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Background: Hybrid fixation techniques including the both modified cortical
bone trajectory (MCBT) and traditional trajectory (TT) at the L4 and L5
lumbar segment are firstly proposed by our team. Therefore, the purpose of
this study is to evaluate and provide specific biomechanical data of the
hybrid fixation techniques including the MCBT and TT.
Methods: Four human cadaveric specimens were from the anatomy laboratory
of Xinjiang Medical University. Four finite-element (FE) models of the L4–L5
lumbar spine were generated. For each of them, four implanted models with
the following fixations were established: TT-TT (TT screw at the cranial and
caudal level), MCBT-MCBT (MCBT screw at the cranial and caudal level),
hybrid MCBT-TT (MCBT screw at the cranial level and TT screw at the caudal
level), and TT-MCBT (TT screw at the cranial level and MCBT screw at the
caudal level). A 400-N compressive load with 7.5 N/m moments was applied
to simulate flexion, extension, lateral bending, and rotation, respectively. The
range of motion (ROM) of the L4–L5 segment and the posterior fixation, the
von Mises stress of the intervertebral disc, and the posterior fixation were
compared.
Results: Compared to the TT-TT group, the MCBT-TT showed a significant
lower ROM of the L4–L5 segment (p≤ 0.009), lower ROM of the posterior
fixation (p < 0.001), lower intervertebral disc stress (p < 0.001), and lower
posterior fixation stress (p≤ 0.041). TT-MCBT groups showed a significant
lower ROM of the L4–L5 segment (p≤ 0.012), lower ROM of the posterior
fixation (p < 0.001), lower intervertebral disc stress (p < 0.001), and lower
posterior fixation stress (p≤ 0.038).
Abbreviations: MCBT, modified cortical bone trajectory; CBT, cortical bone trajectory; TT, traditional
trajectory; TLIF, transforaminal lumbar interbody fusion; FE, finite element; 3D, 3-dimensional;
ANOVA, analysis of variance; ROM, range of motion; ASD, adjacent segment degeneration.
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Conclusions: The biomechanical properties of the hybrid MCBT-TT and TT-MCBT
techniques at the L4–L5 segment are superior to that of stability MCBT-MCBT and
TT-TT techniques, and feasibility needs further cadaveric study to verify.

KEYWORDS

traditional trajectory, modified cortical bone trajectory, hybrid fixation technique, 3-dimensional

finite-element analysis, lumbar spine
Introduction

For decades, the pedicle screw fixation technique has been

the mainstay in the lumbar spine surgery (1), but it has

several defects such as screw loosening, breakage, and

extensive muscle dissection (2, 3), these were more

common in patients with osteoporosis (4, 5). To acquire

superior fixation strength, scholars had made many

attempts from the shape design of screw to the curing of

screw tracks, such as designing expandable pedicle screw,

hydroxyapatite coating of the screw surface, and cement

augmentation (6, 7). However, they have not been

popularized in the clinic due to the high price, potential

safety hazards including cement polymerization fever,

chemical toxicity, and leakage.

In 2009, Santoni et al. (8) proposed the cortical bone

trajectory (CBT) technique, changing the long axis of

cancellous bone as a screw path compared to the pedicle

screw. Cortical bone, on the other hand, does not produce

significant osteopenia with degeneration compared with

cancellous bone. The trajectory was 10 deg laterally in the

axial plane and 25 deg cranially in the sagittal plane (9)

(Figure 1B), with the entry points located at the 5 and 7

o’clock orientation of the left and right pedicle, respectively

(10). CBT technique increased the pullout load by 30%,

torque by 1.7 times (8, 11). However, cortical bone

throughout the screw track has not been unreservedly used by

CBT, especially the medial wall of the pedicle and the lateral

margin of the superior endplate (12). Therefore, to

compensate the defects in anatomical reference, entry point,

and screw trajectory, we previously proposed the modified

cortical bone trajectory (MCBT) technique (12) (Figure 1C).

