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Purpose: To establish novel prediction models for predicting acute kidney injury (AKI)
after cardiac surgery based on early postoperative biomarkers.
Patients and methods: This study enrolled patients who underwent cardiac surgery in
a Chinese tertiary cardiac center and consisted of a discovery cohort (n= 452, from
November 2018 to June 2019) and a validation cohort (n= 326, from December
2019 to May 2020). 43 biomarkers were screened using the least absolute
shrinkage and selection operator and logistic regression to construct a nomogram
model. Three tree-based machine learning models were also established: eXtreme
Gradient Boosting (XGBoost), random forest (RF) and deep forest (DF). Model
performance was accessed using area under the receiver operating characteristic
curve (AUC). AKI was defined according to the Kidney Disease Improving Global
Outcomes criteria.
Results: Five biomarkers were identified as independent predictors of AKI and were
included in the nomogram: soluble ST2 (sST2), N terminal pro-brain natriuretic
peptide (NT-proBNP), heart-type fatty acid binding protein (H-FABP), lactic
dehydrogenase (LDH), and uric acid (UA). In the validation cohort, the nomogram
achieved good discrimination, with AUC of 0.834. The machine learning models
also exhibited adequate discrimination, with AUC of 0.856, 0.850, and 0.836 for DF,
RF, and XGBoost, respectively. Both nomogram and machine learning models had
well calibrated. The AUC of sST2, NT-proBNP, H-FABP, LDH, and UA to discriminate
AKI were 0.670, 0.713, 0.725, 0.704, and 0.749, respectively. In addition, all of these
biomarkers were significantly correlated with AKI after adjusting clinical
confounders (odds ratio and 95% confidence interval of the third vs. the first tertile:
sST2, 3.55 [2.34–5.49], NT-proBNP, 5.50 [3.54–8.71], H-FABP, 6.64 [4.11–11.06],
LDH, 7.47 [4.54–12.64], and UA, 8.93 [5.46–15.06]).
Conclusion: Our study provides a series of novel predictive models and five
biomarkers for enhancing the risk stratification of AKI after cardiac surgery.
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Introduction

Over the past few decades, advances in surgical techniques, anesthesia, and perioperative

care have all contribute to enhancing in-hospital survival for cardiac patients. However,

surgical morbidity is still a leading health burden in both developed and developing

countries. As one of the most serious complications, cardiac surgery-associated acute kidney
01 frontiersin.org
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injury (CSA-AKI) was reported with the rate ranging 26.0%–28.5%

(1). CSA-AKI not only severely affects acute morbidity and

mortality, but also affects long-term prognosis.

Currently, because of a general lack of effective treatments for

AKI, early identification of the condition is an important step to

minimize the incidences of AKI and its mediated adverse events.

Several attempts have been made to develop AKI prediction scores

such as Cleveland Clinic score, Simplified Renal Index score, and

Mehta score (2–4). However, these models were mainly derived

based on traditional clinical factors from a patient’s history (e.g.,

age, hypertension, diabetes mellitus, baseline kidney function),

which provided limited information for AKI classification. On the

other hand, due to differences in demographic characteristics and

comorbidities, widely adoption of these models to other races or

populations is of great challenge (5, 6).

Biomarkers have been proposed to clinical practice for more than

10 years. Unfortunately, serum creatinine (Scr), the main biomarker

of AKI, does not increase until 50% of the kidney function is lost,

potentially leading to diagnosis and treatment delay. Many novel

biomarkers were proposed to substitute Scr in the assessment of

kidney function, such as NGAL, KIM-1, L-FABP, and IGFBP-7

(7). However, in practice, a single biomarker is insensitive in its

prediction for AKI. Therefore, it is necessary to consider a more

comprehensive biomarker-based model to improve the accuracy

and robustness of AKI prediction. The early postoperative period

has important clinical implications as this time period is the

optimal actionable window to optimize the management of

postoperative AKI. Some of biomarkers arose during this period

may reflect acute physiological responses for kidney function. In

this study, we aimed to develop two types of models for CSA-AKI

based on early postoperative biomarkers, applying multivariate

logistic regression method and machine learning (ML) algorithms.

The models were developed using a dataset of 452 patients from

Nanjing First Hospital.
Material and methods

Study design and participants

This study contains two separate patient cohorts from our

cardiac center. For the discovery cohort, participants admitted

between November 2018 and June 2019 were retrospectively

obtained from the Patient Information Management Platform of

Nanjing First Hospital (218.2.200.37:2356/PatientList). This is a

population-based database that consisted of patient information

available from electronic health record in digital format. The

clinical characteristics of patients were recorded in real time by

medical personnel. The prediction models generated from the

discovery stage were further validated in an independent patient

cohort, which were prospectively enrolled between December 2019

and May 2020. This study was approved by the Ethical Committee

of Nanjing First Hospital and informed consent was obtained from

patients or their legal representatives. This study followed the

TRIPOD statement guidelines for reporting (8).

