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Introduction: Routinely collected healthcare data are a powerful research
resource, but often lack detailed disease-specific information that is
collected in clinical free text such as histopathology reports. We aim to use
natural Language Processing (NLP) techniques to extract detailed clinical and
pathological information from histopathology reports to enrich routinely
collected data.
Methods: We used the general architecture for text engineering (GATE)
framework to build an NLP information extraction system using rule-based
techniques. During validation, we deployed our rule-based NLP pipeline on
200 previously unseen, de-identified and pseudonymised basal cell
carcinoma (BCC) histopathological reports from Swansea Bay University
Health Board, Wales, UK. The results of our algorithm were compared with
gold standard human annotation by two independent and blinded expert
clinicians involved in skin cancer care.
Results:We identified 11,224 items of information with a mean precision, recall,
and F1 score of 86.0% (95% CI: 75.1–96.9), 84.2% (95% CI: 72.8–96.1), and
84.5% (95% CI: 73.0–95.1), respectively. The difference between clinician
annotator F1 scores was 7.9% in comparison with 15.5% between the NLP
pipeline and the gold standard corpus. Cohen’s Kappa score on annotated
tokens was 0.85.
Conclusion: Using an NLP rule-based approach for named entity recognition
in BCC, we have been able to develop and validate a pipeline with a
potential application in improving the quality of cancer registry data,
supporting service planning, and enhancing the quality of routinely collected
data for research.
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Introduction

Skin cancer is the most common malignancy in the UK,

comprising at least 25% of all new cancer diagnoses (1, 2).

Since the early 1990s, UK non-melanoma skin cancer

(NMSC) incidence rates have increased by 163% and continue

to rise, placing a huge demand on the National Health Service

(NHS) (1). In order to plan and deliver this ever-increasing

clinical activity, along with undertaking good quality research

to improve patient outcomes, high quality and detailed data

capture is required.

Routinely collected healthcare data have the potential to

significantly impact skin oncology research, identifying new

disease associations, treatment modalities, outcomes, and

healthcare delivery planning (3, 4). Current coding methods

and therefore data capture for NMSC grossly underestimate

the true burden of disease, by up to 50% for basal cell

carcinoma (BCC) and 30% for squamous cell carcinoma

(SCC) (5). As per the UK and Ireland Association of Cancer

Registries (UKIACR), most cancer registries currently record

only a single BCC or SCC per patient lifetime (5).

Metachronous, synchronous, and recurrent lesions are ignored

in these data (5). Not only is a significant volume of data not

collected, but the depth and quality of data are also lacking.

Clinical coding using International Classification of Diseases

Version 10 (ICD-10), Office of Population Censuses and

Surveys Classification of Surgical Operations and Procedures

Version 4 (OPCS-4), and other coding systems can

misrepresent the true disease and treatment burden (6–8).

Furthermore, the error can be introduced by those tasked

with coding disease or treatment episodes (9). This practice of

underestimating the true incidence of NMSC is not isolated to

the UK alone (10). In order to gain a better understanding of

the disease and the burden it places on both patients and the

NHS, this needs to be addressed.

Rich data can be found locked away in “unstructured”

formats such as clinic letters, handwritten clinical notes, and

histopathology reports, which form a part of the electronic

health record (EHR) (11). Manual review of the free text in

EHRs has been the mainstay of data capture in this setting.

This is a process that is labour-intensive, costly, and open to

error and bias. Traditionally, EHR data have been inaccessible

in an “unstructured” free text format; however, with the advent

of Natural Language Processing (NLP), this is no longer the case.

Information extraction using NLP describes a set of

techniques used to convert passages of written text into
02
interpretable datasets through either rule-based or machine

learning (ML) models (12). It can be used in healthcare for

named entity recognition (NER) or feature extraction using

unstructured EHR data. The stages can conceptually be

broken down and summarised into five steps—text extraction,

text processing, system task, performance evaluation, and

implementation (13). First, an unstructured free text report is

converted into a series of features such as part of speech tags,

tokens, and phrase chunks, which are then algorithmically

processed. The NLP algorithm can then be set to task. After

the system is validated, it can finally be applied to

unstructured text to extract data in the setting of its intended

purpose. The nascent field of NLP has the potential to enrich

routinely collected healthcare data with detailed disease-

specific information and harness the power of big data to

ensure that these data are accurate, comprehensive, and easily

accessible.

