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provide improved clinical and
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Purpose: This study aimed to provide a direct meta-analysis of the evidence
comparing outcomes between expandable cages and static cages in patients
with transforaminal lumbar interbody fusion (TLIF).
Methods: A search of relevant materials from databases was performed from
inception to March 7, 2022. Clinical and radiological outcomes were included.
Results: Ten studies (1,440 patients) were included. The anterior disc height
and foraminal height for expandable cages were substantially higher than
those for static cages at the final follow-up (P < 0.0001; P=0.05). In
comparison with static cages, although not statistically significant,
expandable cages showed beneficial results, including an increase in
posterior disc height and segmental lordosis. There were no statistically
significant differences in segmental lordosis, lumbar lordosis, pelvic
parameters, cage subsidence, or fusion rates (P > 0.05). Oswestry disability
index scores for expandable cages were substantially lower than those for
static cages at the final follow-up (P= 0.0007). Interestingly, although the
preoperative visual analog scores for back and leg pain were significantly
higher in the expandable group than in the static group (P < 0.0001;
P=0.008), there was no significant difference between the static and
expandable groups during the final follow-up (P=0.51; P=0.85).
Conclusions: Expandable cages are associated with improved functional
outcomes and restored postoperative disc and foraminal heights in patients
with TLIF. In addition, no statistically significant differences were observed in
segmental lordosis, lumbar lordosis, pelvic parameters, cage subsidence, or
fusion rate.
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Introduction

There are several ways to surgically treat lumbar interbody

fusion due to degenerative lumbar diseases; however, each has

intrinsic benefits and drawbacks that must be addressed (1–3).

The transforaminal lumbar interbody fusion (TLIF) technique

improves surgical results while addressing the drawbacks of

existing procedures, such as the risk of vascular damage in

anterior lumbar interbody fusion and the amount of neural

retraction necessary for posterior lumbar interbody fusion (4–6).

Static cages have been commonly used in TLIF because they

restore disc and foraminal height while potentially enhancing

sagittal alignment markers (7, 8). However, the use of static

cages in TLIF requires extensive testing, endplate preparation,

and overdrawing, which may increase the potential for

subsidence and destroy biomechanical stability (9, 10).

Expandable cages were designed to alleviate these difficulties

by permitting insertion in a collapsed state and expansion in

situ, enhancing the ease of insertion, and reducing iatrogenic

endplate damage caused by impaction (11, 12). The design of

this device may reduce neural retraction, endplate injury,

implant subsidence and/or migration, and allow expansion in

the interbody space, maximizing the disc space height (13).

However, increased expansion may lead to endplate damage

and subsidence, and reduced fusion rates (14). Additionally,

expandable cages are often more expensive than static cages.

Previous studies have compared the use of expandable cages

to static cages in patients undergoing TLIF; however, the included

papers were indirect comparative studies (15, 16). Therefore, we

performed a comprehensive assessment of the current literature

that included direct comparison studies, to evaluate the clinical

outcomes and radiographic results of expandable cages versus

static cages in patients undergoing TLIF.
Methods and metairie

Search strategy

The literature was reviewed and meta-analyzed according to

the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) criteria (17). To locate papers involving

TLIF employing expandable and static cages, an electronic

search of the PubMed, Embase, Scopus, and Web of Science

databases was conducted from inception to 7, March 2022.

The following keywords were used during the search:

“expandable,” “non-expandable,” “static,” “cage,” “spacer,”

“transforaminal lumbar interbody fusion,” and “TLIF.” The

keywords were concatenated using AND/OR. We also

identified relevant publications from the literature to aid in

our search. For additional research, the references of selected

papers were evaluated.
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Study selection

The following criteria were used to select studies for

inclusion in the meta-analysis: (1) described at least one of

the primary outcomes of interest in patients who underwent

TLIF with static or expandable cage implantation, (2)

published in the English language, and (3) reported follow-up

outcomes at a minimum of 6 months. Clinical trials, both

non-randomized and randomized, as well as comparative

observational studies and case series, were included. Abstracts,

case reports, review articles, and cadaveric or biomechanical

studies were not included. Two researchers independently

examined the titles and abstracts of the search results. The

relevance of the selected papers was then assessed. Any issues

were resolved through a discussion with a third party.
Data extraction

Clinical and radiological results were the major outcomes of

this study. Clinical outcomes included preoperative and

postoperative visual analog scale (VAS) scores for back and

leg pain, as well as Oswestry Disability Index (ODI) scores.

