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Introduction: Treating severely injured patients requires numerous critical
decisions within short intervals in a highly complex situation. The
coordination of a trauma team in this setting has been shown to be
associated with multiple procedural errors, even of experienced care teams.
Machine learning (ML) is an approach that estimates outcomes based on
past experiences and data patterns using a computer-generated algorithm.
This systematic review aimed to summarize the existing literature on the
value of ML for the initial management of severely injured patients.

Methods: We conducted a systematic review of the literature with the goal of
finding all articles describing the use of ML systems in the context of acute
management of severely injured patients. MESH search of Pubmed/Medline
and Web of Science was conducted. Studies including fewer than 10 patients
were excluded. Studies were divided into the following main prediction
groups: (1) injury pattern, (2) hemorrhage/need for transfusion, (3)
emergency intervention, (4) ICU/length of hospital stay, and (5) mortality.
Results: Thirty-six articles met the inclusion criteria; among these were two
prospective and thirty-four retrospective case series. Publication dates
ranged from 2000 to 2020 and included 32 different first authors. A total of
18,586,929 patients were included in the prediction models. Mortality was
the most represented main prediction group (n =19). ML models used were
artificial neural network ( n=15), singular vector machine (n=23), Bayesian
network (n=7), random forest (n=6), natural language processing (n = 2),
stacked ensemble classifier [SuperLearner (SL), n=3], k-nearest neighbor
(n=1), belief system (n=1), and sequential minimal optimization (n=2)
models. Thirty articles assessed results as positive, five showed moderate
results, and one article described negative results to their implementation of
the respective prediction model.

Conclusions: While the majority of articles show a generally positive result with
high accuracy and precision, there are several requirements that need to be
met to make the implementation of such models in daily clinical work
possible. Furthermore, experience in dealing with on-site implementation
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and more clinical trials are necessary before the implementation of ML techniques in
clinical care can become a reality.
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trauma, polytrauma, decision support, machine learning, deep learning, artificial intelligence,

neural networks, prediction

Introduction

Time is considered one of the significant factors for
patient outcomes after major trauma. Depending on
injury severity, a rapid medical assessment, life-saving on-
site treatment, and transportation to an appropriate
trauma center are essential to improve survival rates.
Therefore, constant improvement in prehospital settings
in resuscitation, rapid transit, and adequate initial
treatment in hospitals have a substantial impact on
survival rates (1).

The introduction of standardized training and education
programs has improved the quality of care for severely injured
trauma patients—both in the preclinical field and in the
emergency trauma room. An example is Advanced Trauma
Life Support. Altogether, educational training and standards
have led to improvements in the factor of time and treatment
quality (2).

Although emergency care and surgical care improvement
led to a better outcome, up to 8.0% of all trauma patients’
death are considered preventable or potentially preventable
(3). Management errors arise because of time pressure,
inexperience, reliance on memory, multitasking,
information flow analysis, and failures in trauma team
coordination, particularly during the initial minutes of
patient reception and resuscitation in emergency rooms.
Even in established trauma centers with experienced trauma
care professionals, despite protocols, and
continuous performance improvement, protocol compliance
was only 53% (4).

In the age of digitalization, connecting computer-generated

guidelines,

prompts through visual and auditory displays within the

resuscitation enhance trauma care

of
miscommunication. In addition, the past decade led to the

may professionals’

interaction and  reduce errors omission  and
excitement for the potential to apply deep-learning algorithms
to healthcare. This subtype of artificial intelligence (AI) has
the ability to improve the accuracy and speed of interpreting
large datasets, such as images, speech, and text (5). Machine
learning (ML) deals with the estimation of outcomes based on
past experiences and data patterns using a computer-
generated algorithm (6).

This systematic review aims to evaluate the existing
literature on how ML can change the decision support of

acute management in severely injured patients.
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Materials and methods
Study design

A systematic review of the literature according to the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-analyses) checklist and algorithm was conducted,
with the goal of finding all articles describing the value of
machine learning systems in the context of acute management
of severely injured patients (7).