The importance of big data and modern analytical

techniques in medical research has been recognised by the

United Kingdom (UK) Government in their Eight Great

Technologies drive, by the Medical Research Council in

2016–2017, who plan to invest £37.5 million in health

informatics over the next 5 years, and by The Royal College

of Surgeons of England in their “Future of Surgery”

commission (14–16). Additionally, the King’s Fund report

into dermatology services in the UK commissioned by the

British Association of Dermatologists recognises the need for

improved dermatology service data collection and accessible

real-time information (17). The use of NLP in clinical

outcomes research is accelerating. In a recent systematic

review and meta-analysis of NLP-based data capture versus

conventional administrative methods of data capture [current

procedural terminology codes, international classification of

diseases (ICD) codes, patient safety indicators based on

discharge coding and diagnosis-related group database code],

postoperative complications were identified with higher

sensitivity, whilst specificity was comparable (18). NLP

models may be reliably used for both confirming and ruling

out documentation of outcomes/diagnoses, whilst

conventional methods of data capture demonstrate clinical

utility for confirming documentation of outcomes/diagnoses

alone (18). Applications of NLP to the EHR continue to

expand and include novel phenotype discovery, clinical trial

screening, pharmacogenomics, drug-drug interaction and

adverse drug event detection, and genome-wide and

phenome-wide association studies (19).
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We intend to build on this wave of enthusiasm and improve

data collection and therefore research in skin oncology. In this

study, we developed and internally validated a rule-based NLP

pipeline to extract BCC primary histopathological data, with

the ultimate aim of improving the quality of cancer registry

data, supporting service planning, and enhancing the quality

of research using routinely collected data.
Materials and methods

Study population

We used manually de-identified and pseudonymised BCC

histopathology reports from Swansea Bay University Health

Board. Forty-one histopathology reports from 2015 were used

to develop, train, and test rule sets. This training corpus of 41

reports contained 62 individual BCCs. Training

histopathology reports were written by ten consultant

histopathologists. The gold standard validation corpus

consisted of 200 histopathology reports from 2016 to 2018

and contained 299 individual BCCs. The validation

histopathology reports were written by 20 consultant

histopathologists.
Annotation

Each free text histopathology report was annotated using

the open-source, web-based annotation tool Markup (https://

www.getmarkup.com/) (20). Markup incorporates NLP and

active learning (AL) technologies to enable rapid and accurate

annotation using custom user configurations, predictive

annotation suggestions, and automated mapping suggestions

to both domain-specific ontologies, such as the Unified

Medical Language System (UMLS), and custom, user-defined

ontologies.
Annotation guidelines

We developed an annotation guideline (Supplementary

Material 1) and data definition dictionary (Supplementary

Material 2) as an aide for clinicians when annotating

histopathology reports as the ground truth. An iterative

approach to guideline development was taken, with a first

draft containing general guidelines updated and re-tested

following its implementation by two clinicians on an initial 20

histopathology reports and compared with a gold standard

defined by consensus agreement between two expert skin

cancer clinicians.
Frontiers in Surgery 03
Algorithm construction

We used General Architecture for Text Engineering (GATE)

Developer 9.0 (University of Sheffield, UK), an established open-

source toolkit for NLP, to build an information extraction system

using rule-based techniques from histopathology reports (21)

(Figure 1). GATE can be defined as a Java-based infrastructure

for developing and deploying software components that

process human language (21). GATE as an architecture can be

broken down into various types of components, known as

resources (21). These resources include language resources

(lexicons, corpora, or ontologies), processing resources

(parsers, generators, or n-gram modellers), and visual resources

(visualisation and editing components involved with graphical

user interfaces) (21). The 139 entities that we set out to extract

are summarised in Supplementary Table S1. We developed

our own custom gazetteers (native dictionaries used within

GATE) informed by the World Health Organisation

classification of tumours of soft tissue and bone tumours, to

map clinical terms to UMLS concepts (22). We deployed the

ConText algorithm to detect the negation of extracted terms,

e.g., “there was no residual disease,” and to detect affirmation

of normal prognostic factors, such as “tumour confined to the

dermis.” Finally, we used the Java Annotation Patterns Engine

(JAPE) scripting language to define rules based on varying

combinations of UMLS and custom lookups to extract eight

broad information categories. In total, we created 80 separate

gazetteers and 445 JAPE rule files in order to annotate the

variables of interest, establish context, and to remove certain

annotations from the output. Data were outputted into a

comma-separated values (CSV) file by using the Groovy

scripting language.
Determining the number of documents
needed for a gold standard validation
corpus

