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Copper has been used as an antimicrobial agent long time ago. Nowadays,
copper-containing nanoparticles (NPs) with antimicrobial properties have
been widely used in all aspects of our daily life. Copper-containing NPs may
also be incorporated or coated on the surface of dental materials to inhibit
oral pathogenic microorganisms. This review aims to detail copper-containing
NPs’ antimicrobial mechanism, cytotoxic effect and their application in dentistry.
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Introduction

Copper is a common metal with unique physical and chemical properties. Copper is

the 26th most abundant element in the Earth’s crust (1). Copper has been used in coins,

jewelry, and utensils since ancient times, and the potential of copper to promote health

effects was recognized as early as 3,000 BC (2, 3). A large variety of dental restorative

materials contain copper, such as dental amalgam, porcelain-fused-to-metal crowns,

implants, and partial denture attachments and frameworks (4–7). Copper is an

essential trace element for humans and can promote angiogenesis, bone formation,

wound healing, and the activities of various enzymes (8–10). Additionally, it also

catalyzes the formation of crosslinks in collagen and elastin precursors (11–13).

Moreover, copper is essential for maintaining the normal physiological functions of

microorganisms. But high concentrations of copper can be used as microbicides (14–

16). Prior to the development of antibiotics, inorganic antibacterial agents, such as

silver and copper, were used to treat microbial infections (17). The paper reported

copper as an antimicrobial coating as early as 1962 (18). Also, current research has

shown that copper has a much less toxic effect on mammalian cells than silver (19).

With the progress of nanotechnology, copper has been increasingly used in the

medical field, such as the latest copper-containing Nanoparticles (NPs), which have

been proven to inhibit a variety of oral microorganisms, such as Streptococcus mutans
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(S. mutans) (20–22), Porphyromonas gingivalis (P. gingivalis)

(23), and Candida albicans (C. albicans) (20, 24–26). In 2008,

the International Organization for Standardization (ISO)

defined NPs as discrete nano-objects with all three external

dimensions less than 100 nm. In 2011, the European

Commission set a more technical but wider ranging

definition: a natural, incidental, or manufactured material

containing particles in an unbound state, as an aggregate, or

as an agglomerate and where, for 50% or more of the

particles in the number size distribution, one or more

external dimensions is within the size range 1–100 nm.

Under this definition, nanomaterials can be classified as NPs

only if one of their characteristic dimensions is within the

range of 1–100 nm. NPs have many unique physical and

chemical properties, such as tunable size, biocompatibility,

and singlet oxygen generation, which allows them to be

widely used (27, 28).

In recent years, the application of nanomaterials in dentistry

has gradually increased, and copper NPs can be used as a new

type of antimicrobial material (28). This paper reviews the

antimicrobial mechanisms of copper-containing NPs and their

application in dentistry.
Different types of
copper-containing NPs

Various types of copper-containing NPs are successfully

synthesized, such as copper NPs (Cu NPs), copper oxide NPs

(CuxO NPs), and copper-containing bimetallic NPs. CuxO NPs

are widely used in the fields of biomedicine, environmental

restoration, and industry (29–31). In biomedicine, cuprous

oxide (Cu2O) and cupric oxide (CuO) are often used as

antimicrobial agents (32–34). Compared with organic

antimicrobial agents, copper oxide has the advantages of stable

physical and chemical properties, solidity, and a relatively long

shelf life. Moreover, copper oxide has physical properties that

allow it to be easily mixed with polymers, which enables

CuxO NPs to be prepared into a variety of composite

materials. Compared with CuxO NPs, Cu NPs are relatively

unstable and easily oxidized. Copper (Cu) is easily oxidized to

form Cu2O and CuO when exposed to the air, making it

difficult to synthesize Cu NPs in an ambient environment.

Therefore, it is usually necessary to synthesize Cu NPs in the

presence of polymers and surfactants and form coatings on

the surface of Cu NPs (25). Copper-containing bimetal NPs

are NPs containing copper and another metal element. The

combination of two metal elements will have a synergistic

effect and may have better antimicrobial performance than

single metal. For example, Perdikaki et al. (35) have shown

that synthesized Ag/Cu bimetallic NPs have stronger

antimicrobial properties than Ag and Cu monometallic NPs.
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These different types of copper-containing NPs can be