Study characteristics

Investigations between 2000 and January 2021 were

included. For analysis, prospective and retrospective
observational investigations including database studies were

considered.

Information source

The authors performed a systematic search of the PubMed/
Medline and Web of Science (Core Collection) databases for
eligible investigations.

Search

The search terms were (trauma) AND ((decision) OR
(predict*) OR (assist*)) AND ((artificial intelligence) OR
(neural network) OR (machine OR

learning) (deep

learning)).

Study selection

The authors limited the research to observational studies,
while systematic reviews, meta-analyses, case series, and case
reports were excluded. Titles and abstracts were reviewed after
the removal of duplicates. The remaining full texts were
checked for suitability by all authors, and disagreement was
resolved by consensus. In cases of doubt, articles were
included in the next stage. A flowchart of the filtering stages
(titles, abstracts, full-length texts) is shown in Figure 1.
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(spinal[Title/Abstract]) OR

(spine[Title/Abstract])) OR
(lumbar(Title/Abstract])) OR (AB=spine OR AB=spinal OR
(vertebra[Title/Abstract])) OR AB=lumbar OR AB=vertebra OR

(disc[Title/Abstract])) OR AB=disc OR AB=cervical OR AB=cord
(cervical[Title/Abstract])) OR OR AB=stenosis) AND (AB=cnn OR

(cord[Title/Abstract])) OR AB=convolutional neural network OR

(stenosis[Title/Abstract])) ) AND AB=machine learning OR AB=deep
((convolutional neural network) OR learning)
(cnn) OR (machine learning) OR (deep
learning))
After removing duplicates and manual refinement 1371
articles were identified
After abstract screening exclusion of 1296 articles
Full length article evaluation through 2 authors of 75 articles
Inclusion and
dataextraction of 24
articles
FIGURE 1
Selection process for the systematic review - flow chart.

Data items

Studies were selected according to the following inclusion
criteria: (a) case series, cohort studies, clinical trials, or registry
data studies regarding decision support by self-learning systems
for the acute management of adult civilian trauma patients, (b)
studies that used parameters available during initial assessment
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and resuscitation in the trauma bay, (c) studies that used at
least one physiologic parameter (e.g., heart rate), (d) models
that predicted patient-related (e.g, mortality,
hemorrhage, need for emergency intervention), and (e) articles

outcome
published in English or German language.

Exclusion criteria are as follows: (a) case reports or case
series with fewer than 10 patients, (b) review articles, (c)
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animal studies, (d) cadaver studies, (e) studies including only
patients with isolated non-life-threatening injuries, (f) studies
including only patients with isolated traumatic brain injury,
(g) models relying on imaging data, and (h) studies that
predicted an effect that would become immanent after more
than 30 days (e.g., 1-year survival).

Synthesis of results

We extracted data concerning study characteristics
including author names, title, year of publication, journal of
publication, number of patients, time of follow-up, and type
of study. For the description of the study population, the
number of patients and age were collected. Outcome
parameters were analyzed according to the inclusion criteria
and were assigned to five predicted outcomes: (1) injury
pattern, (2) hemorrhage/need for transfusion, (3) emergency
intervention, (4) ICU/length of hospital stay, and (5) mortality.

For all included studies, we used the Oxford Centre for
Evidence-Based Medicine 2011 to define the level of evidence

(OCEBM Levels of Evidence Working Group 2011).

