
TYPE Original Research
PUBLISHED 22 September 2023| DOI 10.3389/fsurg.2023.1048451
EDITED BY

Wojciech G. Polak,

Erasmus Medical Center, Netherlands

REVIEWED BY

Fabrizio Consorti,

Sapienza University of Rome, Italy

Shin Enosawa,

National Center for Child Health and

Development (NCCHD), Japan

Hans De Ferrante,

Eindhoven University of Technology,

Netherlands

*CORRESPONDENCE

Juan M. Castillo Tuñón

jmcastun@hotmail.com

†These authors have contributed equally to this

work and share last authorship

RECEIVED 19 September 2022

ACCEPTED 18 July 2023

PUBLISHED 22 September 2023

CITATION

Pontes Balanza B, Castillo Tuñón JM, Mateos

García D, Padillo Ruiz J, Riquelme Santos JC,

Álamo Martinez JM, Bernal Bellido C, Suarez

Artacho G, Cepeda Franco C, Gómez Bravo MA

and Marín Gómez LM (2023) Development of a

liver graft assessment expert machine-learning

system: when the artificial intelligence helps

liver transplant surgeons.

Front. Surg. 10:1048451.

doi: 10.3389/fsurg.2023.1048451

COPYRIGHT

© 2023 Pontes Balanza, Castillo Tuñón, Mateos
García, Padillo Ruiz, Riquelme Santos, Álamo
Martinez, Bernal-Bellido, Suarez Artacho,
Cepeda Franco, Gomez Bravo and Marin Gome.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Surgery
Development of a liver graft
assessment expert machine-
learning system: when the
artificial intelligence helps liver
transplant surgeons
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José C. Riquelme Santos1 , José M. Álamo Martinez3 ,
Carmen Bernal Bellido3 , Gonzalo Suarez Artacho3 ,
Carmen Cepeda Franco3 , Miguel A. Gómez Bravo3† and
Luis M. Marín Gómez3†

1Department of Computer Languages and Systems, Sevilla University, Seville, Spain, 2HPB Surgery Unit,
Virgen Macarena University Hospital, Seville, Spain, 3HPB Surgery and Liver Transplant Unit, Virgen del
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Background: The complex process of liver graft assessment is one point for
improvement in liver transplantation. The main objective of this study is to develop a
tool that supports the surgeon who is responsible for liver donation in the decision-
making processwhether to accept a graft or not using the initial variables available to it.
Material andmethod: Liver graft samples candidate for liver transplantation after donor
brain death were studied. All of them were evaluated “in situ” for transplantation, and
those discarded after the “in situ” evaluation were considered as no transplantable
liver grafts, while those grafts transplanted after “in situ” evaluation were considered
as transplantable liver grafts. First, a single-center, retrospective and cohort study
identifying the risk factors associated with the no transplantable group was
performed. Then, a prediction model decision support system based on machine
learning, and using a tree ensemble boosting classifier that is capable of helping to
decide whether to accept or decline a donor liver graft, was developed.
Results: A total of 350 liver grafts that were evaluated for liver transplantation were
studied. Steatosis was the most frequent reason for classifying grafts as no
transplantable, and the main risk factors identified in the univariant study were age,
dyslipidemia, personal medical history, personal surgical history, bilirubinemia, and
the result of previous liver ultrasound (p < 0.05). When studying the developed
model, we observe that the best performance reordering in terms of accuracy
corresponds to 76.29% with an area under the curve of 0.79. Furthermore, the model
provides a classification together with a confidence index of reliability, for most cases
in our data, with the probability of success in the prediction being above 0.85.
Conclusion: The tool presented in this study obtains a high accuracy in predicting
whether a liver graft will be transplanted or deemed non-transplantable based on the
initial variables assigned to it. The inherent capacity for improvement in the system
causes the rate of correct predictions to increase as new data are entered. Therefore,
we believe it is a tool that can help optimize the graft pool for liver transplantation.
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Introduction

Since the last century, liver transplantation (LT) is the treatment

of choice for both acute and chronic terminal hepatopathies (1, 2).

Throughout these years, LT has evolved profoundly, presenting

significant improvements in its short- and long-term survival

results, for both grafts and recipients. This has led to a growth in

the number of indications, increasing the number of patients on

waiting lists for LT worldwide. This situation, together with the

change in the profile of donors in recent decades, has created an

imbalance between the number of candidates and the number of

grafts available for LT (2–4). To increase the number of grafts and

balance this situation, novel strategies for obtaining liver grafts

have been developed: living donor, donor after cardiac death, split,

domino transplant, and donors with expanded criteria (5).