Radiological outcomes comprised preoperative and

postoperative data, including anterior disc height (ADH),

posterior disc height (PDH), foraminal height (FH),

segmental lordosis (SL), lumbar lordosis (LL), pelvic tilt (PT),

sacral slope (SS), pelvic incidence – LL (PI-LL) mismatch,

cage subsidence, and fusion rates (8).
Quality evaluation

The Newcastle–Ottawa Scale was used to assess the quality

of the non-randomized trials (1). Each study was evaluated

according to selection, comparability, and exposure/outcome.

Using these criteria, we considered papers that obtained more

than five “stars” in our review.
Statistical analysis

RevMan version 5.4 (Cochrane Collaboration, Oxford, UK)

was used to analyze the data. The mean differences and 95%

confidence intervals (CI) for continuous data are provided.

Dichotomous factors were analyzed in comparative studies

using odds ratios (OR) or risk ratios. Continuous variables

were evaluated using the weighted mean differences (WMD)

or standard mean differences. The x2 and I2 tests were used to

investigate heterogeneity, with P > 0.1 or I2 < 50% being

homogenous across trials, and a fixed-effects model was used.

A random-effects model was used if I2 was >50%. To evaluate

statistical significance, a P-value of 0.05 was employed. Forest
frontiersin.org

https://doi.org/10.3389/fsurg.2022.949938
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Lin et al. 10.3389/fsurg.2022.949938
plots were created to graphically represent the findings of

several studies and the aggregated effect estimates.
Results

Study selection and quality evaluation

A total of 134 studies were initially identified. Following a

review of the titles and abstracts, 121 articles were excluded.

The remaining 13 papers were thoroughly reviewed, and

among them, 10 papers satisfied the inclusion criteria and
FIGURE 1

Study selection flow diagram for the meta-analysis.
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were included in the analysis. The full search procedure is

shown in the PRISMA flowchart (Figure 1).

The 10 selected studies included a total of 1,440 patients,

with 661 and 779 individuals recruited in the expandable and

static groups, respectively. Nine of the 10 papers are from the

United States, and one is from Taiwan region. The L4–L5

section was most often operated upon. The average ages of

the expandable and static groups were 63.13 and 56.45 years,

respectively. Demographic information is summarized in

Table 1.

According to the Newcastle–Ottawa Scale evaluation, all 10

studies had a retrospective comparative cohort design and were

of moderate-to-high quality (Table 2).
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TABLE 2 Quality assessment of the included studies.

Studies Selection Comparability Exposure Total

scores

(of 9)Is the case

definition

adequate?

Representativeness of

the cases

Selection of

Controls

Definition of

Controls

Comparability of cases and

controls on the basis of the

design or analysis

Ascertainment of

exposure

Same method of

ascertainment for

cases and controls

Non-

Response

rate

Canseco 2021 (18) ☆ ☆ ☆ ☆☆ ☆ ☆ 7☆

Chang 2021 (8) ☆ ☆ ☆ ☆☆ ☆ ☆ 7☆

Gelfand 2020 (9) ☆ ☆ ☆ ☆☆ ☆ ☆ 7☆

Hawasli 2017 (19) ☆ ☆ ☆ ☆ ☆☆ ☆ ☆ 8☆

Khechen 2020 (10) ☆ ☆ ☆ ☆☆ ☆ ☆ 7☆

Kremer 2019 (12) ☆ ☆ ☆ ☆☆ ☆ ☆ 7☆

Russo 2021 (20) ☆ ☆ ☆ ☆☆ ☆ ☆ 7☆

Vaishnav 2020 (14) ☆ ☆ ☆ ☆☆ ☆ ☆ 7☆

Woodward 2022 (7) ☆ ☆ ☆ ☆ ☆☆ ☆ ☆ 8☆

Yee 2017 (21) ☆ ☆ ☆ ☆☆ ☆ ☆ 7☆
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Radiological parameters

Four studies (n = 426) reported data on ADH.

Preoperatively, there was no significant difference in ADH

between the static and expandable groups (WMD, −0.64; 95%
CI, −1.55, 0.28; I2 = 60%; P = 0.17; Figure 2A). It is worth

noting that the ADH for expandable cages was substantially

higher than that for static cages at the final follow-up (WMD,

−3.76; 95% CI, −5.65, −1.87; I2 = 95%; P < 0.0001;

Figure 2B). This indicated that the mean increase in ADH

was greater in expandable cages than in static cages. The

mean ADH in the static group increased from 8.2 mm

preoperatively to 9.8 mm at the final follow-up, whereas the

mean ADH in the expandable group increased from 8.7 mm

preoperatively to 13.7 mm at the final follow-up.

Four other studies (n = 549) reported data on PDH.