Results

Thirty-six articles met the inclusion criteria; among these
were 2 prospective and 34 retrospective case series. Publication
dates ranged from 2000 to 2020 and included 32 different first
authors. A total of 18,586,929 patients were included in the
prediction models. Machine learning models used were artificial
neural network (ANN; 7 =15), singular vector machine (n = 3),
Bayesian network (n=7), random forest (n=6), natural
language processing (1 =2), stacked ensemble classifier (SL, n =
3), k-nearest neighbor (KNN, # = 1), belief system (n=1), and
sequential minimal optimization (n=2) models. Thirty articles
assessed results as positive, five showed moderate results, and
described results to their
implementation of the prediction model (Table 1). The quality
of included articles showed OCEBM Levels of Evidence of 3,
correlating with the retrospective character of model training.

only one article negative

Predicting injury patterns

Over the past 20 years, various research groups have been
working with computer-assisted systems to partially automate
the analysis of patient data in the resuscitation room to assess
injury patterns. Depending on the study, prehospital and
hospital-acquired ~parameters were used for predicting
patients’ injury patterns.

In 2002, Ogunyemi et al. explored the possibility of using
probabilistic combination with 3D

graphic models in
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reconstruction to analyze penetrating chest and abdominal trauma
with the aim of predicting outcomes based on the location of
penetration. The TraumaScan tool developed for this purpose used
a combination of the location of the entry wound and the patient’s
symptoms and parameters. The use of such software in the
treatment of penetrating injury is an effective tool to make the
treatment of injured people more time effective and safe (8).

Metzger et al. tested the possibility of using various artificial
intelligence (AI) algorithms to detect vascular injury based on
the initially collected patients’ parameters to aid in treatment
decisions and the identification of critical patients. For this
purpose, 2,643 patients were selected and parameters were
extracted. The parameters were tested for outcomes on
different classifiers and combinations of multiple classifiers.
The use of multiple classifiers deployed on these parameters
produced the best results (9).

The work of Gu et al. follows a new approach to classifying the
individual phases of a trauma resuscitation (pre-arrival, patient
arrival, primary survey, secondary survey, and postsecondary
survey) and uses the spoken words in the resuscitation room.
For this purpose, microphones were installed and the recorded
words were converted into individual path-finding phrases. This
was tested on 24 recorded trauma resuscitations and converted
into an algorithm by deep learning processes. Subsequently, this
process was performed on six recorded cases with a matching
accuracy of almost 80%. In summary, audio analysis during
resuscitation room management shows a novel implementation
of data collection and options for phase classification (10).

In the most recent study on classifying injury patterns in
polytrauma patients, Paydar et al. showed that early
classification of the injury pattern and decision-making
support are relevant when the patient prognosis is poor.
Using data from 1,107 trauma patients and using various
analytics algorithms, they aimed to investigate the benefits of
Al-aided decision-making for the treatment of polytrauma
patients. For this purpose, paraclinical and clinical data were
extracted. Diastolic blood pressure, GCS, and BE after
resuscitation crystallized as the most impactful parameters; the
outcome was predicted with high accuracy of 0.99 (11).

Kulshrestha et al. retrospectively evaluated data from 6,891
patients analyzed 450,000
documents. Using natural language processing, ANN was

trauma and corresponding
trained for automated analysis. The authors were able to show
that the implementation of natural language processing can

aid in the adequate classification of thoracic trauma (12).
Predicting hemorrhage/need for
transfusion

Walczak trained ANN for the prediction of the need for

blood transfusions (fresh frozen plasma, packed red blood
cells, and platelets) using data from 508 retrospective patients
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who were transferred to their trauma center between January
1996 and December 1997 using the back-propagation method
(13). The input variables for the ANN were easily accessible
patient characteristics obtained on admission to the ER, such
as sex, age, blood pressure, Glasgow coma scale, and so on.
Trauma patients with no transfusions but with similar
epidemiological data were added to the data set, which
resulted in a total of 1,016 data sets (training set with 538
patients and hold-out-sample with 478 patients). The main
finding was that the proposed ANN was able to predict blood
transfusions with a mean absolute error (MAE) of 7.02 units
for patients who received 0-174 units in total (all types of
transfusions within the first 24 h after admission), but the
ANN showed better MAE (5.49 units) for specific blood
transfusion types in shorter time periods (13).