We enrolled patients who underwent cardiac surgery with

cardiopulmonary bypass (CPB) including coronary artery bypass
Frontiers in Surgery 02
grafting (CABG), valve surgery, and concomitant CABG and valve

surgery. Patients were excluded if they met any of the following

criteria: (i) aged <18 years old; (ii) AKI, dialysis, or end-stage renal

disease at or before admission; (iii) emergency surgery; (iv)

preoperative acute heart failure or hemodynamic instability; (v)

missing data of Scr.
Sample test

Laboratory biomarkers included cardiac biomarkers, arterial

blood gas, blood biochemistry and blood cell analysis, and

coagulation function. Arterial blood gases were collected

immediately after intensive care unit (ICU) admission. In our

center, most elective surgery can be done before 18.00 pm. Fasting

venous blood samples were obtained on the morning (6:00 am) of

the first postoperative day to assay cardiac biomarkers, blood

biochemistry and blood cells, and coagulation function. When

patients were in ICU, blood samples were collected for assessment

of renal function around 6.00–7.00 am every day. When patients

were transformed into normal ward, blood samples were collected

for assessment of renal function around 8.00–9.00 am. All clinical

samples were tested in the department of medical laboratory of

Nanjing First Hospital.
End point definition

The primary outcome was postoperative any-stage AKI, which

was defined according to the Kidney Disease Improving Global

Outcomes (KDIGO) clinical guideline (9), specifically an acute

increase in Scr over 50% within 7 days, or 26.5 μmol/l elevation

within 48 h compared with the reference Scr, or presence of

oliguria (urine output less than 0.5 ml/kg/hr for 6 h), or a

requirement of renal replacement therapy (RRT). The Scr levels

measured before surgery were used as the reference value.

Estimated glomerular filtration rate (eGFR) was calculated using

the Chronic Kidney Disease Epidemiology Collaboration (CKD-

EPI) creatinine equation (10).
Model development

We developed a series of prediction models for CSA-AKI

including a nomogram model and three tree-based ML models.

Before developing the nomogram, we applied least absolute

shrinkage and selection operator (LASSO) regression to identify a

set of important biomarkers. The LASSO is a compressed

estimation method based on the idea of data dimension reduction.

It achieves the goal of variable selection by constructing a

penalized function (λ) that compresses coefficients of irrelevant

prediction variables towards zero (11). A particular advantage of

this technique is that it avoids both overfitting and overestimation

during model derivation. The tuning parameter (λ) was

determined in the LASSO using 10-fold cross-validation on the
frontiersin.org
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basis of minimum criteria and a standard error. The identified

biomarkers were then incorporated in a multivariate logistic

regression analysis to generate a nomogram model.

We performed the following tree-based ML algorithms to

develop the prediction models, which were the most popular and

advanced ML methods used for the problem of classification,

including eXtreme Gradient Boosting (XGBoost), RF, and deep

forest (DF). XGBoost is a learning framework mainly consisting

of two parts: simple decision tree and gradient boosting

algorithm. XGBoost applies a second Taylor expansion on the

loss function and simultaneously implements the first derivative

and the second derivative (12). RF is a classic tree-based

algorithm which combines multiple decision trees through

majority voting (13). Both XGBoost and RF are ensemble

learning methods characterized by good accuracy, robustness,
FIGURE 1

Formation of the discovery and validation cohorts of acute kidney injury after c
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and high calculating efficiency. As a more advanced deep

learning approach, DF generates a multi-layer cascade forest, a

structure contains many different RFs. The purpose of this

design is to include different types of forests to ensure the

diversity of the model. Each layer in the cascade forest receives

the information processed by the previous stage and then

concatenates with the original vector to be input to the next

layer (14). (Supplementary Figure S1) To correctly interpret a

ML model, we used Shapley Additive exPlanation (SHAP) values

to explain the complex relationship between variables and

outcomes in the RF model. The SHAP algorithm works based on

the concept of Shapley values used in game theory (15). It

provides a method to estimate the positive or negative

contribution of individual feature to the overall model prediction

via the GradientSHAP approximation (16).
ardiac surgery.
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TABLE 1 Clinical characteristics of patients in the discovery and validation cohorts who did or did not develop acute kidney injury.

