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Background: Hepatic ischemia-reperfusion injury (HIRI) is largely unavoidable
during liver transplantation (LT). Dexmedetomidine (DEX), an α2-adrenergic
agonist, exerts a variety of organ-protective effects in pediatric populations.
However, evidence remains relatively limited about its hepatoprotective
effects in pediatric living-related LT.
Methods: A total of 121 pediatric patients undergoing living-related LT from
June 2015 to December 2018 in our hospital were enrolled. They were
classified into DEX or non-DEX groups according to whether an infusion of
DEX was initiated from incision to the end of surgery. Primary outcomes
were postoperative liver graft function and the severity of HIRI. Multivariate
logistic regression and propensity score matching (PSM) analyses were
performed to identify any association.
Results: A 1:1 matching yielded 35 well-balanced pairs. Before matching, no
significant difference was found in baseline characteristics between groups
except for warm ischemia time, which was longer in the non-DEX group (44
[38–50] vs. 40 [37–44] min, p= 0.017). After matching, the postoperative
peak lactic dehydrogenase levels decreased significantly in the DEX group
than in the non-DEX group (622 [516–909] vs. 970 [648–1,490] IU/L, p=
0.002). Although there was no statistical significance, a tendency toward a
decrease in moderate-to-extreme HIRI rate was noted in the DEX group
compared to the non-DEX group (68.6% vs. 82.9%, p= 0.163). Patients in the
DEX group also received a significantly larger dosage of epinephrine as
postreperfusion syndrome (PRS) treatment (0.28 [0.17–0.32] vs. 0.17 [0.06–
0.30] µg/kg, p= 0.010). However, there were no significant differences
between groups in PRS and acute kidney injury incidences, mechanical
ventilation duration, intensive care unit, and hospital lengths of stay.
Multivariate analysis revealed a larger graft-to-recipient weight ratio (odds
ratio [OR] 2.657, 95% confidence interval [CI], 1.132–6.239, p=0.025) and
intraoperative DEX administration (OR 0.333, 95% CI, 0.130–0.851, p=0.022)
to be independent predictors of moderate-to-extreme HIRI.
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Conclusion: This study demonstrated that intraoperative DEX could potentially decrease
the risk of HIRI but was associated with a significant increase in epinephrine requirement
for PRS in pediatric living-related LT. Further studies, including randomized controlled
studies, are warranted to provide more robust evidence.
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Introduction

Hepatic ischemia-reperfusion injury (HIRI) is generally

unavoidable during liver transplantation (LT) and can trigger

increases in liver enzyme levels, early allograft dysfunction

(EAD), and even primary nonfunction (PNF) (1, 2). It has been

shown that HIRI is significantly associated with an

increased risk of postoperative morbidity and mortality following

LT (2–4). Despite recent improvements in pharmacological

interventions and surgical techniques, HIRI during LT is still a

critical issue that needs to be resolved in clinical practice.

Dexmedetomidine (DEX), a selective α2-adrenergic agonist

with sedative, analgesic, anxiolytic, and sympatholytic properties,

is increasingly used in pediatric clinical practice (5). Despite

limited clinical data, the intravenous administration of DEX as

an anesthetic adjuvant to provide organ-protective effects during

the perioperative period of LT has attracted great attention. In

2016, Fayed et al. (6) first described the hepatoprotective effects

of DEX in adult living-related LT, i.e., intraoperative DEX

improved postoperative liver graft function. Subsequently,

researchers from the Tianjin First Center Hospital have

demonstrated that intraoperative DEX administration protected

against myocardial, kidney, and brain injuries in pediatric

living-related LT (7–9). More recently, Zhang and colleagues

(10) observed that intraoperative low-dose DEX administration

was associated with reduced HIRI in pediatric deceased LT.

However, mixed results have been reported in the literature

(11–13), and some researchers (11) failed to detect a benefit of

perioperative DEX infusion on postoperative cognitive

dysfunction in adult living-related LT.