Chen et al. introduced a classifier as a decision assist tool for
identifying hypovolemia in trauma patients being transported
from the scene via a helicopter when reliable vital parameters
are hard to assess (14). The working group used data from
898 trauma patients and included 627 subjects with 71 cases
of major bleeding. The ensemble classifier, which was fed with
five easily assessable vital parameters every second (RR, RR,
DBP, SBP, and Sa0O,) showed an area under the curve (AUC)
of almost 0.8 after 14 min of transport for the prediction of
life-threatening hemorrhage and was able to tolerate missing
variables better than linear classifiers (14).

In the comparison of standard stepwise logistic regression
analysis to new SL techniques, the SL showed a superior
prediction of mortality in this complex dynamic multivariate
data set at several time intervals.

Hodgman et al. utilized the PROMMT database in 2018 for
validation of a smartphone app model for predicting the
activation of mass transfusion protocol or MT delivery for five
different mass transfusion definitions: 10 units of packed red
blood cells (PRBCs) within 24 h (1), resuscitation intensity
score >4 (2), critical administration threshold (3), 4 units of
PRBCs within 4 h (4), and 6 units of PRBCs within 6 h (5).
Examining 1,245 patients, the smartphone app showed
consistent prediction for the need for MT, MTP activation,
and MT delivery with AUC ranging from 0.694 to 0.711
regardless of the MT definition (15).

Christie et al. assessed 1,494 severely injured patients with
2,397 variables in the time period from February 2005 to
April 2015 for several outcomes including the need for
transfusion and need for mass transfusion (>10L in 24 h)
several times after trauma (2-120 h) (16).

SL technique was applied to the data sets, and early blood
transfusion was sufficiently predicted with an AUC of 0.82
and 0.84-0.88 for interval prediction throughout the first 72 h
after admission (16).

Recently, Bath et al. introduced the hemorrhage intensive
severity and survivability score (HISS) using five biomarkers:
glucose, lactate, pH, potassium, and oxygen tension. The
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working group created 100 sensible fictitious rationalized
patients (SFRPs) and let five trauma experts rate their HISS
score for triage (0=low, 1=guarded, 2 =elevated, 3 =high,

Afterward,
bagged decision

4 = severe). linear support vector machine,
ANN with Bayesian

regularization algorithm, and possibility rule-based using

ensemble tree,
function approximation (PRBF) were evaluated for their
ability to accurately classify the 100 entries of the SFRP data
set with an identified adequate training set of 75, and it was
felt that these classification algorithms can be used as an
adjunct to the HISS due to an accuracy higher than 91% in
the clinical setting (17).

Predicting the need for emergency
intervention

One of the earlier publications covering the use of an Al-
based technology was a study by Clarke et al. with the
TraumAID computer program in 2002. Here, a retrospective
analysis of 97 cases showed a significantly higher evaluation
of three raters for TraumAID’s protocols over actual care in
64 cases. TraumaAID was used by residents in 40 cases in the
emergency department, and in 5 of these, this resulted in a
change of evaluation, diagnosis, or treatment, while none of
these changes was judged to be an error by the majority of
the raters (18).

In the same year, Hirshberg et al. reported on the creation of
an ANN (ANN) for the prediction of damage control operations
in patients with a single abdominal gunshot injury. After
training the ANN on data of 312 patients, the authors tested
it on 34 cases. A sensitivity of 88% and a specificity of 96%
were achieved. Variables like systolic pressure, bullet path, or
trajectory were determined as strong inputs (19).

Prediction of performing a damage control laparotomy in
trauma patients was also the focus of a study by Harvin et al.
2019. In a single center, a quality improvement intervention
had been introduced in advance, successfully reducing the rate
of damage control laparotomies (DCLs) without increasing
morbidity or mortality. A random forest computer learning
algorithm, based upon decorrelated decision trees for
prediction, was used to analyze 72 wvariables for their
predictive value for a DCL, identifying some significant
correlations. The authors concluded that ML could be used to
point out the effects of interventions on surgeons’ decision-
making (20).