The insertion point of the MCBT technique close to the

midline increasing the purchase of the screw because of the

contact between the screw and the medial wall of the pedicle

(12). MCBT technique avoids the facet joint degeneration

caused by the interaction between the facet joint and the

screw hub (13). In addition, increasing of the medio-lateral

angle and screw length makes the screw head contact with the

cortical bone in the anterior lateral edge of the upper endplate

of the vertebral body. The MCBT technique makes full use of

the cortical bone of inferior wall of pedicle by reducing

cranio-caudal angle, especially in transforaminal lumbar

interbody fusion (TLIF) (13). This was consistent with the
02
results of Petrone et al. (14), Penner et al. (15), and Marengo

et al. (16). Decompression of the lateral recess on the caudal

vertebral body is often required, while complete

decompression of the lateral recess cannot be completed after

the MCBT was used. In addition, complete decompression

may destroy the insertion point of the CBT and the MCBT

screws. Isthmic fracture or lumbar spondylolisthesis was a

contraindication for CBT and MCBT techniques (8, 9).

Calvert et al. (17) demonstrated that CBT could be an

alternative when the failure of the pedicle screw fixation occurs.

We firstly proposed the hybrid MCBT-TT and TT-MCBT

techniques to make up for the defects of CBT and MCBT

techniques, especially nerve decompression effect, and aim

to provide the fixation technique with superior stability and

strength. The ROM of the fixation segment and posterior

fixation are inversely proportional to the stability of the

vertebral body and the fixation. The equivalent stress of the

intervertebral disc and the fixation are related to stability of

the cage after lumbar fusion and the strength limit of

fixation (18). In this study, the biomechanical properties of

the hybrid techniques were discussed in detail by FE analysis

method.
Materials and methods

Model development of the L4–L5 lumber
spine

We have completed the construction and validation of the

FE models in L4–L5 lumbar spine and analyzed the TT-TT

group in the earlier study (19). In this study, the construction

methods, material properties, and meshes were referred to the

previous models (19). The cortical bone was defined as the

0.5 mm thickness outward from the outer layer of cancellous

bone according to the density mapping based on CT scan

data (20). Intervertebral disc was composed of incompressible

annulus fibrosus and nucleus pulposus. The fluid-like

behavior of the incompressible nucleus pulposus was

simulated with linear elasticity (Poisson’s value = 0.45).

Meshed models were finally generated with a maximum size

of 1.5 mm and a minimum size of 0.5 mm. ABAQUS 2019

(ABAQUS, Providence, Rhode Island, USA) was used for the

material properties setting and FE analysis.
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FIGURE 1

Schematic diagram of three different lumbar posterior fixations: (A). traditional trajectory (TT) (9), (B) cortical bone trajectory (CBT) (9), and (C)
modified cortical bone trajectory (MCBT) (12).
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Construction of surgical models

Four different posterior fixations were established: (1) TT-

TT group, pedicle screws at the cranial, and caudal levels

(Figures 2A,E) (19); (2) MCBT-MCBT group, MCBT screws

at the cranial, and caudal levels (Figures 2B,F); (3) MCBT-TT

group, MCBT screws at the cranial level, and TT screws at the

caudal level (Figures 2C,G); and (4) TT-MCBT group, TT

screws at the cranial level, and MCBT screws at the caudal

level (Figures 2D,H). Sixteen FE models were established

based on the four specimens. The insertion point of the

MCBT screw was demonstrated in the earlier studies (12, 13)

(Figures 2B,F). The TT screw is 6.0 mm in diameter and

45 mm in length, the MCBT screw is 4.5 mm in diameter and

40 mm in length, and titanium-based rod measured 5.5-mm

in diameter.
Boundary and loading conditions

All models were fixed at the inferior surface of the L5

vertebral body. A 400 N vertical axial preload with 7.5 Nm

moment was applied on the superior surface of the L4

vertebral body to simulate flexion, extension, left-right lateral

bending, and left-right rotation. The relationship between the

L4 and L5 vertebral body and the intervertebral disc was

defined as mutual contact, using face-to-face correspondence.