To date, no research assessed the influence of intraoperative

DEX use on postoperative liver graft function or the severity of

HIRI in pediatric living-related LT recipients. Thus, this

retrospective propensity score matching (PSM) study was

designed to provide further evidence for the roles of

intraoperative DEX in pediatric living-related LT.
Methods

Data source and study population

This study was a single-center, retrospective cohort study

conducted at the Beijing Friendship Hospital, which is one of
02
the three largest pediatric LT centers in mainland China. A

database of all pediatric patients who underwent LT from

June 2015 to December 2018 was reviewed. Figure 1 shows

the selection process of the study subjects. Patients aged less

than 16 years who underwent living-related LT were initially

screened. The exclusion criteria included patients with missing

data related to DEX use, patients implanted with a domino

liver graft, and patients without complete surgical records.
Clinical practice and data collection

DEX was first licensed in mainland China in 2009 but was

not approved for perioperative use in our hospital until 2017.

Thus, the patients included in this study were classed into one

of the following two groups: (1) non-DEX group, i.e., early

practice group without intraoperative DEX, and (2) DEX

group, i.e., recent practice group with intraoperative DEX. As

previously described (14), all patients in the early practice

group received a standardized anesthesia protocol. Since June

2017, in addition to the standardized anesthesia protocol, the

patients were administrated a continuous infusion of DEX

(Aibeining®; SINGCH PHARM., Jiangsu, China) at 0.4 µg/kg/

h without a loading dose from incision to the end of surgery.

In our hospital, the surgical procedures of pediatric living-

related LT have been standardized, i.e., a modified piggyback

technique with total clamping of the inferior vena cava was

adopted in all cases. Postoperatively, all patients were

transferred to the intensive care unit (ICU) for ongoing

monitoring and postoperative care and were weaned from

mechanical ventilation according to the standard ICU

protocols of our hospital.

Preoperative data, intraoperative details, and postoperative

outcomes were retrospectively collected from case notes and

electronic databases. The collected data mainly included age,

sex, height, weight, indications for LT, Child–Pugh score,

Pediatric End-stage Liver Disease (PELD) score, graft weight,

graft-to-recipient weight ratio (GRWR), cold ischemia time

(CIT), warm ischemia time (WIT), postoperative alanine

aminotransferase (ALT), aspartate aminotransferase (AST),

lactic dehydrogenase (LDH), blood urea nitrogen (BUN), and

serum creatinine (sCr) levels within seven days after surgery,

occurrences of postreperfusion syndrome (PRS), moderate-to-
frontiersin.org
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FIGURE 1

Patient and analysis flowchart. Of the patients, 142 were excluded due to missing data related to DEX use, implanted with a domino liver graft, or
incomplete surgical records. DEX, dexmedetomidine; LT, liver transplantation.
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extreme HIRI, and acute kidney injury (AKI), duration of

mechanical ventilation, and ICU and hospital lengths of stay.
Study endpoints

The primary endpoints were postoperative liver graft

function and HIRI severity. The secondary outcomes were

postoperative kidney function and the occurrence of PRS and

AKI. The severity of HIRI was determined using a modified

Rosen’s classification based on the postoperative peak ALT,

AST, and LDH levels within 72 h post-LT, i.e., mild (<600 IU/

L), moderate (600–1,999 IU/L), severe (2,000–4,999 IU/L), or

extreme (>5,000 IU/L) (15). PRS was diagnosed based on

Aggarwal’s definition when systolic arterial pressure fell below

70% of the baseline value for at least 1 min within 5 min of

reperfusion (16). AKI was defined based on the sCr criteria

per the Kidney Disease: Improving Global Outcomes

(KDIGO) classifications within seven days post-LT (17).
Ethical aspects

The study was in accordance with the principles of the

Declaration of Helsinki, and the study protocol was approved

by the Institutional Review Board of the Beijing Friendship

Hospital (Approval number 2020-P2-043-02). Because of the
Frontiers in Surgery 03
retrospective nature of the study design, the requirement

for written informed consent from patients was waived.