Wolfe et al. created three prediction models for outcomes
following nonpenetrating trauma using a data set of 4,014
patients, of which a first subgroup was used for training the
model and a second one for external validation. Models based
on data from the scene of injury were developed for an
intensive care unit (ICU) stay (complete data sets 1,324; 33%)
or later death (complete data sets: 2,059; 51.3%). Statistical
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models used were logistic regression, classification trees, and
ANN. None of the models was seen as optimal and met the
self-given performance criteria, therefore being the only article
in this systematic review showing negative results (21).

Liu et al. published two papers in 2014. In the first one, they
described the development and validation of a multiparameter ML
algorithm for predicting the need for life-saving interventions in
trauma patients. All patients sustained severe blunt and
penetrating injuries and were transported to two Level I trauma
centers by helicopter. The authors used 79 patient records with
over 110,000 feature sets to train the system and applied the
trained network to data from 104 patients. The algorithm
showed positive results for the prediction of trauma patients
needing live-saving interventions (22).

In another paper from the same year, Liu et al. analyzed the
data of 104 patients extracting a combination of vital signs,
heart rate complexity, and others, again applying ML tools to
identify the need for life-saving interventions. They showed
that an ML model has superior performance over multivariate
logistic regression models (23).

Predicting admission to ICU/length of
hospital stay

For healthcare providers, the assessment of valences in
intensive care units and their distribution at any given point
in time is essential. In 2015, Gholipour et al. used trauma and
injury severity score (TRISS) variables to train a feed-forward
propagating ANN to predict the length of stay in the ICU
and mortality. For this purpose, data from 95 trauma patients
admitted to the emergency room were retrospectively used to
train an ANN and tested on 30 other cases.

Overall, the results were good, with a sensitivity of 75% and
a specificity of 96% for the survival of trauma patients and no
significant difference in the ICU length of stay prediction and
real length of stay (24).

Predicting mortality

In 19 studies, mortality was the most common prediction in
this review. A total of 17,972,347 patients were included overall.
In total, 13 different ML algorithms and models were
considered, showing positive results for 18 of 19 studies.
Models based on ANNs were most prevalent in this review,
with the adaption of this architecture in 16 papers (84% of
mortality predicting articles).

Ahmed et al. identified 3,041 trauma patients admitted to
their trauma surgery ICU. Univariate and multivariate
analyses on mortality were performed, and ANN and other
ML models were deployed on the extracted data. With an
accuracy of 92.3% and sensitivity of 79.1%, the ANN-based
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deep-FLAIM model outperformed other tested methods (25).
used the TARN database to access
retrospective vital sign data from 177,014 patients to predict
mortality, testing different ML models. With AUC values of
0.6882, 0.6829, and 0.678, respectively, logistic regression,
interpretable ML, and ANN were the best classifiers tested (26).

An earlier study by DiRusso et al. compared established

Almagrabi et al.

mortality predictors, namely, TRISS and Injury Severity Score
(ISS), with a feed-forward backpropagation neural network,
showing its superiority with a receiver under the operating
curve (ROC) of 0.912 for the ANN and 0.895 and 0.766 for
TRISS and ISS, respectively. Including 10,609 patients admitted
to 24 hospitals in a seven-county region, this multicenter study
confirms the previous work of the research group (27). A 2005
study from Fuller et al. also compared TRISS predictions with
ANN including 2,510 patients from the CAMC Trauma
ISS the ANN
outperformed TRISS predictions with a relative error of 5%