incorporated into supporting materials (chitosan, cellulose

polymers, hydrogels, etc.), which are biocompatible and retain

antimicrobial activity (36–40). Tran CD et al. (41) synthesized

composites containing cellulose, chitosan, and CuO NPs. This

composite can prevent the aggregation, coagulation, and

changes in size and morphology of CuO NPs without

changing the unique properties of the NPs. Moreover, they

can exert superior antibacterial activity against a variety of

bacteria and fungi, and the antibacterial activity is related to

the content of CuO NPs. As chitosan is a biocompatible,

biodegradable, and non-toxic polymer, copper-containing NPs

can be incorporated into chitosan and used in dental

materials. Chitosan can interact with hydroxyapatite and the

bacterial cell walls of teeth to improve the adhesion of copper

on the tooth surface and the anti-biofilm action of copper

(42). Chitosan not only has a good inhibitory effect on Gram-

negative bacteria, Gram-positive bacteria, and fungi (43), but

also interferes with oral microbial adhesion, inhibit biofilm

formation and maturation, and promote wound and oral ulcer

healing (43–46). Mishra et al. (47) synthesized biocompatible

thiol-functionalized cellulose-grafted copper oxide

nanoparticles, which alleviated colitis conditions and

recovered damaged colon structure. Cellulose enhances the

biocompatibility of copper oxide NPs and avoids the adverse

effects of CuO NPs on the biological systems. The Cu-NP-

embedded hydrogels also possessed remarkable antibacterial

ability, and reduced the inflammatory response and promoted

angiogenesis in vivo to accelerate the wound healing process

(48). By preparing copper-containing NPs and other materials

into composites, the original physical and chemical properties

of copper-containing NPs can be retained while giving

composites new characteristics, making them more suitable

for clinical application.
Antimicrobial mechanism of
copper-containing NPs

Copper can cause damage to various cell functions and exert

cytotoxicity, making it an effective microbial inhibitor. In

general, copper damages microbial cells by generating reactive

oxygen species (ROS) and replacing or binding the native

cofactors in metalloproteins (49). Besides, copper is also

involved in innate immunity and can catalyze the formation

of ROS in the blasting reaction taking place within

phagocytes, enhancing the bactericidal activity during bacterial

phagocytosis (14, 50).

Copper-containing NPs can inhibiting microorganisms

through the same mechanism as other types of copper

materials mentioned above (51–53). Many studies have shown

that NPs can exert stronger antimicrobial properties than

ordinary size materials, but the reason for this is not
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completely clear at present. Compared with other copper

molecular materials, Copper-containing NPs has higher

surface area and different crystal structure, and can affect

different cellular components of microbial cells through some

unique mechanisms to exert better antibacterial activity (54–

59). Copper-containing NPs can dissolve faster in solutions,

release more metal ions, and exert a stronger antimicrobial

effect (60). In addition, Copper-containing NPs can bring

multiple antibacterial mechanisms simultaneously, but it is

difficult for the same microorganism to have multiple gene

mutations to cope with various antimicrobial mechanisms of

NPs, so the probability of antimicrobial resistance is low.

In general, Copper-containing NPs added to many dental

materials inhibits microorganisms mainly through the release

of the NPs and copper ions. The antimicrobial process of

copper-containing NPs is to produce ROS, destroy cell walls

and cell membranes, and react with proteins and DNA (61).

In this process, copper-containing NPs can damage different

microbial cell components through a variety of mechanisms

(Figure 1).
Generation of ROS

Oxidative stress caused by ROS is crucial in the antibacterial

effect of copper. ROS are oxygen-containing derivatives
FIGURE 1

Illustration of possible antibacterial mechanism of Copper-containing NPs.
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composed of highly unstable oxygen radicals, such as

superoxide (O2
•−), hydroxyl (OH•), hydrogen peroxide (H2O2),

and singlet oxygen (O2) (62). The atomic or molecular

orbitals of ROS contain one or more unpaired electrons,

which makes them highly reactive (63). Transition metals,

such as copper, iron, and silicon, can generate ROS through

Fenton type and Haber-Weiss reactions:

Cuþ þ O2 ! Cu2þ þO2
��;2O2

�� þ 2Hþ ! H2O2

þO2;Cu
þ þH2O2 ! Cu2þ þ OH � þOH�

During these reactions, copper accepts and donates an

electron during cycling between the Cu+ and Cu2+ oxidation

states, producing O2
•− and hydroxyl OH•, which are highly

reactive and have strong damaging potential, leading to lipid

peroxidation, protein oxidation, and DNA damage (64–66).

In the presence of water and oxygen molecules, copper can

only dissolve a small amount of copper ions (67). In fact, the

metal ions released by dissolution outside the cell are not the

main antibacterial mechanism of copper-containing NPs. A

recent study showed that dissolved copper ions contributed

less than half of the total cytotoxicity induced by CuO NPs

(68). A possible reason for this is that metal-based NPs enter

the acidic lysosomal environment (pH 5.5) in cells, which

promotes the formation of free radicals and the degradation/
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corrosion of NPs, thereby converting the core metal into an

ionic form and resulting in the intracellular release of metal

ions. This process of the internalization of NPs is often

referred to as “the Trojan horse mechanism”, which promotes

the formation of intracellular ROS (69, 70). The formation of

ROS is an important part of the antimicrobial mechanism of

copper-containing NPs. Copper-containing NPs can not only

generate ROS by directly leaching ions but may also generate

ROS through multiple mechanisms, such as the disruption of

mitochondrial membrane potential, and produce singlet

oxygen to mediate the degradation of DNA (71, 72).