However, there was no significant difference in PDH between

the static and expandable groups preoperatively (WMD, 0.14;

95% CI, −1.14, 1.42; I2 = 96%; P = 0.83; Figure 2C) and at the

final follow-up (WMD, −1.49; 95% CI, −3.10, 0.12; I2 = 97%;

P = 0.07; Figure 2D). The mean PDH in the static group

increased from 5.2 mm preoperatively to 6.5 mm at the final

follow-up, whereas the mean PDH in the expandable group

increased from 5.1 mm preoperatively to 8.0 mm at the final

follow-up. Although there was no statistical difference in PDH

between the two groups at the final follow-up, it should be

noted that the mean change in PDH was greater in the

expandable group.

Four studies (n = 426) reported data about the FH.

Preoperatively, there was no significant difference in FH

between the static and expandable groups (WMD, 0.26; 95%

CI, −0.72, 1.25; I2 = 55%; P = 0.60; Figure 3A). However, the

FH for expandable cages was substantially larger than that for

static cages at the final follow-up (WMD, −2.44; 95% CI,

−4.83, −0.05; I2 = 91%; P = 0.05; Figure 3B). The mean FH in

the static group increased from 18.1 mm preoperatively to
Frontiers in Surgery 05
18.4 mm at the final follow-up, whereas the mean FH in the

expandable group increased from 18.5 mm preoperatively to

20.9 mm at the final follow-up.

Seven studies (n = 897) reported SL data. There was no

significant difference in SL between the static and

expandable groups preoperatively (WMD, 1.05; 95% CI,

−1.21, 3.31; I2 = 90%; P = 0.36; Figure 4A) and at the final

follow-up (WMD, 0.02; 95% CI, −1.28, 1.33; I2 = 74%; P =

0.97; Figure 4B). The mean SL decreased from 15.13°

preoperatively to 14.64° at the final follow-up in the static

group. However, in the expandable group, the mean SL

increased from 14.38° preoperatively to 15.56° at the final

follow-up. This may indirectly prove that SL can be

improved using expandable cages compared to that using

static cages.

Seven studies (n = 893) reported LL data. There was no

significant difference in LL between the static and expandable

groups preoperatively (WMD, 0.59; 95% CI, −3.35, 4.52;

I2 = 86%; P = 0.77; Figure 5A) and at the final follow-up

(WMD, −0.36; 95% CI, −3.33, 2.61; I2 = 76%; P = 0.81;

Figure 5B). The mean LL in the static group increased from

51.6° preoperatively to 52.3° at the final follow-up, whereas

the mean LL in the expandable group increased from 51.1°

preoperatively to 52.7° at the final follow-up.

Three studies (n = 494) reported PT data. There was no

significant difference in PT between the static and expandable

groups preoperatively (WMD, −0.08; 95% CI, −1.98, 1.82;

I2 = 0%; P = 0.93; Figure 6A) and at the final follow-up

(WMD, −0.23; 95% CI, −1.94, 1.49; I2 = 0%; P = 0.80;

Figure 6B). The mean PT in the static group decreased from

21.8° preoperatively to 21.1° at the final follow-up, whereas

the mean PT in the expandable group increased from 21.5°

preoperatively to 22.7° at the final follow-up.

Three studies (n = 494) reported SS data. There was no

significant difference in SS between the static and expandable

groups preoperatively (WMD, −0.44; 95% CI, −2.42, 1.53;
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FIGURE 2

Forest plots for comparison of ADH at preoperative (A) and final follow-up (B) between the static and expandable groups. Forest plots for comparison
of PDH at preoperative (C) and final follow-up (D) between the static and expandable groups. ADH: anterior disc height; PDH: posterior disc height.
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I2 = 37%; P = 0.66; Figure 7A) and at the final follow-up

(WMD, 0.81; 95% CI, −2.97, 4.59; I2 = 60%; P = 0.67;

Figure 7B). The mean SS in the static group increased from

36.3° preoperatively to 37.0° at the final follow-up, whereas

the mean SS in the expandable group decreased from 37.8°

preoperatively to 36.5° at the final follow-up.

Three studies (n = 494) reported data on PI-LL mismatch.

There was no significant difference in the PI-LL mismatch

between the static and expandable groups preoperatively

(WMD, 0.56; 95% CI, −1.92, 3.04; I2 = 0%; P = 0.66;

Figure 8A) or postoperatively (WMD, 1.83; 95% CI, −0.41,
4.07; I2 = 0%; P = 0.11; Figure 8B). The mean PI-LL

mismatch in the static group increased from 11.1°

preoperatively to 11.9° at the final follow-up, whereas the

mean PI-LL mismatch in the expandable group decreased

from 10.9° preoperatively to 10.3° at the final follow-up.
Frontiers in Surgery 06
Five studies (n = 773) reported cage subsidence data. There

was no significant difference in cage subsidence between the

static (18.9%) and expandable (20.7%) groups after TLIF (OR,

0.71; 95% CI, 0.30, 1.64; I2 = 67%; P = 0.42; Figure 9A).