registry. Using and six other inputs,
compared to 28%. Unfortunately, no AUC, ROC, accuracy, or
sensitivity were calculated in this study (28). A more recent
study from 2015 by Gholipour et al. used input variables of
TRISS on 125 patients to predict mortality and length of stay,
showing satisfactory results with a sensitivity and specificity of
75% and 97%, respectively, for the prediction of mortality by
ANN. Comparing the results to TRISS, the sensitivity and
specificity of TRISS showed better results with 81% and 95%,
respectively (24). In 2019, Gorczyca et al. were able to achieve
excellent classification rates for mortality prediction, comparing
a state-of-the-art ANN to several other prediction models
including Bayesian networks, ISS, and others (29). Hubbard
et al. used SL to predict mortality and the need for transfusion
within discrete time intervals (30-90, 90-180, and 180-
360 min) in patients meeting the criteria for highest-level
Level I hospitals. SL

outperformed the standard methods for predicting future

trauma activation in 10 major
mortality, with the greatest difference being the prediction of
death at the 180-360 min interval (AUC SL 0.92 vs. 0.55 for
standard methods) and a 5% increase compared to logistic
regression models in prediction performance (30). Kim et al.
extracted 460.865 cases of blunt and penetrating trauma from
the National Trauma Data Bank (NTDB) and assessed the
implementation of a consciousness index as well as ML
algorithms to predict mortality. With an AUC of 0.89, the deep
neural network showed the best results in predicting mortality.
The used input variables were chosen as though they were
collected by wearable patient devices, showcasing the feasibility
of such devices (31).

Pearl et al. published two studies in 2006 and 2008 using
ANNs with eight and five parameters, respectively, for the
prediction of mortality for clinicians and nonclinicians [32]. In
both studies, the NTDB data were used, including 1,433,024
patients in 2006 and 7,688 patients in 2008. Pearl et al. could
show that ANNs predicted mortality with prehospital variables
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well, with a correct prediction of 91% in 2006, but could not show
improvement when excluding pulse and other input variables in
2008 for nonclinician use of ANNs (33).

In a recent study by Rau et al, the authors compared
mortality prediction for 18,811 patients using TRISS, ANN
(neural network configured via the Stuttgart neural network
simulator), support vector machine, and logistic regression.
Results showed high accuracy for all four models but the
highest specificity (51.5%) for ANN (34). Another retrospective
analysis by Roveda et al. included 20,207 patients from the
CRASH (Clinical Randomisation of an Antifibrinolytic in
Significant Haemorrhage) database to predict mortality, as well
as ICU stay and need for surgical intervention. All tested
models (logistic regression, Bayesian network, random forest,
ANN) showed similar results, concluding that a combination of
the above-mentioned models could enhance the performance of
predictive power (35).

Schetinin et al. used Bayesian averaging over decision trees
to predict the mortality of NTDB data by considering 571,148
cases, comparing results with TRISS estimates, and concluding
that the goodness of fit was superior to the TRISS method
(36). A study from 2017 by Sefrioui et al. compared different
ML approaches to the NTDB database, characterizing every
patient (n=656.092) by 17 features, including GCS, vital
signs, and other parameters, with TRISS prediction. In their
testing, the random forest approach showed the most
promising results (ACC 0.9774) compared to TRISS and other
ML models in the prediction of patient mortality (37). A
recent study from Servia et al. used data from the National
Trauma Registry of 52 Spanish ICUs to test the predictive
capabilities for mortality on nine ML-based classifiers on data
from 9,790 critically injured patients, showing a high
correlation of mortality in patients with traumatic brain injury
and organic failure. Even though all tested classifiers were able
to produce a high accuracy, specificity, and AUC, low values
for recall were obtained. Servia et al. discussed that since
comparable results in accuracy and sensitivity could be
achieved by all nine classifiers, one should rather choose ML
techniques by their architecture and fit to a specific task than
by the determination of statistical superiority only (38).

Discussion

Decision-making in the acute management of severely
injured patients has to be based on reliable and accurate
statements and predictions.