This study follows the Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) statement

for cohort studies (18).
Statistical analyses

The continuous variables are presented as the mean

(± standard deviation) or median (25th–75th percentile), and

the intergroup comparisons were carried out using Student

t tests or Mann–Whitney U tests, based on the data

distribution. The categorical variables are described as counts

(%), and the intergroup comparisons were performed by a

Pearson’s chi-squared test or Fisher’s exact test when more

than 20% of cells with an expected count of less than five

were observed. Regarding the statistical adjustment for

differences in the baseline characteristics, one-to-one PSM

models within a caliper set at 0.02 were constructed based on

each patient’s estimated propensity score (according to age,

sex, height, body weight, Child–Pugh score, PELD score, graft

type, graft weight, GRWR, type of preservation solution, CIT,

and WIT). To identify the independent risk factors of

moderate-to-extreme HIRI, potentially significant variables

with a p value <0.1 in the univariate analysis were further

evaluated by multiple regression using a forced entry method.
frontiersin.org

https://doi.org/10.3389/fsurg.2022.939223
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Zhang et al. 10.3389/fsurg.2022.939223
All statistical analyses were performed using SPSS version 22.0

(SPSS Inc., Chicago, IL, USA). A p value <0.05 was

considered statistically significant.
Results

Patient characteristics

In total, 121 pediatric patients who underwent living-related

LT met the inclusion criteria. The characteristics of the

unadjusted and PSM study subjects are provided in Table 1.

In our study, only WIT statistically differed between the

groups in the unadjusted comparison (44 [38–50] vs. 40 [37–

44] min, p = 0.017). Using propensity scores, 35 patients

receiving intraoperative DEX were successfully matched to 35

patients without intraoperative DEX (Figure 1). There were

no significant differences in the baseline characteristics

between the two PSM groups.
Study outcomes before and after the
PSM analyses

In the unadjusted analyses, the incidence of moderate-to-

extreme HIRI and postoperative peak serum ALT and LDH

levels in the DEX group were much lower than that in the

non-DEX group (64.5% vs. 84.7%, p = 0.011; 470 [344–623]
TABLE 1 Baseline characteristics of study patients before and after propens

Variables Before matching

No DEX (n = 59) DEX (n = 62)

Age, y 1.3 (0.6–3.8) 1.3 (0.6–3.6)

Female sex, n (%) 30 (50.8) 31 (50.0)

Height, cm 75 (69–95) 77 (67–96)

Weight, kg 10.0 (7.8–14.5) 9.6 (7.0–15.0)

Child–Pugh score 8 (6–10) 7 (5–9)

PELD score 10 (−7–20) 6 (−8–18)

Type of graft, n (%)

Segment II 7 (11.9) 3 (4.8)

Left lateral lobe 45 (76.3) 51 (82.3)

Left lobe 7 (11.9) 8 (12.9)

Graft weight, g 255 (220–302) 248 (205–288)

GRWR, % 2.55 (2.02–3.17) 2.47 (1.66–3.38)

Preservation solution, n (%)

HTK 45 (76.3) 37 (59.7)

Celsior 14 (23.7) 25 (40.3)

Cold ischemia time, min 61 (50–90) 56 (41–74)

Warm ischemia time, min 44 (38–50) 40 (37–44)

Data are expressed as mean (standard deviation), median (interquartile range), or num

weight ratio; HTK, Histidine-Tryptophan-Ketoglutarate; PELD, Pediatric End-stage Liv
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vs. 579 [393–893] IU/L, p = 0.036; 626 [512–899] vs. 968

[639–1,392] IU/L, p < 0.001, respectively) (Table 2). After

PSM, only the postoperative peak level of serum LDH in the

non-DEX group was significantly higher than that in the DEX

group (970 [648–1,490] vs. 622 [516–909] IU/L, p = 0.002).

There was a tendency toward decreased moderate-to-extreme

HIRI in the DEX group, but this was not statistically

significant (68.6% vs. 82.9%, p = 0.163) (Table 2 and

Figure 2). Furthermore, the epinephrine dosage used for the

treatment of PRS in the DEX group was significantly higher

than that in the non-DEX group (0.28 [0.17–0.32] vs. 0.17

[0.06–0.30] µg/kg, p = 0.010). However, there was no

significant difference between the two PSM groups in the

occurrences of PRS and AKI, duration of mechanical

ventilation, ICU and hospital lengths of stay, or other

outcomes (Table 2).
Predictors of moderate-to-extreme HIRI
in pediatric living-related LT

According to the univariable analyses, the potential

predictors of moderate-to-extreme HIRI in the overall

population were age (odds ratio [OR] 0.867, 95% confidence

interval [CI], 0.758–0.992, p = 0.037), height (OR 0.982, 95%

CI, 0.965–1.000, p = 0.047), weight (OR 0.938, 95% CI, 0.883–

0.997, p = 0.039), graft type (OR 2.625, 95% CI, 0.861–8.002,
ity score matching.