The ROM of the L4–L5 segment and posterior fixation, von
Frontiers in Surgery 03
Mises stress of the intervertebral disc, and posterior fixation

were investigated.
Statistical methods

SPSS 26.0 software was used for data analysis and

processing. Mean values of quantitative data were presented as

mean ± standard deviation. One-way analysis of variance was

used for the analysis of differences. When the differences were

statistically significant, post hoc test was performed using the

least significant difference (LSD) method. For all results, p <

0.05 was considered statistically significant.
Results

ROM of the L4–L5 segment

Compared to the TT-TT group, the MCBT-TT group

showed a significantly lower ROM (p≤ 0.012), and compared

with the MCBT-MCBT group, the TT-MCBT group showed

significantly lower ROM only in flexion and right lateral

bending (p≤ 0.045). There was no significant difference

between the MCBT-TT group and the TT-MCBT group (p >

0.05). Among the four posterior fixation models, the TT-

MCBT group showed the lowest ROM (Figure 3). Compared

to the TT-TT group, ROM of the MCBT-TT group reduced

by 37%, 24%, 34%, 47%, 32%, and 29% in flexion, extension,
frontiersin.org

https://doi.org/10.3389/fsurg.2022.911742
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 2

FE models of the lumbar vertebra and diagrams from the axial and sagittal views: (A) TT screws at the cranial and caudal levels (TT-TT) (19), (B) MCBT
screws at the cranial and caudal levels (MCBT-MCBT), (C) MCBT screws at the cranial level and TT screws at the caudal level (MCBT-TT), (D) TT
screws at the cranial level and MCBT screws at the caudal level (TT-MCBT), and (E(19)–H) were the axial and sagittal views of each respective
technique of (A–D).

FIGURE 3

Mean values and minimum–maximum ranges of the ROMs of the fixation segment in four fixation models.

Kahaer et al. 10.3389/fsurg.2022.911742
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left-right bending, and left-right rotation, respectively. The TT-

MCBT group reduced by 38%, 25%, 37%, 50%, 30%, and 33% in

all working conditions, respectively. Compared to the MCBT-

MCBT group, the TT-MCBT reduced by 14% and 13% in

flexion and right lateral bending, respectively.
ROM of the posterior fixation

Compared to the TT-TT group, the MCBT-TT, and the TT-

MCBT group showed significantly lower ROM in all working

conditions (p < 0.001). Compared to the MCBT-MCBT group,

the MCBT-TT group showed significantly lower ROM only in

flexion and right rotation conditions (p≤ 0.021). There was no

significant difference between the MCBT-TT and TT-MCBT

groups in all working conditions (p > 0.05). Among the four

posterior fixation models, the TT-TT group showed the largest

ROM (2.38° ± 0.22°) and the TT-MCBT group showed the

lowest ROM (0.46° ± 0.07°) (Figure 4). Compared to the TT-

TT group, MCBT-TT group reduced by 55%, 51%, 33%, 36%,

51%, and 39% in flexion, extension, left-right lateral bending,

and left-right rotation, respectively. The TT-MCBT group was

reduced by 55%, 49%, 29%, 36%, 49%, and 42% in all

conditions, respectively. Compared to the MCBT-MCBT group,

MCBT-TT was reduced by 13% and 2% in flexion and right

rotation, respectively. The TT-MCBT was reduced by 15% and

7% in flexion and right rotation, respectively.
Von Mises stress of the intervertebral disc

Compared to the TT-TT group, the MCBT-MCBT, MCBT-

TT, and TT-MCBT groups showed significantly lower disc
FIGURE 4

Mean values and minimum–maximum ranges of the ROMs of posterior fixat
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stress (p < 0.001). Compared to the MCBT-MCBT group, the

MCBT-TT group was significantly reduced in flexion,

extension, and rotation (p < 0.006), and there was no

significant difference in lateral bending (p > 0.05). There was

no significant difference between the MCBT-TT and TT-

MCBT groups (p > 0.05). Compared to the TT-TT group,

MCBT-MCBT group was reduced by 47%, 42%, 34%, 37%,

37%, and 33% in flexion, extension, left-right lateral bending,

and left-right rotation, respectively. These were 64%, 54%,

42%, 46%, 53%, and 55% in the MCBT-TT group, and 64%,

53%, 43%, 45%, 52%, and 50% in the TT-MCBT group.