Characteristics Discovery cohort (n = 452) P-value Validation cohort (n = 326) P-value

Non-AKI (n = 337) AKI (n = 115) Non-AKI (n = 231) AKI (n = 95)

Age (years) 61.8 ± 9.9 64.1 ± 10.7 0.009 60.5 ± 11.2 65.2 ± 9.3 <0.001

Male 202 (59.9) 72 (62.6) 0.613 141 (61.0) 60 (63.2) 0.721

Body mass index (kg/m2) 24.0 ± 3.29 24.3 ± 3.21 0.453 23.8 ± 3.23 24.0 ± 3.44 0.672

Diabetes mellitus 63 (18.7) 32 (27.8) 0.038 47 (20.3) 23 (24.2) 0.440

Hypertension 184 (54.6) 75 (65.2) 0.047 122 (52.8) 55 (57.9) 0.403

eGFR (ml/min/1.73 m2) 96.2 (24.8) 90.2 (31.7) <0.001 102.4 (30.9) 86.8 (30.1) <0.001

COPD 15 (4.5) 5 (4.4) 0.963 10 (4.3) 5 (5.3) 0.714

Cerebrovascular accident 30 (8.9) 9 (7.8) 0.723 26 (11.3) 10 (10.5) 0.849

LVEF 62.0 (58.0–64.0) 61.0 (53.0–64.0) 0.052 62.0 (58.0–64.0) 62.0 (56.0–65.0) 0.722

NYHA III-IV 78 (23.1) 33 (28.7) 0.232 62 (26.8) 30 (31.6) 0.388

Prior myocardial infarction 30 (8.9) 14 (12.2) 0.307 27 (11.7) 14 (14.7) 0.812

Surgery type 0.008 0.024

CABG alone 130 (38.6) 33 (28.7) 75 (32.5) 23 (24.2)

Valve surgery alone 172 (51.0) 58 (50.4) 134 (58.0) 53 (55.8)

CABG and valve surgery 35 (10.4) 24 (20.9) 22 (9.5) 19 (20.0)

CPB time (min) 91.0 (71.0–115) 113.0 (87.0–142.0) <0.001 97.0 (81.0–126.0) 111.0 (94.5–133.0) 0.002

ACC time (min) 63.0 (46.0–83.0) 74.0 (56.5–97.0) <0.001 68.0 (52.5–89.5) 76.0 (62.0–91.5) 0.015

In-hospital outcome

Death or on RRT 3 (0.9) 5 (4.3) 0.044 3 (1.3) 3 (3.2) 0.496

Acute myocardial infarction 1 (0.3) 1 (0.9) 1.000 1 (0.4) 0 (0) 1.000

Acute heart failure 3 (0.9) 3 (0.9) 0.358 1 (0.4) 2 (2.1) 0.424

Hepatic insufficiency 3 (0.9) 4 (3.5) 0.133 3 (1.3) 2 (2.1) 0.966

Pulmonary infection 7 (2.1) 9 (7.8) 0.004 4 (1.7) 7 (7.4) 0.026

Reoperation for bleeding 2 (0.6) 3 (2.6) 0.205 4 (1.7) 5 (5.2) 0.163

Ventilation time (hr) 13.0 (12.0–18.0) 16.0 (13.0–24.0) <0.001 14.0 (12.0–20.0) 17.0 (14.0–22.0) 0.001

ICU length of stay (hr) 23.0 (21.0–43.0) 42.0 (21.5–47.0) <0.001 24.0 (21.0–44.0) 40.0 (21.0–57.0) 0.005

Hospital length of stay (d) 16.0 (13.0–19.0) 19.0 (15.0–24.0) <0.001 16.0 (14.0–20.0) 19.0 (15.5–23.0) <0.001

Data are reported as mean ± SD, medians (interquartile range), or percentage values. AKI, acute kidney injury; eGFR, estimated glomerular filtration rate; COPD, chronic

obstructive pulmonary disease; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; CABG, coronary artery bypass grafting; CPB, cardiopulmonary

bypass; ACC, aortic cross-clamping; RRT, renal replacement therapy; ICU, intensive care unit.

Fan et al. 10.3389/fsurg.2023.1048431
Statistical analysis

Continuous variables are presented as means ± standard

deviations or medians (interquartile range), and categorized

variables as frequencies with proportions. Comparisons between

non-AKI group and AKI group were carried out using the t-test,

Mann-Whitney U-test, chi-square test, or Fisher’s exact probability

method as appropriate. All demographic characteristics and clinical

outcomes were available after a second manual review of the

medical records. For laboratory data, our dataset has missing

values ranging 0–3.8%. The missing data were handled using

multiple imputation method. All laboratory biomarkers were loge
transformed for subsequent analysis.
Frontiers in Surgery 04
The discrimination of prediction model was evaluated by area

under the receiver operating characteristic (AUC). Model

calibration was accessed using Brier score, and visualized with a

1000-resample bootstrapped calibration plot. A lower Brier score

indicates superior model calibration (17). For interpreting ML

model, we used SHAP summary plot to show feature importance

and depicted the effect of specific feature on model output.