After matching

p-value No DEX (n = 35) DEX (n = 35) p-value

0.785 1.8 (0.7–4.0) 0.8 (0.6–4.0) 0.267

0.926 18 (51.4) 18 (51.4) 1.000

0.957 82 (70–95) 71 (67–98) 0.553

0.868 10.5 (7.0–15.0) 9.0 (6.8–13.0) 0.694

0.061 7 (5–9) 8 (5–10) 0.550

0.237 1 (−8–16) 14 (−8–18) 0.315

0.394 0.320

6 (17.1) 2 (5.7)

25 (71.4) 28 (80.0)

4 (11.4) 5 (14.3)

0.185 262 ± 57 266 ± 68 0.779

0.495 2.63 ± 0.96 2.73 ± 0.97 0.661

0.051 0.607

23 (65.7) 25 (71.4)

12 (34.3) 10 (28.6)

0.148 60 (42–78) 49 (38–72) 0.157

0.017 40 (37–45) 39 (36–42) 0.359

ber (percent) as appropriate. DEX, dexmedetomidine; GRWR, graft-to-recipient

er Disease.
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FIGURE 2

Comparison of the incidence of moderate-to-extreme hepatic
ischemia-reperfusion injury (HIRI) between patients with and
without intraoperative dexmedetomidine (DEX) before and after
the propensity score matching (PSM) analysis. The p values were
calculated using the Pearson’s chi-squared test. *p < 0.05.

TABLE 2 Comparison of study outcomes before and after propensity score matching.

Variables Before matching After matching

No DEX (n = 59) DEX (n = 62) p-value No DEX (n = 35) DEX (n = 35) p-value

Primary outcomes

Peak AST, IU/L 731 (427–1,026) 573 (407–850) 0.158 676 (431–1,026) 602 (429–849) 0.485

Peak ALT, IU/L 579 (393–893) 470 (344–623) 0.036 584 (335–872) 521 (328–733) 0.421

Peak LDH, IU/L 968 (639–1,392) 626 (512–899) <0.001 970 (648–1,490) 622 (516–909) 0.002

Moderate-to-Extreme HIRI, n (%) 50 (84.7) 40 (64.5) 0.011 29 (82.9) 24 (68.6) 0.163

Second outcomes

PRS, n (%) 50 (84.7) 57 (91.9) 0.217 29 (82.9) 34 (97.1) 0.106

Epinephrine dosage for PRS, µg/kg 0.18 (0.10–0.26) 0.25 (0.16–0.32) 0.007 0.17 (0.06–0.30) 0.28 (0.17–0.32) 0.010

Peak BUN, mmol/L 6.8 (5.0–8.0) 5.2 (4.4–6.4) 0.012 6.7 (4.8–8.0) 5.1 (4.5–6.1) 0.066

Peak sCr, µmol/L 39.1 (32.4–48.6) 35.8 (23.7–45.5) 0.157 39.1 (32.3–48.2) 35.1 (22.9–45.4) 0.124

Acute kidney injury, n (%) 4 (6.8) 4 (6.5) 1.000 1 (2.9) 1 (2.9) 1.000

Ventilation timea, hours 3 (2–5) 2 (1–4) 0.159 3 (2–5) 3 (2–4) 0.730

ICU staya, hours 90 (65–112) 90 (68–112) 0.699 91 (68–116) 89 (70–113) 0.846

Hospital staya,b, days 31 (23–54) 27 (21–37) 0.027 32 (23–58) 28 (23–37) 0.145

Data are expressed as mean (standard deviation), median (interquartile range), or number (percent) as appropriate. ALT, alanine aminotransferase; AST, aspartate

aminotransferase; BUN, blood urea nitrogen; DEX, dexmedetomidine; HIRI, hepatic ischemia-reperfusion injury; ICU, intensive care unit; LDH, lactic

dehydrogenase; PRS, postreperfusion syndrome; sCr, serum creatinine.
aPatients with preoperative mechanical ventilation (two patients in each group) were excluded from the final analysis.
bPatients who died during the early postoperative period (one patient in each group) were excluded from the final analysis.