Compared to the MCBT-MCBT group, MCBT-TT group was

reduced by 32%, 21%, 26%, and 32% in flexion, extension, left

rotation, and right rotation, respectively. These were 32%,

19%, 24%, and 25%, respectively in the same working

conditions, in the TT-MCBT group (Figure 5).
Von Mises stress of the posterior fixation

The MCBT-TT and TT-MCBT groups showed superior

load-sharing ability, and the von Mises stress of the posterior

fixations were lower than that of the TT-TT and MCBT-

MCBT groups (Figure 6). Compared to the TT-TT group, the

posterior fixation stress was significantly lower in the MCBT-

MCBT group in flexion, extension, left lateral bending, and

left rotation conditions (p < 0.021), and significantly lower in

the MCBT-TT and TT-MCBT groups in all conditions (p <

0.041). There was no significant difference between the

MCBT-TT and MCBT-MCBT groups (p > 0.05). Compared to

the TT-TT group, MCBT-MCBT group was reduced by 45%,

37%, 36%, and 44% in flexion, extension, left lateral bending,

and left rotation, respectively. In the MCBT-TT group, the
ions in four fixation models.
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FIGURE 5

Mean values and minimum–maximum ranges of disc stresses at the fixation segment in four fixation models.

FIGURE 6

Stress nephograms over the posterior fixations of four different fixation models: (A) the TT-TT group, (B) the MCBT-MCBT group, (C) the MCBT-TT
group, and (D) the TT-MCBT group.

Kahaer et al. 10.3389/fsurg.2022.911742
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FIGURE 7

Mean values and minimum–maximum ranges of the posterior fixation stress in four fixation models.

Kahaer et al. 10.3389/fsurg.2022.911742
posterior fixation stress was reduced by 56%, 48%, 62%, 47%,

60%, and 48% in flexion, extension, left-right lateral bending,

and left-right rotation, and 56%, 49%, 64%, 48%, 58%, and

47% in the TT-MCBT group, respectively (Figure 7).
Discussion

The MCBT technique was previously proposed by our team

(12, 13), aiming to make full use of the cortical bone, especially

the medial wall of the pedicle and the lateral cortical bone of the

superior endplate of the vertebral body. Reviewing the anatomy

of the lumbar spine, the thickness of the bony cortex around the

pedicle varies as follows: inferior wall > superior wall > medial

wall > lateral wall (21). Fujiwara et al. (22) demonstrated that

insertional torque increases with the increase of the medio-

lateral angle and decrease of the distance from the anterior

lateral edge of the upper endplate of the vertebral body. The

screw insertion point of the MCBT technique moved 2.0–

3.0 mm inward based on CBT, increased the bony cortex

around the screw insertion point and medial wall of the

pedicle and the anterior lateral edge of the upper endplate of

the vertebral body by increasing the medio-lateral angle from

10° and decreasing the cranio-caudal angle from 25°

according to the CBT technique, and it further increased the

insertional torque (12, 13, 22). Petrone et al. (14) reached the

superior anterior third of the vertebral endplate by decreasing

the both cranio-caudal and medio-lateral angle of the screw to

improve the biomechanical properties. Edwards et al. (23)

demonstrated that cortical bone of the endplate in the

marginal zone was thicker. Apparently, the holding force of

the screw increases with the content of the thicker cortical

bone around the screw. If the entry point moves inward, it
Frontiers in Surgery 07
can get the effect of contacting the medial wall of the pedicle,

extending the screw length, and reaching the anterior lateral

edge of the upper endplate of the vertebral body. In a

nutshell, whether to increase or decrease the medio-lateral

angle of the screw need further investigation with larger

sample size. MCBT technique compensated the defects of the

CBT technique. However, we found that the MCBT technique

still has certain defects. Complete decompression of the recess

was not possible with MCBT screw fixation, because extended

decompression may destroy the insertion point of the MCBT

screw. Isthmic fracture was also a contraindication to the

MCBT technique. In summary, we proposed the hybrid screw

insertion technique of MCBT-TT and TT-MCBT to

compensate the defects of CBT or MCBT techniques. In a

nutshell, this study confirms the triangle stable effect (24, 25)

once again that stability of the hybrid MCBT-TT and TT-

MCBT techniques is superior to the counterparts which had

higher parallelogram-effect (Figures 2G,H).