However, these mechanisms have not been fully clarified, and

relevant microbial cytotoxicity studies are lacking.
Disruption of microbial cell walls
and cell membranes

The early stage of copper-containing NPs damage to

microbials is their direct contact with the microbial surface,

which leads to the alteration of the microbial cell wall and cell

membrane (73). Metal-based NPs and their leached metal

ions are positively charged, and the surface of both Gram-

positive and Gram-negative bacteria are negatively charged.

Therefore, through electrostatic interaction, metal-based NPs

will be adsorbed onto the surface of bacteria and build strong

bonding leads for the destruction of the cell wall. This process

increases cell permeability and allows metal-based NPs to

enter the cell easily (74). Besides, copper ions can be

combined with negatively charged areas on the cell membrane

to reduce the potential difference and cause depolarization.

When the potential difference drops to zero, it will cause

membrane leakage or even rupture, exposure of the cellular

components, and, eventually, bacterial death (75). Many

studies have shown that the cell membrane is a direct target

of copper exposure (76, 77). Hong et al. (78) found that E.

coli died after 45 min of copper alloy contact, but no

degradation of genomic DNA was observed. Copper ions can

cause oxidative damage to the unsaturated fatty acids of

bacterial cell membrane phospholipids through the production

of extracellular ROS, while OH· can drive the non-enzymatic

peroxidation of the unsaturated double bonds of fatty acids,

thereby triggering a series of reactions and leading to

extensive changes in the structure of the phospholipid bilayer

and destroying the biophysical properties of the membrane,

which ultimately leads to a loss of membrane integrity,

exposure of the cell components, and cell death.

However, the bactericidal effect of copper-containing NPs

on Gram-positive bacteria is stronger than that of Gram-

negative bacteria, which may be due to the difference in the

cell wall structure of these two classes. Compared with lipids,

copper has a higher affinity for proteins, so Gram-positive

bacteria with higher levels of peptidoglycan and protein
Frontiers in Surgery 04
content in the cell wall is more easily destroyed by copper-

containing NPs (44).
Replace or bind the native cofactors
in metalloproteins

Previous studies believed that copper toxicity was mainly

related to the production of ROS, but later studies found that,

under anaerobic conditions, copper accumulation can also

increase cytotoxicity to bacteria (79, 80). Moreover, recent

studies have shown that copper’s cytotoxicity to

microorganisms is also closely related to its ability to replace

or bind to the native cofactors in metalloproteins. Intracellular

copper accumulation promotes mismetallation, which is

mainly related to the iron-sulfur cluster protein and its

assembly process (81). Specifically, the copper accumulated in

bacterial cells mainly exists in the form of highly toxic Cu+,

which coordinates with the thiolate or inorganic sulfur ligands

of the solvent-exposed dehydratase and replaces the iron

atom, rapidly inactivating Fe/S cluster dehydratases to cause

cell dysfunction (82, 83). In addition, copper and iron in

Escherichia coli (E. coli) cells seem to share the same binding

site in the Iron-sulfur cluster assembly protein (IscA), and

excessive copper can also compete with iron for metal binding

sites in IscAs and effectively inhibit the IscA-mediated

assembly of [4Fe-4S] clusters (81, 84).
Damage of intracellular components

As described above, the uniqueness of the toxicity of

copper-containing NPs to microorganisms is due to that they

can directly enter the cells, and are internalized into complete

intracellular particles in microbial cells through the Trojan

horse mechanism. Studies by Kaweeteerawat et al. (85)

showed that, at low concentrations, copper ions mainly inhibit

microorganisms by damaging cell membranes rather than by

causing oxidative stress in cells. However, they found that,

even at lower concentrations, copper-containing NPs are also

sufficient to promote the production of large amounts of

intracellular ROS. In general, copper-containing NPs entering

cells can directly damage oxidative organelles, such as

mitochondria, and lead to increased intracellular ROS, protein

oxidation, and DNA degradation (86, 87). Studies by

Chatterjee et al. (87) showed that the oxidation of proteins in

cells is mediated by ROS, but the degradation of DNA is a

ROS-independent phenomenon caused by the intracellular

release of copper ions. Studies by Giannousi et al. (33)

have also found that copper-containing NPs induce DNA

degradation in a dose-dependent manner and extensively

degrade double-stranded calf thymus DNA (dsCT-DNA) at

low concentrations. In general, the exact mechanism of the
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antimicrobial effect of copper-containing NPs is unclear and

needs to be elucidated.
Factors affecting antimicrobial
effect

The main physical factors affecting the antimicrobial

activity of copper-containing NPs are include the size,

morphology and environmental conditions (temperature) of

the NPs., Chemical factors include environmental conditions

(PH value, dry or wet, and composition of the surrounding

medium), the doping modification of other elements, and the

oxidation state of copper.
Size and morphology

It has been suggested that due to the small size and high

surface-to-volume ratio, metallic NPs can exert better

antimicrobial activity than ordinary metals (88–91). At similar

surface area doses, copper NPs and copper microparticles

have similar effects on cell membrane damage, reflecting the

fact that the damage of the cell membrane is related to the

surface area of NPs (60, 89). Different sizes of copper-

containing NPs have different inhibitory effects on Gram-

positive and Gram-negative bacteria (92). Azam et al. (93)

found that the small size CuO NPs is more stable than the

large size CuO NPs and has significantly stronger antibacterial

properties. Some studies have also proved that the

antibacterial activity of CuO NPs and Cu2O NPs are size-

dependent: the reduction in the size of the NPs leads to an

increase in antibacterial properties (93–95). Applerot et al.