To further explore the association between single biomarker and

AKI, we used the violin plots to show the distribution of the single

biomarker among non-AKI and AKI groups. Receiver operating

characteristic (ROC) curves were also formulated to determine the

discriminative ability and optimal cut-off values of each biomarker

(identified by the maximum Youden index). In addition, patients
frontiersin.org
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TABLE 2 Early postoperative biomarkers among patients in the discovery
cohort who did or did not develop acute kidney injury.

Biomarker Total (n
= 452)

Non-AKI
(n = 337)

AKI (n =
115)

P-
value

sST2 4. q 67 ±
1.20

4.51 ± 1.16 5.13 ± 1.18 <0.001

NT-proBNP 6.35 ± 1.16 6.11 ± 1.00 7.03 ± 1.31 <0.001

H-FABP 1.27 ± 1.28 1.00 ± 1.23 2.06 ± 1.09 <0.001

Biochemical test

ALT 3.16 ± 0.63 3.18 ± 0.63 3.09 ± 0.62 0.156

AST 3.92 ± 0.58 3.87 ± 0.57 4.07 ± 0.59 0.002

LDH 5.83 ± 0.33 5.78 ± 0.28 5.98 ± 0.41 <0.001

Alkaline
phosphatase

3.88 ± 0.49 3.86 ± 0.47 3.92 ± 0.55 0.270

UA 5.66 ± 0.33 5.59 ± 0.32 5.87 ± 0.28 <0.001

Total cholesterol 0.98 ± 0.27 0.99 ± 0.26 0.96 ± 0.29 0.319

Triglyceride 0.06 ± 0.44 0.06 ± 0.43 0.07 ± 0.47 0.945

HDL −0.30 ±
0.25

−0.28 ± 0.24 −0.35 ±
0.27

0.007

LDL 0.32 ± 0.39 0.33 ± 0.38 0.30 ± 0.41 0.466

Apolipoprotein
A1

−0.14 ±
0.22

−0.13 ± 0.21 −0.17 ±
0.22

0.054

Apolipoprotein B −0.74 ±
0.33

−0.74 ± 0.32 −0.75 ±
0.36

0.680

Lipoprotein (a) 4.79 ± 0.86 4.78 ± 0.86 4.81 ± 0.86 0.721

Serum albumin 3.50 ± 0.12 3.50 ± 0.12 3.50 ± 0.12 0.739

Total bilirubin 2.69 ± 0.53 2.69 ± 0.52 2.66 ± 0.56 0.605

TBA −0.50 ±
0.91

−0.56 ± 0.88 −0.31 ±
0.95

0.014

Arterial blood gas

PCO2 3.44 ± 0.17 3.44 ± 0.17 3.45 ± 0.17 0.823

PO2 4.97 ± 0.35 4.99 ± 0.34 4.91 ± 0.38 0.040

Intubated PO2/
FiO2 ratio

5.96 ± 0.37 5.89 ± 0.35 5.78 ± 0.41 0.013

Serum sodium 4.94 ± 0.06 4.94 ± 0.07 4.94 ± 0.02 0.489

Serum potassium 1.46 ± 0.15 1.44 ± 0.14 1.49 ± 0.16 0.003

Serum calcium 0.16 ± 0.05 0.16 ± 0.05 0.16 ± 0.05 0.348

Serum
magnesium

−0.50 ±
0.19

−0.52 ± 0.19 −0.46 ±
0.18

0.005

Lactic acid 0.48 ± 0.60 0.47 ± 0.60 0.52 ± 0.61 0.447

HCO3− 2.98 ± 0.22 2.98 ± 0.24 2.98 ± 0.12 0.790

Blood cell analysis

WBC count 2.57 ± 0.28 2.57 ± 0.28 2.58 ± 0.29 0.705

Lymphocyte
count

−0.39 ±
0.49

−0.39 ± 0.50 −0.41 ±
0.47

0.662

Monocyte count −0.14 ±
0.48

−0.14 ± 0.46 −0.14 ±
0.53

0.979

Neutrophil count 2.43 ± 0.29 2.43 ± 0.29 2.44 ± 0.30 0.663

(continued)

TABLE 2 Continued

Biomarker Total (n
= 452)

Non-AKI
(n = 337)

AKI (n =
115)