However, the strategies related to the process of liver graft

assessment that enables reducing the rate of non-transplantable

liver graft (NTLG), ruled out for LT that could have been

transplanted, have yet to be explored. NTLG is the term used to

describe liver grafts that are disposed of after an “in situ”

evaluation, while transplantable liver graft (TLG) describes liver

grafts that are transplanted after that.

In Spain, 13.1% of the offered liver grafts are discarded initially

and 27.6% after an “in situ” assessment. This liver graft assessment

is a complex process, and the most important tool that liver

transplant surgeons (LTS) have, to carry it out, is their own

experience in evaluating liver grafts for transplantation (3, 6). To

do so, the LTS has the macroscopic features of the liver graft and

the features of the liver donor collected in the liver donation

protocol (LDP). A liver graft biopsy can help one decide whether

the liver graft is transplantable or not. However, on many

occasions, the biopsy cannot be performed or is inconclusive (7).

Other complementary tests that can help the LTS in the

decision-making process are imaging tests, which are good tools

for studying future liver grafts and diagnosing absolute

contraindications for transplantation (liver cirrhosis, cancers in

any localization, several vascular atheromatosis, etc.). They can

even provide very important information to the LTS before a

laparotomy is performed (8). However, nowadays, the two main

reasons for discarding a liver graft by the LTS are liver steatosis

and the macroscopic aspect of the liver graft (9). Steatosis is

hardly diagnosed by imaging tests (10), and the macroscopic

aspect is an indeterminate reason given for NTLG that generates

uncertainty since a real and concrete cause that justifies the liver

graft discharge does not exist. In this context, imaging tests are

not very useful. So, to reduce the NTLG rate that could have

been transplanted, it is mandatory for development tools to

provide additional information to the LTS about the liver graft

that is being valued.

Recently, mathematical models based on artificial intelligence

(AI) techniques have been developed in different medical fields,

LT included (11–16). They relate to complex mathematical

algorithms that, specifically in this area, demonstrate their utility

in organ failure prediction and the donor–recipient pairing

process of the liver graft (14–16). However, its contribution to

the field of liver graft assessment has not yet been researched
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extensively. Nowadays, this situation is changing, and the interest

of the scientific community in the role of AI in the liver graft

assessment process is growing. Lately, a system based on this

novel mathematical technology has been developed for estimating

liver graft steatosis using the liver graft visual aspect with well-

published results (10).

Machine learning (ML) is the area of AI that enables the

creation of computer models with the ability to learn from real

data. In this work, we use prediction systems that are trained

from a set of labeled records and generate a model able to

classify new data (17). There are innumerable applications of this

technology in medical classification systems (18, 19). Specifically,

in the LT field, ML has been used for screening and selecting LT

recipients and predicting post-LT survival and complications

(20). This novel technology can be used to predict the outcome

of a new observation, based on a training data set with previous

observations where the outcome is known. They can detect

complex non-linear relationships between numerous variables

that are used for predictive applications (21). So, a machine-

learning algorithm, developed from the LTS with extensive

experience, may be able to predict the liver graft suitability for

LT, helping the LTS in the decision-making process and

diminishing the NTLG rates that could have been transplanted.

The main objective of the study is to develop a tool that

supports the surgeon responsible for liver donation in the

decision-making process whether to accept a graft or not using

the initial variables available to it.
Material and method

Data collection

The liver graft samples evaluated for LT between the period

2016 and 2018 were studied. They are composed of TLG and

NTLG. All of them were evaluated by the same three LTS, which

share the same validation criteria for liver graft assessment. The

liver donor variables were extracted from LDP and

collected prospectively in a database (Table 1). LDP is an official

document that the coordination responsible for the liver offer

has the obligation of designing and sending to the Organización

Nacional de Trasplante (ONT). It contains the most important

features of the liver donor, it is a common document for all

Spanish liver transplantation groups, and its purpose is to

facilitate the initial liver graft assessment by the surgical team

responsible for LT (7).