Only two studies (n = 258) provided data on fusion rates

after TLIF. There was no significant difference in the fusion

rates between the static (91.0%) and expandable (90.1%)

groups after TLIF (OR, 1.23; 95% CI, 0.50, 3.02; I2 = 0%;

P = 0.65; Figure 9B).
Clinical outcomes

Four studies (n = 519) provided data on VAS scores for back

pain. Although the preoperative VAS scores for back pain were

significantly higher in the expandable group than in the static
frontiersin.org
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FIGURE 3

Forest plots for comparison of FH at preoperative (A) and final follow-up (B) between the static and expandable groups. FH: foraminal height.

FIGURE 4

Forest plots for comparison of SL at preoperative (A) and final follow-up (B) between the static and expandable groups. SL: segmental lordosis.
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group (WMD, 0.27; 95% CI, 0.15, 0.39; I2 = 37%; P < 0.0001;

Figure 10A), there was no significant difference between the

static and expandable groups at the final follow-up (WMD,
Frontiers in Surgery 07
0.26; 95% CI, −0.51, 1.03; I2 = 82%; P = 0.51; Figure 10B). The

mean VAS score for back pain in the static group decreased

from 6.3 preoperatively to 3.0 at the final follow-up, whereas
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FIGURE 5

Forest plots for comparison of LL at preoperative (A) and final follow-up (B) between the static and expandable groups. LL: lumbar lordosis.

FIGURE 6

Forest plots for comparison of PT at preoperative (A) and final follow-up (B) between the static and expandable groups. PT: pelvic tilt.
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the mean VAS score for back pain in the expandable group

decreased from 6.5 preoperatively to 2.9 at the final follow-up.

Four studies (n = 519) provided data on VAS scores for leg

pain. Although the preoperative VAS score for leg pain was
Frontiers in Surgery 08
significantly higher in the expandable group than in the static

group (WMD, 0.69; 95% CI, 0.18, 1.20; I2 = 56%; P = 0.008;

Figure 10C), there was no significant difference between the

static and expandable groups at the final follow-up (WMD,
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FIGURE 7

Forest plots for comparison of SS at preoperative (A) and final follow-up (B) between the static and expandable groups. SS: sacral slope.

FIGURE 8

Forest plots for comparison of PI-LL mismatch at preoperative (A) and final follow-up (B) between the static and expandable groups.
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0.06; 95% CI, −0.57, 0.69; I2 = 70%; P = 0.85; Figure 10D). The

mean VAS score for leg pain in the static group decreased

from 6.5 preoperatively to 2.4 at the final follow-up, whereas

the mean VAS score for leg pain in the expandable group

decreased from 5.9 preoperatively to 2.5 at the final follow-up.

Five studies (n = 563) reported data on ODI scores.

Preoperatively, there was no significant difference in the ODI

scores between the static and expandable groups (WMD, 1.71;
Frontiers in Surgery 09
95% CI, −3.75, 7.16; I2 = 90%; P = 0.54; Figure 11A). It is

worth mentioning that the ODI scores for expandable cages

were found to be substantially lower than for static cages at the

final follow-up (WMD, 5.08; 95% CI, 2.13, 8.02; I2 = 51%; P =

0.0007; Figure 11B). The mean ODI score in the static group

decreased from 41.8 preoperatively to 21.2 at the final follow-

up, whereas the mean ODI score in the expandable group

decreased from 40.0 preoperatively to 17.1 at the fina follow-up.
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FIGURE 9

Forest plots comparing case subsidence (A), and fusion rate (B) between the static and expandable groups. PI-LL: pelvic incidence – lumbar lordosis.
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Discussion

Recent advances in interbody cage design have led to substantial

progress in disc distraction, sagittal alignment correction, cage

subsidence or migration, and fusion rate (20, 21). Among these,

expandable cages have emerged as attractive alternatives to

standard static cages for lumbar interbody fusion surgery.

Implantation of an expandable cage provides the benefit of

reducing nerve root discomfort and endplate compression and

enhancing the recovery of spinal curvature (19). Previous

systematic studies have compared the use of extendable cages to

static cages in patients undergoing TLIF; however, none of the

included studies were direct comparative studies between the two

groups. Therefore, we collected direct comparison papers for a

meta-analysis to evaluate the clinical and radiological outcomes of

patients undergoing TLIF using expandable cages versus static

cages. This study showed that employing either expandable or

static interbody spacers following TLIF results in positive

radiographic and functional outcomes.