P-
value

RBC count 1.25 ± 0.14 1.25 ± 0.14 1.23 ± 0.15 0.129

Hemoglobin 4.66 ± 0.13 4.67 ± 0.13 4.64 ± 0.15 0.025

Hematocrit 3.46 ± 0.13 3.46 ± 0.13 3.43 ± 0.14 0.045

RDW 2.61 ± 0.11 2.60 ± 0.11 2.63 ± 0.12 0.061

Platelet count 4.96 ± 0.42 4.96 ± 0.39 4.95 ± 0.50 0.783

MPV 2.46 ± 0.10 2.46 ± 0.10 2.46 ± 0.08 0.890

PDW 2.67 ± 0.17 2.67 ± 0.18 2.68 ± 0.14 0.881

Coagulation function

PT 2.46 ± 0.14 2.45 ± 0.15 2.47 ± 0.09 0.102

INR 0.02 ± 0.10 0.02 ± 0.09 0.04 ± 0.12 0.064

APTT 3.30 ± 0.21 3.30 ± 0.23 3.31 ± 0.14 0.352

Fibrinogen 1.03 ± 0.29 1.03 ± 0.29 1.05 ± 0.29 0.561

D-Dimer −0.13 ±
0.70

−0.11 ± 0.69 −0.19 ±
0.75

0.333

All variables are loge transformed and presented as mean± SD. AKI, acute kidney

injury; sST2, soluble ST2; NT-proBNP, N terminal pro-brain natriuretic peptide; H-

FABP, heart-type fatty acid-binding protein; ALT, alanine aminotransferase; AST,

aspartate transaminase; LDH, lactic dehydrogenase; UA, uric acid; HDL, high

density lipoprotein; LDL, low density lipoprotein; TBA, total bile acid; WBC, white

blood cell; RBC, red blood cell; RDW, red blood cell distribution width; MPV, mean

platelet volume; PDW, platelet distribution width; PT, prothrombin time; INR,

international normalized ratio; APTT, activated partial thromboplastin time.

TABLE 3 Multivariate logistic regression model for predicting acute kidney
injury based on discovery cohort.

Risk factor β OR (95% CI) P-value

sST2 0.407 1.50 (1.18–1.91) 0.001

NT-proBNP 0.706 2.03 (1.58–2.59) <0.001

H-FABP 0.784 2.19 (1.71–2.80) <0.001

LDH 0.964 2.62 (1.09–6.31) 0.031

UA 2.789 16.27 (5.31–49.82) <0.001

Intercept −30.489

Calculation of predicted risk using patient data and β regression coefficients:

Calculate the odds of acute kidney injury = exp (−30.4898+ [0.407 × loge sST2 ng/

ml] + [0.706 × loge NT-proBNP pg/ml] + [0.784 × loge H-FABP ng/ml] + [0.964 ×

loge LDH u/l] + [2.789 × loge UA umol/l]).

Predicted risk of CSA-AKI as a percentage = [odds/(1 + odds)] × 100.

OR, odds ratio; sST2, soluble ST2; NT-proBNP, N terminal pro-brain natriuretic

peptide; H-FABP, heart-type fatty acid-binding protein; LDH, lactic dehydrogenase;

UA, uric acid.

Fan et al. 10.3389/fsurg.2023.1048431

Frontiers in Surgery 05
were divided into three group based on the tertiles of biomarker

concentration distribution. Multivariate logistic regression analysis

was performed to identify whether these biomarkers were

predictors of AKI, independent of clinical confounders. Odds ratios

(ORs) and corresponding two-sided 95% confidence intervals (CIs)

were reported. Statistical analyses were performed using R (version

4.0.3) with the packages of mice, glmnet, and rms, and Python

(version 3.8) with the packages of sklearn, deep-forest, and shap. A

two-sided P value less than 0.05 indicated statistically significant.
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FIGURE 2

Biomarker-based nomogram model and model performance. (A) Nomogram to predict CSA-AKI; Receiver operating characteristic curve of the nomogram in
the discovery (B) and validation (C) cohorts; 1000-resample bootstrapped calibration plot of the nomogram in the discovery (D) and validation (E) cohorts.
sST2, soluble ST2; NT-proBNP, N terminal pro-brain natriuretic peptide; H-FABP, heart-type fatty acid-binding protein; LDH, lactic dehydrogenase; UA,
uric acid; AUC, area under the receiver operating characteristic curve.