Santoni et al. (8) and Matsukawa et al. (26) demonstrated

with in vitro experiment that CBT screw has a higher

purchase compared to the pedicle screw. However, Baluch

et al. (27), demonstrated that there was no significant

difference in the pullout strength. The differences in

experimental results may be due to the deviation of the

insertion point and angle, which causes the bias. The

destruction of the screw trajectory causes an inability to

insert the screw twice in a cadaveric study. However, FE

analysis can replicate the model, and with the premise of 3D

reconstruction of the lumbar spine, complete, accurate, and

idealized screw insertion can be performed, which ensures

the accuracy and reproducibility of the experiment and

avoids the interference of confounding factors on the

experimental results.
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Matsukawa et al. (26) demonstrated that, compared to the

TT-TT group, the CBT-CBT group showed superior vertebral

stability in flexion and extension, while inferior in lateral

bending. In the present study, compared to the TT-TT group,

the ROM of the fixation segment in the MCBT-TT group was

significantly reduced in all working conditions (Figure 3)

(p≤ 0.012). This difference may be due to the length of the

MCBT screw (L = 40 mm), the head and hub of the MCBT

screw were in the cortical bone area while the CBT screw hub

was in the cortical bone, but the head is not. McLachlin et al.

(28) proposed the teeter-totter mechanism, that is, the

increase in the ROM of the screw caused by the swing of the

screw head while the screw hub was fixed. However, both

head and hub of the MCBT screw were in the cortical bone,

it was not prone to swing. There was no significant difference

between the MCBT-TT group and the TT-MCBT group (p >

0.05). In patients with osteoporosis, the purchase of the screw

was not strong because of the reduced bone mineral density

in cancellous bone (29), which led to the occurrence of the

teeter-totter phenomenon. However, the teeter-totter

phenomenon was not easy to occur when the head of the

MCBT screw reaches the cortical bone at the lateral cortical

bone of the superior endplate. Matsukawa et al. (30)

demonstrated that the screw with greater length improves the

fixation strength in rotation. The length of pedicle screw used

in this study was 45 mm and the MCBT screw (L = 40 mm),

while the pedicle screw diameter (D = 6.0 mm) was thicker

than the MCBT screw (D = 4.5 mm). Although the length of

the two screws were similar, but the ROM of the posterior

fixations were different because the bony environment at the

head and hub of the two screws were different. These results

indicated that screw thickness or length was not an

independent factor determining the stability of the fixation,

which was consistent with the results of McLachlin et al. (28).

In the TT-TT group, the intervertebral disc stress was more

concentrated and higher, with the greatest stress in extension

(11.47 ± 0.24 Mpa). In the MCBT-TT group, the intervertebral

disc stress was more dispersed and lower, with the least stress

in rotation (3.48 ± 0.57 Mpa). Rastegar et al. (31)

demonstrated that cage subsidence was one of the risk factors

for failure of lumbar interbody fusion. With the increase of

cage stress, subsidence rate increased gradually (18). However,

the lumbar fusion was not performed in this study, but it can

be deduced from the intervertebral disc stress that lumbar

interbody fusion combined with hybrid fixation techniques

may reduce the cage stress and occurrence of cage subsidence

increasing the bone fusion rate after lumbar fusion surgery.

Von Mises stress of the pedicle screw in the TT-TT group

evenly dispersed between the central cancellous bone area and

screw hub, and the stress value was higher but evenly

dispersed (Figure 6), which was consistent with the previous

study of Chen et al. (32). Von Mises stress of the pedicle

screw was significantly reduced in the MCBT-TT and the
Frontiers in Surgery 08
TT-MCBT groups. The stress of the pedicle screw in the TT-

TT group was the largest in flexion condition (95.45 ±

4.55 Mpa), which was significantly reduced in the MCBT-TT

group (42.35 ± 7.46 Mpa) and the TT-MCBT group (42.13 ±

8.50 Mpa) (p < 0.05), both of them were reduced by 56%. This

result was consistent with the results of Ren et al. (33).