(94) believed that the reason for the stronger antibacterial

effect of small-size CuO NPs is due to their stronger ability to

penetrate cells. The high surface-to-volume ratio and small

size of copper-containing NPs enhance their interaction with

microbial membranes, enabling them to exert stronger

antimicrobial activity than copper ions.

The antimicrobial activity of NPs is also related to

morphology, and different morphologies of NPs can cause

different degrees of bacterial cell damage through interactions

with periplasmic enzymes (96). Copper-containing NPs with

different crystal planes have different surface energies, and

this difference may also be responsible for the

morphologically dependent antimicrobial activity of copper-

containing NPs. The higher surface energy of the exposed

facets of copper-containing NPs may generate copper ions

more effectively and lead to stronger antimicrobial activity

(97, 98). Xiong et al. (99) synthesized polyhedral, flower-like,

and thumbtack-like Cu/CuxO NPs. And they proved that,

among the three kinds of Cu / CuxO NPs, the main exposed

facets {111} of the flower-like Cu / CuxO NPs had the highest
Frontiers in Surgery 05
surface energy, dissolved the most copper ions in the culture

medium, and had the best antibacterial ability. Studies by

Feng et al. (100) have shown that {100} facets of the Cu2O

nanocrystals can release more copper ions and produce more

ROS in a shorter amount of time than {111} facets of the

Cu2O nanocrystals, resulting in stronger toxicity in the short

term. Besides, some studies believe that {110} facets of the

Cu2O microcrystals have better antibacterial activity against E.

coli than that of {111} facets (101, 102). However, on the

contrary, some studies also believe that {111} facets of the

Cu2O microcrystals have stronger antibacterial properties

(103). In addition, studies by Pang et al. (97) have shown that

the antibacterial activity of cubic Cu2O has a broad spectrum,

while the antibacterial activity of octahedral Cu2O has high

selectivity (Figure 2).
Ambient conditions

The ambient conditions of copper-containing nanoparticles

are one of the factors that affect the antibacterial effect

(Figure 3). The temperature and pH of the solvent affect the

rate at which copper inhibits microorganisms. Studies by

Sharan R et al. (17) showed that copper can cause the rapid

inactivation of E. coli at higher temperatures and exhibit a

faster inactivation at pH 6.0 and 9.0 than at pH 7.0 and 8.0.

However, the effect of pH on bacterial inactivation is not as

significant as that of temperature. The dissolution of copper

ions is also an important part of the antimicrobial activity of

copper-containing NPs. Usually, copper-containing NPs

release more copper ions in an acid lysosomal environment

than in a neutral environment (104, 105). Dry conditions

bring about faster microbicidal effects to copper, as the

contact killing caused by dry copper surfaces can kill

microorganisms in a short amount of time. Tian et al. (106)

demonstrated that the Enterobacter cell structure was severely

degraded after exposure to the dry copper surface for 30 s.

Moreover, compared to wet conditions, copper kills

Enterococcus 80% to 90% faster under dry conditions (77). In

the case of contact killing, the antimicrobial effect of copper is

not related to the dissolution of copper but the copper

content on the contact surface (107).

Besides, the interaction of copper-containing NPs with

other molecules present in biological and environmental

media may greatly affect the solubility, aggregation state, and

surface properties of the NPs, resulting in changes of the

toxicity (108). Studies by Badetti et al. (109) found that CuO

NPs can react with some natural amino acids to affect their

antimicrobial properties. L-Glutamic can be bonded to the

surface of CuO NPs to enhance their antibacterial activity,

while L-Asparaginase, L-Leucine, l-Phenylalanine, and

L-Tyrosine can weaken the antibacterial activity of CuO NPs

by forming complexes with copper ions. Ruparelia et al. (110)
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FIGURE 2

Different morphology of Copper-containing NPs.
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found that the chloride-containing nutrient media can promote

the dissolution of Cu NPs, so as to release copper ions, which

may be due to the interaction between the chloride ions and

the oxide layer of the NPs.
Doping modification

Doping modifications can modulate the interaction between

NPs and microorganisms. Some studies have shown that doping

other materials into Cu NPs and CuxO NPs can improve their

antimicrobial ability. For example, studies by Lv et al. (111) have

shown that the doping of Mg, Zn, and Ce ions can promote the

release of Cu2+ in the doped CuO NPs and promote their

antibacterial activity. Studies by Malka et al. (112) have shown

that Zn-doped CuO NPs can generate more ROS than pure

CuO NPs or ZnO NPs and thus exert stronger antibacterial
Frontiers in Surgery 06
activity. After being exposed to E. coli and Staphylococcus