Fan et al. 10.3389/fsurg.2023.1048431
Results

Characteristics of the cohorts

Overall, 452 participants, admitted between November 2018 and

June 2019, comprised the discovery cohort; 326 participants,
Frontiers in Surgery 06
admitted between December 2019 and May 2020, comprised the

validation cohort (Figure 1). The rates of AKI were 25.4% and

29.1% in the discovery and validation cohorts, respectively. In the

discovery cohort, patients who developed AKI showed a

significant association on the univariate analysis included

advanced age (P = 0.009), more diabetes mellitus (P = 0.038),
frontiersin.org
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FIGURE 3

Model performance and SHAP analysis of machine learning models. (A) Receiver operating characteristic curve to assess discrimination of XGBoost, random
forest, and deep forest models in the validation cohort; (B) Calibration plots for XGBoost, random forest, and deep forest models in the validation cohort
(5 bins); (C) SHAP summary plots of top 20 features in the random forest. Feature importance ranked by SHAP values; (D) Dot estimation for each
feature’s attribution value to model output. The higher SHAP value of features, the higher risk of acute kidney injury. SHAP, Shapely Additive exPlanations;
H-FABP, heart-type fatty acid-binding protein; NT-proBNP, N terminal pro-brain natriuretic peptide; sST2, soluble ST2; UA, uric acid; LDH, lactic
dehydrogenase; HDL, high density lipoprotein; AST, aspartate transaminase; ALT, alanine aminotransferase; TBA, total bile acid.

TABLE 4 Accuracy metrics of three machine models.

Model Accuracy Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 score

XGBoost 0.808 57.8 89.4 74.9 82.1 0.79

Random forest 0.812 56.9 87.5 76.2 84.2 0.79

Deep forest 0.819 60.1 90.0 76.9 84.4 0.83

PPV, positive predictive value; NPV, negative predictive value.
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hypertension (P = 0.047), and combined surgery (P = 0.008), longer

duration of CPB and aortic cross-clamping (all P < 0.001). Patients

who developed AKI had more death or on RRT (P = 0.044), more

pulmonary infection (P = 0.004), longer ventilation time, ICU stay
Frontiers in Surgery 07
and hospital stay (all P < 0.001). Similar differences were observed

in the validation cohort except diabetes mellitus (P = 0.440),

hypertension (P = 0.403), and death or on RRT (P = 0.496)

(Table 1).
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FIGURE 4

Receiver operating characteristic curve for sST2, NT-proBNP, H-FABP,
LDH, and UA to predict CSA-AKI. AKI, acute kidney injury; AUC, area
under the receiver operating characteristic curve; CI, confidence
interval; sST2, soluble ST2; NT-proBNP, N terminal pro-brain natriuretic
peptide; H-FABP, heart-type fatty acid-binding protein; LDH, lactic
dehydrogenase; UA, uric acid.
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43 early postoperative biomarkers were summarized in the

discovery cohort (Table 2). Patients who developed AKI had

higher indices of soluble ST2 (sST2), N terminal pro-brain

natriuretic peptide (NT-proBNP), heart-type fatty acid binding

protein (H-FABP), aspartate transaminase, lactic dehydrogenase

(LDH), uric acid (UA), total bile acid, serum potassium, serum

magnesium, or had lower indices of high-density lipoprotein

(HDL), PO2, hemoglobin, hematocrit (all P < 0.05).
Variable selection

In the discovery cohort, 43 biomarkers were included in the

variable selection procedure. The LASSO identified six

biomarkers predisposing to AKI: sST2, NT-proBNP, H-FABP,

LDH, UA, and HDL (Supplementary Figure S2). Inclusion of

these six variables in a logistic regression model resulted in five

variables (excluded HDL, P > 0.05) that were independently

statistically significant predictors of AKI and were included in

the final model (Table 3).
Nomogram and model performance

An AKI prediction nomogram model was constructed (Figure 2A).

The nomogram demonstrated good discrimination in the discovery

cohort, with a C-statistic of 0.871 (95%CI 0.834–0.908).

Correspondingly, in the validation cohort, the nomogram achieved a C-
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statistic of 0.834 (95%CI 0.783–0.885) (Figures 2B,C). The calibration

plots revealed good calibration in both cohorts (Figures 2D,E).
Ml models

We constructed ML models using XGBoost, RF, and DF

algorithms with all the biomarkers as input variables. In the

validation cohort, the AUCs were 0.856 (95%CI 0.813–0.899) for

RF model, 0.850 (95%CI 0.805–0.894) for DF model, and 0.836

(95%CI 0.790–0.883) for XGBoost model (Figure 3A). Different

accuracy metrics were displayed in Table 4. The DF model

exhibited the best calibration (Brier score: 0.143), followed by RF

(Brier score: 0.157) and XGBoost (Brier score: 0.182) (Figure 3B).