There is no agreed standard for determining the size of a

validation set in NLP (23–25). We therefore used string

matching and a modified version of the method outlined by

Juckett et al. to determine the number of documents required

in our validation set to ensure that we represented all 139

concepts well enough to validate them (23). A further 1,000

manually de-identified and pseudonymised BCC

histopathology reports generated from Swansea Bay University

Health Board in 2015 were used for this. We calculated the

capture probability of a token (which is any sequence of

alphanumeric characters, beginning with a letter and

occurring between spaces, slashes, brackets, braces,

parentheses, quotation marks, or punctuation marks that are

found in our 139 concepts) occurring in the validation set
frontiersin.org
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from these 1,000 reports (see Supplemental Material 3 for a full

method). In order to achieve a capture probability of 90%, we

required a validation set of 200 documents.
Analysis and statistical tests

Items of information extracted by the NLP pipeline were

compared with those extracted by manual review performed

by two independent expert skin cancer clinicians who had

access to the annotation guidelines only (Figure 2). We used

the most widely adopted measures in the literature to evaluate

an NLP pipeline: precision, recall, and F1 score to calculate

the accuracy of the NLP pipeline when compared with

clinician assessment (Table 1) (21). We used GATE’s

definition of precision as the number of correctly identified

items expressed as a percentage of the number of items

identified, recall as the number of correctly identified items

expressed as a percentage of the total number of correct

items, and the F1 score as the harmonic mean of precision

and recall (aiming to achieve a balance between precision and

recall) (Table 1) (21). Precision is analogous to positive

predictive value (PPV) and aims to measure how many of the

items identified by the application are actually correct,

irrespective of whether it also failed to retrieve correct items

(Table 1) (21). Recall is analogous to sensitivity or the true

positive rate and aims to measure how many of the items that

should have been identified actually were identified, regardless

of how many spurious or false positive identifications were

made (Table 1) (21).

The assessment of partially correct annotations can differ in

GATE depending on the intended task of the pipeline (Table 1)
FIGURE 1

Schematic representation of our rule-based named entity recognition Natur
comma-separated values; JAPE, java annotation patterns engine scripting.
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(21). “Strict,” “average,” and “lenient” are graded approaches to

deriving an F1 score depending on how well the clinician

annotation matches or spans that of the data extracted by the

algorithm. A “strict” F1 score considers only perfectly

matching annotations to be correct, a “lenient” F1 score

considers partially matching annotations as correct, whilst an

“average” F1 score derives a value from the average of the

strict and lenient F1 scores. We did not consider the span of

the annotation as an important goal in the generation of our

pipeline and so we used a lenient scoring approach to

calculating the F-measure.

Each clinician’s set of annotations was compared with one

another using the Python programming language to calculate

the (1) difference in the F1 score and (2) inter-annotator

agreement (IAA). The single gold standard validation corpus

was initially annotated by two independent and blinded

expert clinicians involved in skin cancer care. Following this,

a single gold standard validation corpus was then produced

following a meeting between the clinician annotators who

discussed and resolved disagreements in their annotations to

achieve consensus through strict adherence to the annotation

guideline and data dictionary. Statistical data analyses were

performed using RStudio (R Core Team, R Foundation for

Statistical Computing, Vienna, Austria).
Results

Training

A total of 2,591 items of information were identified in 41

histopathology reports with an overall precision, recall, and F1
al Language Processing system for BCC histopathology reports. CSV,
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FIGURE 2

Schematic representation of annotations and features. These items of information were extracted by both the Natural Language Processing pipeline
and the expert manual review.

TABLE 1 Formulae used to calculate precision, recall, and F1 score.