In the past, experience-based algorithms like TRISS have
shown weaknesses in clinical use. Data-driven ML tools show
great potential as a new approach to problems of this nature.
In this systematic review, we could show that ML tools are
generally more accurate and sensitive when compared to
tools  for acute trauma

existing decision-making  in
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management like GCS, ISS, and TRISS. Only one of eight
studies that compared prediction performance showed TRISS
superior when compared to the tested ML mechanisms.
Mortality was the most frequently predicted outcome
parameter in our review (n=19). We included this outcome
even though the use of decision aid for predicting mortality is
discussable. Using vital signs and BGA parameters, mortality
can be predicted with higher accuracy and sensitivity
compared to methods in clinical use right now. Different
recently ANNS, solve the task of
determining the mortality risk of a patient in the resuscitation

models, more can
bay, but the implementation of these tools assumes digitalized
parameters of patients’ vital signs, lab parameters, and
demographics at the time of hospitalization. Furthermore,
interfaces need to be in place to make these predictions
possible and actually aid in the acute management of trauma
patients. We hypothesize that these are limitations to the
broad implementation of these tools. Clinical validation of
such tools also mandates standardization of evaluation
parameters of ML models fit for clinical use. The benefit of
mortality prediction in the acute setting of a resuscitation
room remains unclear. However, if an implementation can aid
in acute management and the above-mentioned limitations
are addressed, we consider ML tools as a promising
development. Would we do less if a patient had a 70%
probability of 48 h-survival?

Because of the broad range of different trauma mechanisms,
injury pattern prediction showed a heterogeneous field of
studies that all predicted specific outcomes with different ML
models. The complexity of the prediction makes it hard to
generalize injury patterns of trauma patients in one ML
model so far. Another field with similar limitations was the
prediction of emergency interventions. One paper was able to
predict the need for DCL with high sensitivity and specificity,
but the often complex indication of different emergency or
damage control interventions makes predictions on a general
scale complicated. Further developments are needed to make
ML models implementable for these tasks.

Also, hemorrhage and the subsequent need for transfusion
can be predicted by different ML models; recent publications
especially show high accuracy in these predictions. If the
implementation of live evaluation of vital signs and BGA
parameters is widely available, ML-powered decision support
for transfusion protocols seems likely to be implemented in
the near future. Only one article set the prediction of ICU
length of stay as the main outcome of ANN implementation
and was able to show that the prediction made by the
network did not significantly differ from the real length of
stay after training on 95 cases. However, due to the small
number of cases and lack of comparable studies, we cannot
assess the validity of these findings yet.

Specific problems cannot always be answered best by one
ML model or approach. To evaluate models only on their
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differences in accuracy or sensitivity does not always reflect their
implementation ability, especially in a clinical environment,
with the need for clinical evaluation and standardization.

ANN’s show a wide range of implementation possibilities for
the future but are very sparsely implemented in the clinical
routine so far. To our knowledge, none of the shown ML
tools in the included studies seem to be in actual clinical use
in the version described in the respective articles. One reason
is the need for big data to train these ML tools, reflected by
the large number of studies in this systematic review (10 of
36) training and testing their models on data from national or
international registries or databases. Unfortunately, data
generation in such databases can be incomplete at times and
are not standardized internationally. Subsequently, there will
be a call for access to well-structured and complete datasets
for trauma patients in the future, which we hope will enable
the training of generalized ML and ANN models.

Conclusion

Digitalization and general computing and technical
capabilities of healthcare providers are the basis on which
implementation of ML models into the clinical routine can be
made possible. While the benefits of these ML tools, especially
ANNs for prediction in different fields (image segmentation,
image processing) are undeniable, several requirements
concerning live availability of data, better and more accessible
big data sets on trauma patients, technical requirements on
site, and insurance of patient data security need to be met
before the implementation of ML techniques, and especially
ANNs can become a widely implemented reality in the acute

management of trauma patients.
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