According to our findings, compared to static cages, the use of

expandable cages in TLIF was linked to significant restoration of

ADH and FH. Although the comparison with static cages failed to

reach statistical significance, expandable cages showed positive

results, including an increase in the PDH. Expanding technology

enables the insertion of a larger cage and promotes disc

distraction, resulting in an increase in PDH and FH (14, 18). In

addition, the use of an expandable cage allows it to be placed
Frontiers in Surgery 10
anterior to the disc space, as the device articulates to the anterior

annulus of the vertebral body to increase biomechanical stability,

which is the strongest part of the disc space, resulting in

improvement in the superior disc height and FH (7, 19). It is

worth noting that our analysis shows that SL decreased in the

static group and increased in the expandable group. Although this

change does not reach a statistically significant difference, it can

indirectly indicate that using an expandable cage to restore SL is

better than using the static cage. The use of expandable cages has

been proposed to be advantageous not only for LL but also for

restoring disc height and improving SL. However, our analysis

found that the use of expandable cages in TLIF may not result in

a significantly improved correction of LL compared to static cages.

These findings suggest that the expansion of disc height and SL

provided by an expandable cage does not adequately correct LL.

Some researchers have suggested that failing to restore anterior

lumbar convexity has a detrimental impact on patient outcomes,

such as unequal load distribution in the posterior vertebral body,

irritation of spinal tissues, lower back discomfort, and postural

instability (22, 23). In addition, improvements in postoperative

pain and functional outcomes have been linked to the restoration

of spinal sagittal alignment (19). However, in terms of spinal

sagittal alignment (SL, LL, PT, SS, and PI-LL mismatch), our

findings showed no significant difference in postoperative changes

between the two groups with respect to any radiological

parameter. The improvement in functional outcomes was a

noteworthy result of this study, regardless of radiographic data.
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FIGURE 10

Forest plots for comparison of VAS for back at preoperative (A) and final follow-up (B) between the static and expandable groups. Forest plots for
comparison of VAS for leg at preoperative (C) and final follow-up (D) between the static and expandable groups.VAS: visual analog scale.
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The VAS scores for back and leg pain were significantly reduced

regardless of the type of cage used, but no significant difference

was observed between the two types of cages. Interestingly, the

functional outcomes (ODI scores) for the expandable cage group

were significantly better than those of the static cage group.

Cage subsidence in interbody fusion surgery is a major issue

because it may result in lordosis loss and adjacent segment

degeneration, necessitating revision surgery (24). Theoretically,

the installation of an expandable cage results in less damage

to the endplate. This is consistent with our own experience of

utilizing these cages during surgery. However, no significant

difference was observed in cage subsidence between the static

(18.9%) and expandable (20.7%) groups after TLIF.

The fusion rates were similar between the two groups (90.1%

for the expandable cage group vs. 91.0% for the static cage group;
Frontiers in Surgery 11
P = 0.62). However, it is vital to highlight that the majority of

research differs in some key factors that could influence this

finding. The type of bone graft used is known to affect the

outcome of fusion, but most papers that were included in this

analysis did not mention the specific type. Moreover, depending

on the type and design of the expandable cage, the ability to

insert sufficient graft material within the cage varies and may

result in discrepancies in fusion rates. In addition, only two

studies in this meta-analysis provided data on the fusion rate (8,

19); therefore, the evidence of the results needs to be improved.

This is the first systematic review and meta-analysis study that

directly compared expandable cages with static cages and gives

many meaningful results. However, there were inevitable

limitations to this study. First, the level of evidence was low

because of the retrospective nature of all included investigations.
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FIGURE 11

Forest plots for comparison of ODI at preoperative (A) and final follow-up (B) between the static and expandable groups. ODI: Oswestry Disability
Index.
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Second, data on the outcomes and study cohort heterogeneity were

lacking. Third, no subgroup analysis of minimally invasive TLIF

versus open TLIF was performed. Finally, long-term results were

not obtained in this study. Owing to the aforementioned

considerations, high-quality research is required to prove the

relative advantages of expandable cages versus static cages in TLIF.
Conclusions

Expandable cages are positively associated with

restored postoperative disc and foraminal heights and improved

functional outcomes in patients with TLIF. In addition, there

were no statistically significant differences in spinal sagittal

alignment (SL, LL), pelvic parameters (PT, SS, and PI-LL

mismatch), cage subsidence, or fusion rates.
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