Measure Formula

Precision ¼
Correctþ 1

2
partial

Correctþ spurious þ partial

Recall ¼
Correctþ 1

2
partial

Correctþmissingþ partial

F1 score ¼ 2� Precision � recall
Precisionþ recall

Partial, two annotations are partially compatible if they overlap and if the

features of one (usually the ones from the key) are included in the features

of the other (response); Spurious, A response annotation is spurious if either

is not coextensive or overlapping, or if one or more features from the key

are not included in the response annotation; Missing, a key annotation is

missing if either it is not coextensive or overlapping, or if one or more

features are not included in the response annotation.

Ali et al. 10.3389/fsurg.2022.870494
score of 94.9% (95% CI: 88.9–100.0), 95.1% (95% CI: 89.9–100),

and 94.8% (95% CI: 89.1–100.0), respectively, when assessed

against a single clinician. Table 2a summarises the

performance of the NLP pipeline in identifying these items of

information.

There was variance in performance amongst the canonical

structure of the histopathology report signifying areas where

the NLP algorithm was able to undertake NER with less error
Frontiers in Surgery 05
and reflecting feature complexity. Precision and recall for the

categories were: accession number (100.0%, 100.0%), excision

date (100.0%, 100.0%), clinical details (96.5%, 93.1%),

macroscopic details (81.1%, 83.4%), microscopic details

(87.0%, 89.1%), microscopic measurements (94.8%, 95.2%),

report details (100.0%, 100.0%), and requestor (100.0%,

100.0%) (Table 3a).
Validation

A total of 11,224 items of information were identified across

200 histopathology reports in the validation set. Table 2b

summarises the performance of the NLP pipeline in

identifying these items of information, with Table 3b showing

the performance relative to the gold standard. The mean

precision, recall, and F1 scores were 86.0% (95% CI: 75.1–

96.9), 84.2% (95% CI: 72.8–96.1), and 84.5% (95% CI: 73.0–

95.1), respectively. The overall difference between mean

clinician annotator F1 scores was 7.9% (Table 4a) in

comparison with 15.5% between the NLP pipeline and the

gold standard corpus. A confusion matrix was used to identify

tokens identified by one annotator but not by the other

(Supplementary Table S2). The IAA between each clinician

and the gold standard corpus F1 scores was calculated using a
frontiersin.org
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TABLE 3 Performance of the natural language processing pipeline on (a) training and (b) corpus compared to clinician assessment. Values calculated
per document across annotation types and averaged across the corpus, displayed with 95% confidence intervals.

Entity Precision % Recall % F1 score %

Training (a) Validation (b) Training (a) Validation (b) Training (a) Validation (b)

Accession number 100.0 100.0 100.0 100.0 100.0 100.0

Excision date 100.0 100.0 100.0 100.0 100.0 100.0

Clinical details 96.5 (90.3–100) 75.4 (70.2–80.7) 93.1 (86.8–99.4) 73.3 (68.0–78.5) 94.1 (88.2–100) 73.6 (68.4–78.84)

Macroscopic details 81.1 (72.3–89.9) 60.8 (56.3–65.3) 83.4 (75.1–92.3) 66.4 (62.3–70.4) 82.1 (73.4–90.8) 63.0 (58.7–67.3)

Microscopic details 87.0 (79.8–94.3) 74.2 (69.8–78.6) 89.1 (82.7–95.5) 66.9 (62.5–71.3) 87.5 (80.7–94.3) 69.1 (64.8–73.5)

Microscopic measurements 94.8 (91.2–98.5) 83.0 (79.1–86.8) 95.2 (91.2–99.3) 72.8 (68.5–77.1) 94.8 (91.0–98.5) 75.9 (71.8–79.9)

Report details 100.0 83.5 (78.3–88.7) 100.0 81.4 (76.1–86.7) 100.0 81.7 (76.4–87.0)

Requestor 100.0 100.0 100.0 100.0 100.0 100.0

TABLE 4 Differences in (a) F1 score between annotators on the
validation corpus and (b) inter-annotator agreement on the
validation corpus.