aureus (S. aureus) for 10 min, the antibacterial activity of Zn-

doped CuO NPs was 10,000 times greater than that of pure

CuO NPs or ZnO NPs. Besides, other metal component of

copper-containing bimetal NPs, such as iron, can promote the

conversion of Cu2+ to more toxic Cu+ and Cu3+, which makes

bimetallic iron-copper NPs exhibit a stronger antimicrobial

activity than Cu NPs and iron NPs (Fe NPs) (113).
Oxidation state

Copper has different antimicrobial properties under

different oxidation states. The surface of pure copper is

susceptible to oxidation and forms both CuO and

Cu2O. Oxidative conditions (e.g., clean water in the air, upper

hatched areas) contribute to the formation of CuO, while
frontiersin.org
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FIGURE 3

Ambient conditions affecting the antibacterial effect of Copper-containing NPs (A) temperature: the higher the temperature, the faster the
sterilization; (B) PH value: the sterilization of acidic and alkaline conditions is faster than that of neutral conditions; (C) Dry or Wet: dry conditions
kill bacteria faster than wet conditions; (D) composition of the surrounding medium: interaction of NPs with other molecules in the medium).
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reducing conditions (e.g., the presence of organic matter and

bacteria) contribute to the formation of Cu2O. These changes

in oxidation state may affect the antibacterial properties of

copper-containing NPs (105). Studies by O Akhavan et al.

(114) have shown that Cu NPs exhibit greater antibacterial

activity than CuO NPs, which may be attributed to the

stronger electron-accepting ability and better electron transfer

with bacteria of Cu NPs. The electron transfer between the

negatively charged bacteria and the metal NPs is one of the

effective mechanisms that cause the bacterial membrane

rupturing and exerting antibacterial activity. Studies by Hans

M et al. (115) have shown that Cu NPs and cuprous oxide

NPs (Cu2O NPs) have strong contact killing activity against

bacteria, while CuO NPs significantly inhibit contact killing.

This difference is roughly related to the release of copper

ions: pure copper releases the most copper ions, followed by

Cu2O and CuO. Studies by Giannousi et al. (33) have also

shown that the antibacterial activity of Cu2O NPs against a

variety of Gram-negative and Gram-positive bacteria strains is

stronger than CuO NPs. However, CuO NPs can induce

higher ROS than Cu2O NPs, which is probably because CuO
Frontiers in Surgery 07
NPs can generate ROS through Haber-Weiss and Fenton type

reactions, while Cu2O NPs can only generate ROS through

Fenton type reactions. Moreover, CuO NPs have a higher

degree of internalization and better antifungal activity at lower

concentrations (24).
Host tissue interaction of
copper-containing NPs

Although copper-containing NPs are highly anticipated new

materials, it is necessary to ensure their biosafety to human

bodies (116–120). Copper is an essential trace element for the

human body, participating in various kinds of physiological

activities. Copper containing enzymes and transcription

factors are essential for cellular integrity, energy production,

signalling, proliferation, oxidation and radiation defence (121).

The liver, brain, heart and kidneys have the highest copper

concentration in the body, followed by the lungs, intestines

and spleen.
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Research concerning acute or chronic toxicity of copper due

to its deficiency or excess is growing rapidly and interest in the

subject is pervasive (122–129). The four major routes of human

exposure to engineered NPs include inhalation, dermal

penetration, ocular exposure, and ingestion. Studies have

shown that oral exposure of copper containing NPs in rats

mainly accumulates in liver, kidney, stomach, intestine, lung,

brain and blood, among which liver and kidney are the main

organs most affected by Cu NPs (130, 131) (Figure 4).

Exposure to NPs induces an inflammatory response and

activates the immune system (132). The toxicity mechanism

of copper-containing NPs to human cells is similar to that of

microbial cells. Copper-containing NPs will dissolve and

release copper ions, generate ROS, disrupt normal cellular

functions and cause DNA damage. Changing the
FIGURE 4

Main routes of transfer (blue) and accumulation (green) in organs of copper-

Frontiers in Surgery 08
physicochemical properties of copper-containing NPs can

change the induced toxic response/mechanism of action, such

as size (aerodynamic, hydrodynamic), surface (surface area:

mass ratio), chemical composition (core structure, surface

functionalization, coatings), solubility (hydrophobic,

hydrophilic) (133).