Zhang et al. 10.3389/fsurg.2022.939223
p = 0.090), GRWR (OR 2.060, 95% CI, 1.225–3.463, p = 0.006),

and intraoperative DEX administration (OR 0.327, 95% CI,

0.136–0.789, p = 0.013). According to the multivariate logistic

regression analysis, GRWR was a precipitating factor for the

presence of moderate-to-extreme HIRI (OR 2.657, 95% CI,

1.132–6.239, p = 0.025), while intraoperative DEX

administration (OR 0.333, 95% CI, 0.130–0.851, p = 0.022)

was a protective factors for the presence of moderate-to-

extreme HIRI (Table 3).
Frontiers in Surgery 05
Discussion

Our results indicate that intraoperative DEX might provide

some protection against HIRI in pediatric living-related LT after

adjusting for potential confounding factors. Furthermore, an

infusion of DEX at 0.4 µg/kg/h without a loading dose was

not associated with delayed postoperative recovery. In contrast

to expectations, however, DEX administration did not

decrease the risk of PRS but was associated with an increased

dosage of epinephrine for PRS treatment. To the best of our

knowledge, this study is the first to assess the effect of

intraoperative DEX on HIRI in pediatric LT using a matched

case-control design.

In the available literature, several criteria (15, 19–22) have

been proposed to quantify the extent of HIRI in LT

recipients. However, the peak serum AST levels within 24–

72 h post-LT remain the most commonly documented

indicators. In contrast to clinical trials, serum LDH is

generally used as a surrogate marker of HIRI in animal

experiments (23, 24). Considering the relatively mild HIRI

severity in living-related LT, the modified Rosen’s criteria (15)

were used to quantify the severity of HIRI in the present

study. HIRI, which is an inherent complication of LT, is a

complex pathological process that involves the two distinct

phases of hepatic ischemic insult and subsequent reperfusion

injury (1–3). HIRI associated with LT has frequently led to

elevated liver enzymes, EAD, PNF, and graft rejection (1–4).

EAD following LT represents the most common form of HIRI
frontiersin.org
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TABLE 3 Univariate and multivariate logistic regression analysis assessing the risk factors for moderate-to-extreme HIRI in pediatric living-related
liver transplantation.

Variables Univariate Multivariate

OR (95% CI) p-value OR (95% CI) p-value

Age (per y) 0.867 (0.758–0.992) 0.037 0.729 (0.448–1.186) 0.203

Gender (Male vs. Female) 0.553 (0.240–1.271) 0.163

Height (per cm) 0.982 (0.965–1.000) 0.047 1.045 (0.954–1.145) 0.348

Weight (per kg) 0.938 (0.883–0.997) 0.039 1.076 (0.818–1.414) 0.602

Child–Pugh score 1.136 (0.946–1.365) 0.172

PELD score 1.016 (0.987–1.045) 0.282

Preservation solution (HTK vs. Celsior) 0.821 (0.347–1.941) 0.653

Type of graft (LL vs. LLL) 2.625 (0.861–8.002) 0.090 3.231 (0.567–18.402) 0.186

Graft weight (per g) 1.004 (0.997–1.010) 0.294

GRWR (per %) 2.060 (1.225–3.463) 0.006 2.657 (1.132–6.239) 0.025

Cold ischemia time (per min) 0.992 (0.981–1.003) 0.144

Warm ischemia time (per min) 1.012 (0.964–1.063) 0.626

DEX administration (Yes vs. No) 0.327 (0.136–0.789) 0.013 0.333 (0.130–0.851) 0.022

CI, confidence interval; DEX, dexmedetomidine; GRWR, graft-to-recipient weight ratio; HIRI, hepatic ischemia-reperfusion injury; HTK, Histidine-Tryptophan-

Ketoglutarate; LL, Left lobe; LLL, Left lateral lobe; OR, odds ratio; PELD, Pediatric End-stage Liver Disease.
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with a reported incidence ranging from 20% to 40% and is

unequivocally associated with increased post-LT morbidity

and mortality (3). To date, the responsible mechanisms,

including the release of inflammatory cytokines and

chemokines, the generation of oxygen free radicals, the

activation of Kupffer cells and neutrophils, the increased

expression of adhesion molecules, and infiltration by

circulating lymphocytes and/or monocytes, are complex and

not well understood (1, 2). Thus, hepatoprotective strategies

in the setting of clinical LT and attempts to elucidate the

pathophysiology of HIRI are urgently warranted.