The reasons for rejections argued by the LTS were collected

(Table 2). Just as LDP, it is an official document used by the

LTS in which the reasons that can argue for classifying a liver

graft as NTLG are collected, and it must be completed; it is

made up of a closed list of reasons to discard the graft. Some of

the reasons are indeterminate, and they are often the results of a

macroscopic evaluation without histological confirmation.

A liver biopsy was made for all grafts belonging to the NTLG

group once the LTS classified the liver graft as NTLG, and all

histological diagnoses were collected (Table 3).
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TABLE 3 Histological findings.

Histological diagnosis n (%)
Non pathological 25 (20.4%)

Pathological 98 (79.6%)

Steatosis >30% 49 (39.8%)

Fibrosis 21 (17.3%)

Cirrhosis 12 (9.7%)

Cholestasis 1 (0.8%)

Steatosis≥ 30% + fibrosis 4 (3.2%)

Ischemia/necrosis 3 (2.4%)

Steatosis≥ 30% + cholestasis 4 (3.2%)

Fibrosis + cholestasis 1 (0.8%)

Steatosis > 30% + ischemia/necrosis 2 (1.6%)

Fibrosis + ischemia/necrosis 1 (0.8%)

Findings of NTLG biopsy.

TABLE 1 Descriptive study of the sample.

Variable Qualitative variables Continuous variables
Age 60.8 ± 14.1

Sex
Male (n = 190) 54.2%

Female (n = 160) 46.7%

BMI 28 ± 4.9

Arterial hypertension (n = 197) 56.2%

DM (n = 71) 20.8%

DLP (n = 118) 33.7%

Personal (n = 187) 53.4%

Medical

History

Personal

Surgical (n = 75) 21.4%

History

GOT 47.4 ± 49.6

GPT 45.8 ± 189.6

GGT 76.7 ± 108.8

Bb T 0.6 ± 0.4

Na 146 ± 9.1

Amines (277) 79.1%

Amines dose 0.19 ± 0.23

Ultrasound Normal
(n = 257) 73.4%

Pathological (n = 65) 18.5%
Not performed (n = 28) 8.0%

AcHBVc (n = 35) 10%

AcHCV (n = 5) 1.4%

AcHBVc, antibodies against hepatitis B capsid antigen; AcHBVc, antibodies against

hepatitis C virus; AH, arterial hypertension; Bb T, bilirubinemia; BMI, body mass

index; DLP, dyslipidemia; GGT, gamma-glutamil transferase; GPT, glutamate

pyruvate transaminase; GOT, glutamic oxaloacetic transaminase; DM, diabetes

mellitus; PMH, personal medical history; PSH, personal surgical history; Na,

sodium.

Qualitative variables expressed in percentage (%), and continuous variables

expressed in their own units: age in years; BMI in kg/m2; weight/height2 in

kg/m2; GGT, GOT, and GPT in IU/ml; Na and Bb T in mg/ml; and dose of

amines in μg/kg/min.

TABLE 2 Reason given for NTLG.

Reason given for NTLG n (%)
Steatosis 39 (31.7%)

Fibrosis 12 (9.7%)

Cirrhosis 2 (1.6%)

Bad perfusion 1 (0.8%)

Atheromatosis 2 (1.6%)

Macroscopic features 6 (4.8%)

Other 5 (4.1%)

Steatosis + ischemia 7 (5.6%)

Steatosis + atheromatosis 8 (6.5%)

Steatosis + fibrosis 2 (1.6%)

Steatosis + macroscopic features 5 (4.1%)

Steatosis + bad perfusion 1 (0.8%)

Atheromatosis + macroscopic features 8 (6.5%)

Steatosis + fibrosis + macroscopic features 1 (0.8%)

Fibrosis + cirrhosis 1 (0.8%)

Fibrosis + cirrhosis + macroscopic features 2 (1.6%)

Fibrosis + macroscopic features 1 (0.8%)

Steatosis + macroscopic features 1 (0.8%)

Steatosis + atheromatosis + macroscopic features 4 (3.2%)

Fibrosis + cirrhosis + macroscopic features + atheromatosis 1 (0.8%)

Fibrosis + macroscopic features + other 4 (3.2%)

Ischemia +macroscopic features 1 (0.8%)

Bad perfusion + atheromatosis 1 (0.8%)

Fibrosis + macroscopic features + atheromatosis + macroscopic
features + surgical problem

1 (0.8%0

Steatosis + cirrhosis 5 (4.1%)

Ischemia + atheromatosis 1 (0.8%)

Fibrosis + atheromatosis + macroscopic features 1 (0.8%)
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Inclusion and exclusion criteria

Only the liver after donor brain death (DBD) was included in

this study. All liver grafts were initially accepted by telephone

based on the characteristics of the LDP and evaluated “in situ”

by an expert surgeon in liver donation. We used the “Guide to

Quality and Safety of Organs Transplantation” (22) to assess

the liver graft.