In dentistry, copper-containing NPs are expected to be used

in restorative materials, prosthodontic materials, dental

implants and orthodontic appliances. Researchers tried to

explore safe forms to reduce toxicity of copper-containing

NPs (116, 118). In fact, copper-containing NPs applied to

dental materials rarely enter the body,and the concentration

and morphological characteristics of copper-containing NPs

can be controlled so that they will not be cytotoxic to normal

cells (134). In addition, since copper-containing NPs can exert
containing NPs in the body through oral intake.
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better microbial inhibition effect than copper native, addition

amount of copper-containing NPs can be lower (44).
Inhibitory effect of copper-
containing nps on oral
pathogenic microorganisms

Since microorganisms are less susceptible to resistance

against metal antibacterial substances, the application of

metals as antibacterial substances to control oral plaque has

become a research hotspot. Studies have shown that copper-

containing NPs can inhibit various oral pathogens, such as

S. mutans (20, 21), P. gingivalis (23), and C. albicans (20, 24–26)

(Table 1).
S. mutans

It is well-known that S. mutans is the main pathogen of

dental caries, which can adhere to the surface of tooth or

dental prosthesis to form plaque biofilm, produces acid, and

causes dental caries (135–139). Numerous studies have shown

that copper can inhibit the growth of S. mutans and caries

formation (140–143). In the case of extracellular high

concentrations of copper, copper ions enter S. mutans cells

and inhibit the transcription of glucosyltransferase (gtf) genes

and glucan binding protein (gbp) genes to reduce cell

adherence and biofilm biomass (144, 145).

Generally, bacteria have a “copper transport system” to cope

with fluctuating copper ion concentrations in complex

ecosystems and maintain copper homeostasis (Figure 5).

S. mutans can tolerate extracellular high concentrations of

copper through a conserved P-type ATPase, a copper-

transport operon (146, 147). S. mutans can also oxidize

intracellular Cu+ to less toxic Cu2+. Despite a certain degree

of resistance to copper, copper-containing NPs can still

effectively inhibit S. mutans through various mechanisms.

Studies by Amiri et al. (20) have shown that the MIC50 value

for CuO NPs with a size of 40 nm is 1–10 µg/ml for

S. mutans, and higher concentrations of CuO NPs (100–

1,000 µg/ml) can significantly inhibit bacterial growth.

Similarly, Khan et al. (21) also demonstrated that CuO NPs at

a size of 40 nm can significantly inhibit the growth of human

oral pathogens (such as S. mutans), the extracellular

polysaccharide production, and the multispecies biofilm

formation at a concentration of 50 µg/ml. In another study,

Eshed et al. (148) used the sonochemistry method to coat

CuO NPs on the teeth surface, and the biofilm formation on

the teeth coated with CuO NPs was significantly reduced by

70%. Similarly, Covarrubias et al. (42) synthesized hybrid NPs

of chitosan-coated copper NPs (CuCh NPs), which can
Frontiers in Surgery 09
significantly inhibit the growth of S. mutans and significantly

reduce biofilm formation.
P. gingivalis

P. gingivalis is the main periodontal pathogen and is closely

related not only to the occurrence of periodontal disease but

also to the occurrence of systemic diseases, such as

atherosclerosis, diabetes, and rheumatoid arthritis (149–153).

Studies have shown that copper and copper alloys can inhibit

the growth of P. gingivalis by contact killing, such as the Ti-

Cu alloy, which can exert good antibacterial activity by killing

the bacteria as well as reducing the activity of any surviving

bacteria (154, 155). In addition, copper ions can inhibit the

coaggregation of P. gingivalis with other bacteria, thereby

reducing the accumulation of P. gingivalis in plaque biofilm

and also reducing the pathogenicity and occurrence of

periodontal disease (156). P. gingivalis is a Gram-negative

bacterium with a lipopolysaccharide on the cell membrane

surface that can prevent copper-containing NPs entering the

cell. However, copper-containing NPs still have a significant

inhibitory effect on P. gingivalis. Vargas-Reus et al. (23) found

that the MICs of CuO NPs, Cu2O NPs and Ag + CuO

composite with a size ranging between 10 nm and 50 nm

were 500 µg/ml, <100 µg/ml and <100 µg/ml for P. gingivalis,

respectively, suggesting that they have good antibacterial

activity. Additionally, CuO NPs, Cu2O NPs and Ag + CuO

composite has better antibacterial ability to P. gingivalis than

ZnO NPs, TiO2 NPs and Ag NPs.
C. albicans

C. albicans is the most common fungus in the oral cavity

and is a conditional pathogen that often causes fungal

infections in the elderly population or in denture patients.

(157, 158) C. albicans can form a biofilm on the oral mucosa

against external antifungal agents, which makes it pathogenic

(159). Copper-containing NPs have also exhibited

considerable antimicrobial activity against C. albicans.

Padmavathi et al. (24) found that both CuO NPs and

Cu2O NPs have fungal inhibitory activity. They can destroy

the cell membrane of C. albicans by inhibiting the production

of ergosterol, which lead to the loss of virulence. They can

also alter the expression of the genes involved in the

morphogenesis of C. albicans. CuO NPs can inhibit mycelial

growth, while Cu2O NPs can distinctively inhibit

morphological switching. Moreover, CuO NPs have a stronger

inhibitory effect on C. albicans than Cu2O NPs and exhibit

better antifungal activity at a low concentration. Amiri et al.