Hitherto, several pharmacological strategies have been

proposed to protect against HIRI in the setting of LT. More

recently, Ito et al. (25) found that the pre-LT long-term

administration of rifaximin, which is a broad-spectrum

antibiotic and an anti-inflammatory agent against gut-

derived hepatic inflammation, exhibited a hepatoprotective

effect with a reduced incidence of EAD after adult deceased

LT. In a randomized trial of 99 adult LT patients, Bharathan

et al. (26) demonstrated that the perioperative administration

of prostaglandin E1 significantly decreased the incidence of

postoperative AKI and the peak serum levels of sCr and

ALT after adult living-related LT. Despite the increasing

research focus, the impact of N-acetylcysteine on liver graft

function in patients undergoing LT has remained

controversial for over two decades (27, 28). In animal

models of LT, both ulinastatin and glutathione have been

reported to exert a protective effect against HIRI (23, 24,

29). However, there remains a paucity of effective

pharmacological strategies to protect against HIRI in the

setting of pediatric LT.
Frontiers in Surgery 06
DEX is a highly selective alpha-2-adrenergic agonist that is

being increasingly used in pediatric practice (5). In the non-

general anesthesia scenario, DEX is most commonly

administered as the sole sedative agent because it does not

cause respiratory depression and can mimic an arousable

and physiological sleep state. In the general anesthesia

scenario, DEX is often used as an anesthetic adjuvant due to

its anesthetic-sparing effects. Over the past decade,

numerous clinical studies have documented the multi-organ

protective effects of perioperative DEX against organ damage

(30). In accordance with the present results, Fayed and

colleagues demonstrated that an intraoperative infusion of

DEX at 0.8 µg/kg/h could exert hepatoprotective effects

against HIRI in adult living-related LT recipients, as shown

by an improved liver graft function, better histopathological

scores, and decreased ICAM-1 levels (6). A recent

retrospective study showed that intraoperative low-dose DEX

was associated with reduced HIRI in pediatric deceased LT

(10). Another ongoing randomized controlled trial

(NCT03770130) is currently investigating the effects of

intraoperative DEX compared to placebo on EAD and PNF

in adult deceased LT (31).

Despite this emerging interest, the exact mechanisms

underlying the hepatoprotective effects of DEX are not fully

understood. In general, the hepatoprotective effects of DEX

have primarily been attributed to its anti-inflammatory

properties. A recent review article further outlines the

potential mechanisms by which DEX exerts its

hepatoprotective effects, including the downregulation of

ICAM-1 expression, the inhibition of iNOS activity, and

reductions in the levels of catecholamines, endothelin-1,
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TNF-α, and IL-10 (32). In animal models, several signaling

pathways, including the TLR-4/NF-κB (33), NLRP3 (34),

NLRC5 (35), PPARgamma/STAT3 (36), and GSK-3β/MKP-1/

Nrf2 signalings (37), have been shown to be responsible for

the hepatoprotective actions of DEX.

Notably, previous studies also indicated that a larger

GRWR is associated with worse postoperative liver graft

function (38, 39). Despite the controversy, it is generally

accepted that PRS is the first manifestation of HIRI

immediately after graft reperfusion (40). Furthermore, it has

been shown that alleviating HIRI by pharmacological agents

(41, 42) or machine perfusion (43, 44) can reduce the

occurrence of PRS. Counterintuitively, however, the present

study failed to demonstrate a preventive effect of DEX on

PRS. In contrast, the intraoperative DEX administration was

associated with a more significant amount of epinephrine

necessary for PRS treatment. These findings are consistent

with those reported by Fayed and colleagues (6), who found

that the use of DEX increased the dosage of intraoperative

vasopressors in adult living-related LT recipients. However,

DEX has been demonstrated to reduce vasopressor

requirements in the setting of septic shock (45–47). The

mechanisms underlying these inconsistencies are unclear, but

we propose several possible reasons. The heterogeneity of the

enrolled patients (e.g., the severity of shock of the patients)