Entity (a) Difference in F1
score (%)

(b) Specific
agreement

Accession number 0.0 1.00

Excision date 0.0 1.00

Clinical details 1.7 0.95

Macroscopic details 3.9 0.90

Microscopic details 9.5 0.89

Microscopic
measurements

2.6 0.97

Report details 0.9 0.99

Requestor 0.0 1.00

Supplementary report 52.4 0.44
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specific agreement (Table 4b). A token was characterised by line

range, entity, and attributes and assigned to the component of

the histology report it belonged to, e.g., clinical details. The

overall Cohen’s Kappa score on annotated tokens and the F1

score, calculated using pairwise comparisons, were 0.85 and

0.88, respectively.

A sub-analysis of the features extracted within the different

report entities shows variance in performance by which these

data are extracted (Figure 3). For example, if the pipeline is

tasked to look at the “tag” feature within the microscopic

details entity to calculate BCC incidence and surgical volume,

an F1 score of 86.3% (95% CI: 83.7–88.9) is achieved.

However, if looking at values for “tumour thickness,” “tumour

diameter,” “peripheral clearance,” and “deep clearance” within

the entity of microscopic measurements, a lower F1 score of

78.5% (95% CI: 74.6–82.3) is achieved.

Post-hoc analysis revealed that 14 reports (7%) used a form

of structured template in the validation corpus, whilst none

were used in the training corpus. There were three forms of

template used, but no report utilised the “cutaneous basal cell

carcinoma removed with therapeutic intent” proforma
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produced by The Royal College of Pathologists (RCPath) in

their 2014 minimum dataset reporting guideline (26). The

difference in the performance of our pipeline with and

without a template is shown in (Supplementary Table S3). A

marginal overall increase in precision (2.5%), recall (1.8%),

and F1 score (1.1%) with proforma use is demonstrated.
Discussion

We have developed and validated a novel NLP pipeline for

BCC histopathology reports. This is the first reported use of

NLP for NMSC NER, which differs from other more

primitive NLP models used for text classification and case

identification.

The overall performance of this pipeline was good, and most

importantly, it compared well with clinician review (15.5% vs.

7.9%). As to be expected, the pipeline performed better at

certain tasks compared with others. For example, when

extracting data on accession number, excision date, report

details, and requestor, an F1 score of 100% was achieved.

Given that these fields consist of fixed format dates that are

easier to extract, this is to be expected. More complex entities

performed less well, although still with performance close to

that expected of an experienced clinician. In terms of disease-

specific information, the pipeline performed best in

identifying microscopic measurements with an F1 score of

75.9%. These items are frequently mentioned and presented in

a relatively standard format, e.g., peripheral clearance 1 mm at

12 O’clock. The entities with the highest drop off in F1 score

between validation and training were clinical details,

macroscopic details, and microscopic details. In training, the

F1 scores were 94.1%, 82.1%, and 87.5%, respectively;

however, during validation, they fell to 73.6%, 63.0%, and

69.1%, respectively.

There are a number of explanations for this. A model that

performs poorly on internal validation can be described as

under-fit or having high bias, commonly caused by
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FIGURE 3

Boxplot of an F1 score across entities demonstrating variance with 95% confidence intervals.
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insufficient data, or an overly simplistic model (26). It is

generally accepted that more data produce better accuracy and

higher quality data (closer domain, less noise) (27, 28).

Exactly how much data or what quality of data is required to

achieve a given performance goal, however, is unclear in the

context of NLP as an engineering discipline. Specifically, there

are no universally agreed criteria for the required number of

documents needed for a gold standard validation corpus (23–

25). The training set was generated in 2015, whilst the

validation set represented data from 2016 to 2018.

Additionally, histopathology reports were written by a group

of ten individuals in the training set and 20 in the validation

set. This may account for linguistic differences in sentence

structure and performance of the JAPE rules that we

designed. The population characteristics of the test set, i.e.,

the reporting style of the pathology reports, should mirror the

target population for the algorithm (29). While population

characteristics were generally similar, subtle differences are

inevitable, and it is difficult to account for this phenomenon

whilst reducing selection bias. Despite no proforma being

used in the training corpus, a post-hoc analysis of the

validation data suggests that a structured reporting template

such as that developed by the RCPath could improve the

performance of our pipeline (26). It is intuitive that designing

JAPE rules on a larger training set that includes variants of

such a proforma should result in better performance.