The SHAP values were used to highlight individual contributions

of the variables in the RF model. Figure 3C describes the SHAP

summary plot, showing the SHAP values in order of the important

variables that contribute to AKI. According to the summary plot,

each dot represents one patient and the horizontal location of each

dot indicates whether the effect of a feature is associated with a

higher or lower risk of AKI (Figure 3D).
Association between single biomarker
and AKI

We further investigated the association of sST2, NT-proBNP,

H-FABP, LDH, and UA with AKI after pooling the two cohorts

together. The violin plots showed that patients in the AKI group

had significantly higher levels of sST2, NT-proBNP, H-FABP,

LDH, and UA than patients without AKI (Supplementary

Figure S3). ROC curves were used to test the overall discriminative

ability of these five biomarkers for AKI. We observed that the

AUCs of sST2, NT-proBNP, H-FABP, LDH, and UA to

discriminate AKI were 0.670 (95%CI, 0.627–0.713), 0.713 (95%CI,

0.669–0.758), 0.725 (95%CI, 0.686–0.765), 0.704 (95%CI, 0.664–

0.745), and 0.749 (95%CI, 0.710–0.788). Meanwhile, the optimal

cut-off values and corresponding specificity and sensitivity were

determined (Figure 4). Moreover, we divided patients into three

groups based on the tertiles of biomarker concentration

distribution. With the first tertile used as the reference category,

increased levels of these five biomarkers were associated with a

higher risk of AKI. These associations persisted after multifactorial

adjustment, including baseline eGFR (Table 5).
Discussion

In this study, using early postoperative biomarkers, we

constructed a series of models for enhancing risk stratification of

AKI after cardiac surgery. The discrimination of these models was

clinically satisfactory, with AUCs ranging 0.834–0.856 in the

validation cohort. In addition, both LASSO and SHAP analysis

identified sST2, NT-proBNP, H-FABP, LDH, and UA as the most

influential predictors of AKI.

To the best of our knowledge, the biomarker-based nomogram

model in this study consists of four cardiac biomarkers (sST2, NT-
frontiersin.org
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TABLE 5 Multivariate regression analysis on the association between sST2, NT-proBNP, H-FABP, LDH, and UA with acute kidney injury in patients of the total
cohort.

Biomarker Range Crude OR P value Adjust ORa Adjust P-valuea

sST2

T1 2.25–4.31 1 Ref 1 Ref

T2 4.31–5.12 1.67 (1.08–2.61) 0.022 1.76 (1.12–2.77) 0.014

T3 5.13–6.75 3.79 (2.52–5.78) <0.001 3.55 (2.34–5.49) <0.001

NT-proBNP

T1 3.57–5.93 1 Ref 1 Ref

T2 5.93–6.99 1.15 (0.73–1.83) 0.545 1.09 (0.68–1.77) 0.704

T3 7.01–9.76 5.44 (3.62–8.32) <0.001 5.50 (3.54–8.71) <0.001

H-FABP

T1 -2.30–1.19 1 Ref 1 Ref

T2 1.20–2.24 3.19 (1.97–5.28) <0.001 3.04 (1.86–5.09) <0.001

T3 2.24–6.08 7.35 (4.64–12.01) <0.001 6.64 (4.11–11.06) <0.001

LDH

T1 5.00–5.68 1 Ref 1 Ref

T2 5.69–5.96 2.65 (1.67–4.29) <0.001 3.02 (1.85–5.04) <0.001

T3 5.96–7.32 5.91 (3.80–9.42) <0.001 7.47 (4.54–12.64) <0.001

UA

T1 2.05–5.58 1 Ref 1 Ref

T2 5.58–5.85 2.22 (1.37–3.68) <0.001 2.40 (1.45–4.06) 0.001

T3 5.85–6.65 8.03 (5.13–12.95) <0.001 8.93 (5.46–15.06) <0.001

All biomarkers are calculated on loge-transformed. T1-T3 represents Tertile 1–3.
aAdjusted multifactorially for age, male, body mass index, diabetes mellitus, hypertension, chronic obstructive pulmonary disease, cerebrovascular accident, left ventricular

ejection fraction, New York Heart Association III-IV, combined surgery, and baseline estimated glomerular filtration rate. OR, odds ratio; sST2, soluble ST2; NT-proBNP, N

terminal pro-brain natriuretic peptide; H-FABP, heart-type fatty acid-binding protein; LDH, lactic dehydrogenase; UA, uric acid.
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proBNP, H-FABP, and LDH) and a metabolism related biomarker

(UA), which have not been included in previous studies. Overall,

they are novel biomarkers for predicting AKI. sST2 is initially

found to be a member of the interleukin-1 (IL-1) receptor family

that serves as a decoy for IL-33, regulating immune and

inflammatory responses. Emerging evidence from epidemiological

studies supported that elevated serum sST2 levels were associated

with mortality and adverse clinical outcomes in patients suffering

from heart failure, coronary artery disease, arrhythmia, and stroke

(18–21). Lobdell et al. demonstrated a significant association of

high preoperative concentrations of sST2 as a prognostic indicator

of AKI among patients undergoing CABG (22). We observed a

similar statistical difference in early postoperative phase. These

findings may promote the extension of the predictive ability of

sST2 from cardiovascular disease to kidney injury.