(20) found that CuO NPs with a size of 40 nm couldreduce

the growth of C. albicans, Candida krusei, and Candida
frontiersin.org
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glabrata, and the MIC50 value of CuO NPs was 1,000 µg/ml for

these three species of oral Candida. Pugazhendhi et al. (26)

synthesized Fe-doped CuO using a sol-gel method, which has

a rectangular shape and agglomerates at an average size of

21 nm. The Fe-doped CuO has excellent antimicrobial and

anti-biofilm properties to C. albicans, which can reduce the

growth OD of C. albicans to 0.28 at 30°C for 24 h and reduce

the biofilm by 76.4% at a concentration of 100 µg/ml. In

another study, Lara et al. (159) synthesized chitosan-copper

NPs with a size between 2 nm and 350 nm and proved that

they had good antimicrobial activity against C. albicans.
Application of copper-containing
NPs in dentistry

Copper-containing NPs can be applied to various aspects of

dentistry. Applying NPs to the surface of dental materials or

incorporating them in dental materials can not only impart

different antibacterial activity to the material, but also improve
FIGURE 5

Copper transport system in bacteria.
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or maintain the mechanical properties of the material (22, 160,

161). When applied to dental materials, they can also play a

variety of beneficial roles by inhibiting metalloproteinases

(MMPs) (146). Many current studies have synthesized different

types of copper-containing NPs that can be used for dental

materials, including dental adhesive es and filling materials,

implant and bracket coatings, etc. (Figure 6) and (Table 2).
Dental adhesives

Many recent studies have shown that copper-containing

NPs in dental adhesives can not only effectively inhibit

bacteria but also improve the performance of the adhesive.

Copper ions released by copper-containing NPs can be used

as an effective dentin metalloproteinase (mainly on the Matrix

metalloproteinase’s subtypes −2 and −9) inhibitor, which can

stimulate the secretion of the tissue inhibitors of MMPs (162).

Matrix metalloproteinase 2 (MMP-2) is involved in the

destruction of periodontal tissue and the development of oral
frontiersin.org
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FIGURE 6

Application of copper-containing NPs in dentistry.

Ma et al. 10.3389/fsurg.2022.905892
squamous cell carcinoma, and it also plays an important role in

the destruction of dentin during the progression of caries (162–

165). MMPs can also mediate the degradation of adhesives,

while inhibiting MMP can increase the longevity of the

adhesive-hard tissue interface and improve the bonding effect

of adhesives (166–169). Besides, MMPs inhibitors can prevent

dental caries, reduce dentinal caries progression, and promote

remineralization (170–172). Studies by Gutiérrez et al. (173)

have shown that the addition of Cu NPs and ZnO NPs to the

universal adhesive system can provide the adhesive with

antibacterial activity against S. mutans and anti-MMPs

properties without affecting its mechanical properties, thereby

improving the integrity of the hybrid layer on caries-affected

dentin. The addition of copper-containing NPs to the

adhesive may also improve its mechanical properties. Vidal

Oet al. (174) incorporated copper nanoparticles (CuNp) into

a universal adhesive and applied it to dentin surfaces. The

addition of copper nanoparticles can significantly enhance the

antibacterial activity of the resin-dentin interface, showing

higher bond strength and mechanical properties, even under

cariogenic challenges. Javed et al. (175) incorporated CuO

NPs and CuO-chitosan NPs into dentin adhesives, which can

significantly inhibit Lactobacillus acidophilus (L. acidophilu)
Frontiers in Surgery 12
and S.mutans and effectively treat secondary caries. The

addition of NPs also improved the mechanical properties,

water absorption and solubility of the adhesive without

affecting the shear bond strength.

Many studies have also shown that adhesives with copper-

containing NPs can exhibit long-lasting and effective

antimicrobial effects. For example, studies by Gutiérrez et al.

(176) have shown that the addition of Cu NPs at a

concentration of 0.1 wt% in the adhesive system can provide

antibacterial properties without reducing the mechanical

and optical properties of the adhesive formulations.

Moreover, compared with copper-free adhesives, copper-

containing adhesives can significantly reduce the dentin

degradation of the resin-dentin bonded interfaces dentin

after two years of water storage. In addition, a sufficient

concentration of copper still exists in the adhesive interface,

which can exert anti-MMPs effects. In another study, Jun

et al. (177) synthesized novel copper-doped bioactive glass

NPs (CuBGn NPs) and added them to the resin-dentin

adhesive system. Although there are no antibacterial

experiments to prove its antibacterial properties, the

adhesive can release up to 0.5 ppm copper ions over a 28-

day period, which is sufficient to deactivate MMPs, promote
frontiersin.org
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remineralization, and extend the longevity of resin-dentin

interfaces dentin regeneration.

Other studies have shown that adding copper-containing

NPs to adhesives will not cause additional cytotoxicity to the

pulp or oral soft tissues. For example, Sabatini et al. (178)

synthesized polyacrylic acid coated copper iodide NPs (PAA-

CuI NPs) and incorporated them into adhesives. After ageing

for 18 h or one year, the adhesive can exert effective

antibacterial effects without affecting the bond strength and

cytotoxicity. A study by Matos et al. (179) also confirmed that

the addition of 0.1 wt% Cu NPs to the adhesive can improve

the clinical performance of universal adhesive systems in non-

carious cervical lesions without increasing cytotoxicity.