Studies assessing error rates in manual clinical data entry

demonstrate that rates vary between 0.2% and 26.9%

depending on the complexity of interpretation and abstraction

of individual data elements (30, 31). Current NMSC-based
Frontiers in Surgery 08
NLP pipelines report validation on smaller subsets and are

centred around text classification and case identification rather

than true NER. Lott et al. used NLP on 80,368 histopathology

reports to investigate the frequency and percentage of NMSC

vs. melanocytic histologic diagnoses and frequency and

percentage of melanocytic proliferations classified according to

the Melanocytic Pathology Assessment Tool and Hierarchy for

Diagnosis (MPATH-Dx) reporting schema (32). A total of 289

original histopathologies were independently reviewed and

classified into the MPATH-Dx system by two dermatologists,

and any cases with disagreements were reviewed in

conjunction to reach consensus. This NLP system yielded a

PPV of 82.4%, a sensitivity of 81.7%, and an F1 score of 82%.

Eide et al. used NLP to validate NMSC claims-data cases at a

large health care system provider and its affiliated health

maintenance organisation (33). They set out to define NMSC

case volume only and did not report any feature extraction

from their NLP pipeline. A comparison of 909 electronic

pathology reports to the NLP pipeline showed a sensitivity of

98.3%, a specificity of 99.6%, a negative predictive value of

99.6%, and a PPV of 98.2% for this task. The performance of

both these different pipelines reflects how performance can

vary depending on the complexity of the intended system

task—calculating incidence is a much simpler task compared

with pathological diagnosis. We designed our pipeline with the

intended purpose of improving the accuracy and to enrich

data contained in cancer registries. The remit of the JAPE

rules that we created was therefore quite broad, which

inherently means that a narrower focus of system task on the

same validation set would perform better.
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One disadvantage with rule-based NLP is the significant

time investment in developing and validating such a pipeline.

Building rules, testing, refining, and retesting is a significant

undertaking, with the potential for a large amount of further

work if crucial aspects are either not included or poorly

thought out from the beginning. Therefore, there has been

growing interest in the use of ML, instead of rule-based NLP,

for information extraction. ML can be broadly categorised

into supervised, unsupervised, reinforcement learning, and

deep learning. Supervised ML encompasses a model based on

a dataset with labelled examples that can be used to solve a

classification problem, unsupervised ML is based on a dataset

with no labelled examples, and reinforcement learning is a

branch of artificial intelligence concerned with the generation

of models that aim to maximise the receipt of rewards from

an environment by learning to perform specific actions (29).

ML can be used in NLP for the purposes of classification

(group instances into predefined categories), clustering (group

instances into undefined categories), and regression (predict

numeric variables) (12). However, other authors have

commented how ML algorithms have not been able to

demonstrate superior performance in comparison with rule-

based techniques as described in this study, are poorly

reported, and raise concerns about interpretability and

external generalisability (12).
Strengths and limitations

A significant strength of this study is that a comprehensive

NLP algorithm has been developed for NER on 134 features

from 139 possible entities in BCC histopathology reports.

Additionally, we have gone beyond basic NER since we also

capture entity attributes—enriching quality of the data

collected. Therefore, a vast amount of data can be extracted

from a single histopathology report. The diagnoses within

these reports are linked to Unified Medical Language System

terminologies mapped to Concept Unique Identifier codes.

This platform can be mapped to external coding vocabularies

such as the International Classification of Diseases (ICD),

Medical Subject Headings (MeSH), and Systematized

Nomenclature of Medicine Clinical Terms (SNOMED-CT).

As with any early-stage innovation, there are some

limitations. Data for training and validation were obtained

only from one health board in a single country and therefore

the external generalisability of the current pipeline to other

hospitals in the UK or differing health services around the

world may be limited. We plan to iteratively retest and

redevelop our pipeline on larger internal and external

datasets to enable future iterations to exhibit improvements

in accuracy and allow validation across differing healthcare

settings.
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Conclusion

This project is novel within the field of skin oncology in the

UK. The information extracted with this system such as tumour

subtype, prognostic factors, and margin status are often missing

from routinely collected data. We propose that our algorithm

has the promise to bridge this data gap enabling further skin

cancer research opportunities and in clinical practice to

record patient information in a structured manner. Future

work will require large-scale external validation of this system

with blinded clinician assessment on a gold standard corpus

with high inter-annotator agreement.
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