may represent a major reason for these discrepancies. It is

well known that DEX can decrease sympathetic activity and

circulating catecholamine levels, but its catecholamine-

sparing effect exists only when there is a desensitization and

downregulation of adrenergic receptors, which are not

commonly observed in the setting of living-related LT (47–

49). A further explanation for the inconsistencies among

these studies might be that the dosage and duration of the

DEX administration substantially differed across the studies.

It has also been reported that higher doses of DEX are

associated with hypertension by directly stimulating α1-

adrenergic receptors (49).

The present study indicates that, at least in pediatric

living-related LT recipients, the use of intraoperative DEX is

not significantly associated with improved postoperative

outcomes but is associated with decreased HIRI, which may

be partially due to the limited sample size in this

retrospective and monocentric study; further studies are

needed to determine whether intraoperative DEX affects

postoperative outcomes, including postoperative

complications, length of stay, and in-hospital mortality.

Notably, the intraoperative administration of DEX at 0.4 µg/

kg/h without a loading dose was found to be well tolerated

by pediatric LT recipients, did not result in any serious

adverse reactions, and did not prolong the time to

awakening and extubation. Nevertheless, DEX should not

necessarily be routinely used in pediatric LT recipients

without limits. Potential adverse reactions, such as
Frontiers in Surgery 07
bradycardia (50), hypotension (5), hypertension (5),

elevated blood glucose (51), decreased serum potassium

(51), drug accumulation (52), and interaction with

tacrolimus (53), still need to be monitored particularly

closely in clinical practice.

There are several possible limitations in this study that

deserves special attention. First, this study is a retrospective

matched study. Undoubtedly, unknown confounders that

can influence the results likely exist; even consecutive cases

were recruited to eliminate selection bias as soon as

possible. Second, as the results of this study were obtained

from a single center with a limited sample size and all

patients received the same anesthesia care, the

generalizability of our findings is uncertain. Third, there was

no objective assessment of the possible advantages and side

effects of DEX use in pediatric patients with living-related

LT, such as its impacts on anesthetic requirements,

intraoperative hemodynamic stability, serum potassium and

glucose levels, and post-LT delirium. Fourth, as severe HIRI

is relatively uncommon in living-related LT, the

hepatoprotective efficacy of DEX obtained in this study may

have been subject to selection bias. Fifth, only a single dose

of intraoperative DEX was used in this study. Thus, whether

the hepatoprotective effect of DEX in pediatric living-related

LT is dose-dependent and whether the prolonged duration

of DEX administration into the postoperative period could

enhance the protective effects of DEX against HIRI

following LT remain important questions that could not be

answered in this study. Sixth, this study had a small sample

size. Intravenous DEX might potentially provide a protective

effect against HIRI but did not significantly change the

occurrence of PRS, duration of mechanical ventilation, and

ICU and hospital length of stay. Thus, whether the

favorable effect of intraoperative DEX against HIRI can be

translated to clinical benefits in terms of the postoperative

outcomes of pediatric LT patients with living-related LT

remains unclear. Finally, some unnoticed changes in

surgical and anesthetic practices may have interfered with

the primary outcomes over the three-year study period.

Further clinical studies, especially randomized controlled

trials with a large sample, are still needed to address the

above issues. If further studies show a consistent beneficial

effect of perioperative DEX on clinical outcomes following

pediatric living-related LT, the implications for clinical

practice could be immense.

In conclusion, intraoperative DEX use was associated with a

lower incidence of moderate-to-extreme HIRI, reduced serum

LDH levels, and an increased amount of epinephrine for the

treatment of PRS. Furthermore, greater GRWR and

intraoperative DEX were independent predictors of moderate-

to-extreme HIRI in pediatric living-related LT. Overall, the

results and underlying mechanisms should be corroborated by

future randomized clinical trials.
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