the total processing time. We think that when the
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first three limitations are resolved and the computer processor
speeds increase, the processing time will be shortened.

To reduce the computational cost, we did not handle all of the
linear paths extracted from the heuristic, and we eliminated most
of these paths. In our experiments, we have used a 10-core CPU
with eight performance cores and two efficiency cores, 16-core
GPU, 16-core Neural Engine, 200 GB/s memory bandwidth, and
OS X. We think that by using the more powerful computers all
these linear paths can be used and then the found all possible
linear paths can be used reference points/environments based
on the cell dimension for Stage 2. We also gave a case study to
observe the achievement of our system. We used (512 x 512
x 144) axial T1-weighted MRI images of one patient with a
brain tumor in DICOM format, then 16 x 16, 32 x 32, 40 x
40, and 64 x 64 path dimensions were evaluated for the new
system. The best optimal nonlinear surgical path was found from
the 16 x 16 dimension. There are some studies (Liedlgruber
et al.) (26) in the literature that use automatic segmentation,
but vascular structures are not taken into consideration in these
segmentations. Tomasi et al. (27) combined the cerebral cortex
anatomy and vascular structures in their studies. In future
work, we plan to use automatic segmentation by taking into
consideration vascular structures in the brain.

RESULTS

In this article, a new system architecture based on a two-
stage is proposed to find linear and nonlinear access paths for
neurosurgery. In the first stage, the proposed new heuristic
estimates accurate optimal surgical paths avoiding critical
structures in the brain. It computes the proper entry points on
the scalp and then searches for different paths that reach the
beginning location of the tumor and finds the optimal linear
surgical paths. In Stage 2, the extracted optimal linear paths from
the new heuristic are used as an entry point or an environment
for the Q-learning algorithm to find nonlinear optimal paths.
Artificial intelligence has the potential to reduce medical errors
while also reducing healthcare costs. It will be based on artificial
intelligence in the near future, where big data will be used,
the relationship between these algorithms and neuroanatomical
functions are determined more precisely and neurosurgery can
be performed with them.
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