Hybrid techniques have a superior stress dispersion effect,

which may reduce the risk of fixation failure. Wang et al. (34)

simulated the thoracolumbar FE model and demonstrated that

the von Mises stress of the CBT-TT group was higher in

lateral bending but lower in the other conditions compared to

the TT-TT group during cross-stage fixation. In the present

study, the von Mises stress of the MCBT-TT group was lower

in lateral bending compared to the TT-TT group, although

the diameter of the CBT screw (D = 5.0 mm, L = 35 mm) in

the study of Wang et al. (34) was thicker than the MCBT

screw (D = 4.5 mm, L = 40 mm) used in this study, but the

length was shorter than the MCBT screw. The possible reason

for this difference was that the contact of the screw head with

the anterior lateral edge of the upper endplate of the vertebral

body, the increase in screw length improved the stability of

the vertebral body, which was consistent with the results of

Matsukawa et al. (10).

Polly et al. (35) demonstrated that torque was reduced by

34% when the pedicle screw was re-placing after it was pulled

out. Increasing the screw length and diameter when re-placing

the screw improved the fixation strength, when screw

diameter increases by 1 mm and the screw length increases by

5–10 mm, the fixation strength of the re-placed screw was

similar to that of the original screw, but there was a risk of

pedicle burst. Matsukawa et al. (30) demonstrated that pedicle

screw with a larger diameter and longer length significantly

improved the pullout strength, and the screw head reached

the anterior lateral edge of the upper endplate of the vertebral

body of the vertebral body to form a structure similar to bi-

cortical fixation. The MCBT screw used in the present study

had a smaller diameter (D = 4.5 mm), MCBT screw with a

larger diameter may further increase the stability of hybrid

fixation. Pedicle screw damages the facet joints inevitably,

resulting in reduced vertebral stability and adjacent segment

degeneration (ASD) (36), MCBT screw can avoid this

problem. Masaki et al. (37) and Rodriguez et al. (38)

demonstrated that CBT screw can be used cranially when

ASD occurs at the proximal level and the fusion stage needed

to be extended after lumbar surgery with the pedicle screw.

The results of the present study were consistent with the

above results. If a revision surgery was required for

postoperative ASD, the MCBT screw can be an alternative for

the pedicle screw. The non-parallel trajectory of pedicle screws

in the same vertebral body had the triangle stable effect (24, 25),

which increases the stability of posterior fixation. The results of

the present study demonstrated that the stability of the hybrid

MCBT-TT and the TT-MCBT techniques were superior to that
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of the TT-TT and the MCBT-MCBT techniques with the

contribution of the triangle stable effect (24, 25).

As with any FE analysis, certain limitations were inherent in

the present study. First, there was a lack of an adjacent segment

that provides an indispensable role in evaluating the

relationship between hybrid techniques and ASD. Second, the

limited number of specimens was insufficient to allow more

convincing conclusions. Third, there was only one size of TT

and MCBT screws, thus the biomechanical effects of various

screw diameters and lengths in the hybrid techniques have

not been considered extensively in the present study. The

present study did not standardize the sizes of the MCBT and

the TT screws in the hybrid techniques.
Conclusion

This study reflects the biomechanical properties of the

hybrid MCBT-TT and TT-MCBT techniques. The stability of

the hybrid MCBT-TT and the TT-MCBT techniques were

superior to that of TT-TT and MCBT-MCBT techniques,

providing a preliminary biomechanical theoretical basis for

the application of hybrid lumbar fixation techniques in

patients with osteoporosis. However, the present study did not

analyzed the effects of the hybrid techniques on the adjacent

segment. The authors concluded that the hybrid MCBT-TT

and the TT-MCBT techniques can be the optimal choices for

lumbar posterior fixation in patients with osteoporosis.
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