Moreover, Cu NPs and CuO NPs can also be added to

orthodontic adhesives to exert a certain antibacterial effect.

Studies have shown that the addition of Cu NPs can

significantly improve the material shear bond strength, while

the addition of CuO NPs will not adversely affect the shear

bond strength (180).
Dental filling materials

Copper-containing NPs can also be used in dental filling

materials. Studies by Renné et al. (181) have shown that the

incorporation of polyacrylic acid coated copper NPs (PAA-

CuI NPs) into glass ionomer-based materials can improve

their antibacterial properties and reduce collagen degradation

without affecting the mechanical properties, which can help

increase the longevity of adhesive restorations. Aguilar-Perez

et al. (182) synthesized copper-containing NPs composed of

metallic copper and cuprous oxide and added them to

commercial glass ionomer cement, confirming that they can

inhibit oral anaerobic bacteria strains. In addition, the glass

ionomer cement doped with copper-containing NPs has no

cytotoxic effect and will not damage the dental pulp.
Antimicrobial coatings

NPs can be used to control the formation of microbial

biofilms in the oral cavity, which allows them to be

incorporated into coatings and applied to a variety of dental

materials (183, 184). Although dental implants have a high

success rate, there are still failures. Poor osseointegration and

infection are important reasons for implant failure (185).

Coatings containing copper-containing NPs are commonly

used in dental and orthopedic implants to increase their

success rates by improving bone binding capacity and

reducing the incidence of post-surgery infections (186, 187).

Copper-containing NPs reduce the formation of biofilms on

the surface of titanium implants. Moreover copper is involved

in enzyme-based processes for bone metabolism and
Frontiers in Surgery 15
stimulates the formation of new blood vessels, which, in turn,

reduces implant-related infections (90). Therefore, coating the

titanium surface of the implant with copper-containing NPs

can reduce the use of prophylactic antibiotics, which may

cause the development of antibiotic resistant strains (188–

190). Besides, the incorporation of an appropriate amount of

Cu NPs on the implant surface not only has no cytotoxicity

to endothelial cells and osteoblasts but also promotes

osteoblast proliferation and adhesion as well as extracellular

matrix mineralization (191).

Many studies have confirmed that the coatings containing

copper-containing NPs can exert antimicrobial activity and be

used in dentistry (192–194). For example, Li et al. (195)

prepared an antibacterial coating material based on mussel-

inspired dendritic polyglycerol embedded with Cu NPs, which

not only has a bacteriostatic rate of over 99.99% against S.

aureus, E. coli, and kanamycin-resistant E. coli, but also can

exert effective long-term and durable antibacterial properties

against E. coli. Rosenbaum et al. (196) prepared copper

nanocubes with an average size of 20 nm on the surface of TiO

nanotubes. This copper derived TiO surfaces could cause the

death of E. coli and S. aureus and exert a powerful bactericidal

ability. Ghosh et al. (197) used a two-stage electrochemical

method to synthesize copper-hydroxyapatite (Cu-HA)

composite coatings on titanium surfaces, which can slowly

release copper ions while enhancing implant osseointegration

to provide a sustained bacteriostatic effect. In addition, CuO

NPs can be coated on the surface of orthodontic brackets.

Studies have also shown that the CuO NPs and ZnO-CuO NPs

coatings on the surface of orthodontic brackets have stronger

antibacterial effects on S. mutans than ZnO NPs coatings (198).
Mouthwashes

Copper-containing NPs also have the potential to be added

to mouthwashes for antimicrobial action. In one study, CuO

NPs were prepared in colloidal solutions as mouthwashes, and

it was found that, although not as good as chlorhexidine

mouthwash, CuO NPs can also have a certain antibacterial

effect on S. mutans (199).
Soft denture liners

The intrinsic porosity of soft denture pads facilitates the

adhesion and colonization of microorganisms and promotes

the formation of biofilms. A study by et al. (200) showed that

the incorporation of CuO NPs at a concentration of 500 µg/

ml into soft denture liners exerted an effective prevention of

oral microbial infection. The biofilm inhibition rates of soft

denture liners containing CuO NPs against C.albicans,

Streptococcus sobrinus (S. sobrinus), S. mutans, and
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Streptococcus salivarius (S. salivariu) were 75%, 66%, 30%, and

60%, respectively.
Conclusion

Many current studies indicate that copper-containing NPs

can be used in dentistry due to their antimicrobial and anti-

biofilm properties. Copper-containing NPs are a new type of

ideal antimicrobial material, which can inhibit or kill a variety

of oral pathogenic microorganisms without causing microbial

resistance, and can also produce a certain degree of beneficial

effects on oral tissues. Various forms of copper-containing

NPs are still being explored for use in dental filling materials,

prosthetic devices and implant coatings, and oral

antimicrobial agents. However, many of these studies have

been performed under in vitro conditions, and further in vivo

studies are needed to assess their safety and clinical efficacy.
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