As an intracellular transport protein responsible for transporting

free fatty acid in cardiomyocytes, H-FABP has been recognized as a

diagnostic and prognostic marker for acute coronary syndrome

(23, 24). Schaub et al. explored the predictive value of H-FABP for

AKI at four time points perioperatively (25). They found that

patients who developed AKI had higher H-FABP than those who
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did not. Published literatures gave plausible explanations of the

relationship between H-FABP and AKI in cardiac patients (25–27).

First, high H-FABP levels were only observed in patients who had

received on-pump cardiac surgery, but not in off-pump procedures.

This indicated that ischemia-reperfusion injury and inflammatory

might play a role in the elevation of H-FABP. Second, H-FABP

was an indicator of hemodynamic instability after cardiac surgery.

Third, elevated H-FABP levels were also found in patients with

elevated venous pressure or venous congestion, which in return

would affect kidney circulation and lead to “congestive kidney

failure”.

Like sST2 and H-FABP, NT-proBNP and LDH are also cardiac

biomarkers associated with development of AKI. NT-proBNP is

mainly cleared by renal excretion, and its change has a significant

modifying effect on kidney function decline (28). Besides,

postoperative cardiac insufficiency, which is predicted by NT-

proBNP, promotes AKI via hypotension. LDH anomaly is known

to often occur in certain diseases such as renal failure,

cardiovascular events, and hepatic damage. Therefore, LDH was

usually measured to detect tissue damage as well as patient’s

overall disease severity (29). Moreover, in the CPB setting, the
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elevated LDH in the immediate postoperative period may be an

indicator of CPB-induced hemolysis, which is associated with the

development of AKI (30). UA is the final product of endogenous

and exogenous purine metabolism. A population-based cohort

study has shown that high serum UA levels were positively

associated with elevated levels of pro-inflammatory cytokines (e.g.,

interleukin-6, high sensitivity C-reactive protein, tumor necrosis

factor-α), which was considered as the central components of the

pathogenesis of AKI (31). Kidney function may benefit from UA

lowering therapy; therefore, UA may serve as a novel potential

target for AKI prevention (32).

The advantage of our study included the use of SHAP values to

uncover the black box of MLthe DF algorithm to predict CSA-AKI.

As one of the advanced tree-based learning methods, the DF model

demonstrated better predictive power than the conventional ML

model. The DF boosts predictive information by integrating

multiple RFs, providing an effective option to investigate binary

problem and improving the robustness of the standard deep

learning methods working on small-scale data. Compared with

logistic regression, machine learning can include much more

variables and resolve nonlinear interactions. This can improve the

effectiveness of prediction. Even though AUC of machine learning

we used was 0.856, which was similar to the logistic regression, it

was higher than AUC of logistic regression (0.834). This means

machine learning showed better performance than traditional

analysis. To feasibility, these biomarkers can be collected easily

from venous blood and tested in labs easily.

Several limitations in this study should also be noted. First, the

models were derived from a single-center dataset. Therefore, before

models can be implemented in clinical practice, their predictive power

needed to be validated in external datasets. Second, we did not

consider innovative biomarkers such as renal tubule-associated

biomarkers (e.g., NGAL, KM-1, MMP-7) or biomarkers of

inflammation (e.g., IL-6, IL-10, and TNF-α), which may also be ideal

predictors of AKI. But they remained poorly studied as a biomarker-

based prediction tool in general or cardiac surgery. Third, we did not

include traditional scoring systems (e.g., Cleveland Clinic score,

Simplified Renal Index score, Mehta score) to make model

comparisons because most of these models were specially designed to

predict AKI requiring RRT. Given the high incidence of mild or

moderate AKI and its strong association with adverse outcomes, more

efforts should be made to predict any-stage AKI after cardiac surgery.
Conclusion

We successfully constructed a nomogram and three tree-based

ML models to predict CSA-AKI based on early postoperative

biomarkers. Our study identified five important biomarkers (sST2,

NT-proBNP, H-FABP, LDH, and UA) associated with CSA-AKI.
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