All NTLGs were discharged without histological confirmation.

The biopsies were made after the LTS classified the liver graft as

NTLG, all of them being carried out by liver expert pathologists

belonging to the same pathological anatomy unit that shares the

same liver graft study protocol. Those that were considered

NTLG after an intraoperative histological study were excluded.

The TLG group is formed by liver grafts that were used for LT

and did not develop primary non-function or early allograft

dysfunction. All of them have post-reperfusion biopsy findings

that were not pathological. Those TLG that were considered TLG

after the intraoperative histological study were excluded.
Frontiers in Surgery 03
Definitions

NTLG: liver grafts that were accepted by telephone but failed

the “in situ” LTS evaluation and were not used for liver

transplantation.

TLG: liver grafts that were accepted by telephone and passed

the “in situ” evaluation. All of them were used for liver

transplantation. No liver in this group developed primary non-
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function or early allograft dysfunction, and all of them have a post-

reperfusion biopsy without pathological findings.

Personal medical history (PMH): refers to any systemic

pathology other than the cardiovascular risk factors.

Personal surgical history (PSH): refers to any previous

abdominal surgery.

In the ultrasound item (Table 1), we considered it pathological

if it presents compatible findings with steatosis hepatic, cirrhosis,

fibrosis, or any morphological abnormality (15).

The item “macroscopic appearance” (Table 2) is indeterminate

and does not correspond with any of the other six reasons.

In our center, during the study period, we considered

pathological steatosis if it was >30% and macrovacuolar.

Currently, the pairing policy has changed in our region, and the

donor–recipient matching is allowed, so grafts with steatosis of

up to 60% are accepted.
Study groups

The sample was divided into two groups: TLG and NTLG.
TABLE 4 Risk factors for rejection.

Variable TLG %
(N = 227)

TLG mean
(N = 227)

NTLG % (N =

Age 58.1 ± 15.6

Sex
Male 128 (56.4%) 62 (50.4%

Female 99 (43.6%) 61 (49.6%

BMI 27.56 ± 5.56

Arterial hypertension 128 (56.4%) 69 (56.1%

DM 41 (18.1%) 30 (24.4%

DLP 66 (29.1%) 52 (42.3%

Personal

Medical 102 (44.9%) 85 (69.1%

History

Personal

Surgical 38 (16.7%) 37 (30.1%

History

GOT 45.26 ± 46.2

GPT 47.0 ± 133

GGT 66.4 ± 114.7

Bb T 0.57 ± 0.37

Na 145.62 ± 10.4

Amines 176 (77.5%) 101 (82.1%

Amines dose 0.17 ± 0.22

Ultrasound Normal
187 (82.4%)
Pathological
24 (10.6%)

Not performed
16 (7.0%)

Normal
70 (56.9%
Pathologic
41 (33.3%

Not performed 1

AcHBVc 22 (9.7%) 13 (10.7%

AcHCV 2 (0.9%) 3 (2.5%)

AcHBVc, antibodies against hepatitis B capsid antigen; AcHCV, antibodies against

GGT, gamma-glutamil transferase; GPT, glutamate pyruvate transaminase; GOT, gluta

Risk factor of not valid univariant study. Qualitative variables expressed in percentag

expressed through p-value, OR, and CI.

P values and confident interval are highlighted in bold.
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Ethics statement

This study was approved by the hospital’s ethics committee. All

data were fully anonymized before we accessed them.
Statistical study

The development of the expert machine-learning system for

liver graft assessment has two different phases:

(A) NTLG risk factors study

In Phase A, the NTLG risk factors were identified through a

univariant study. For it, a single center, retrospective and cohort

study based on a prospective database that analyzes a liver graft

sample was performed (Table 4).

The normal distribution of the sample was determined using

the Kolmogorov–Smirnov test. We compared them and studied

whether there are statistically significant differences between both

groups, establishing the odds ratio (OR) that each variable

presented. For this univariant study, the Chi-square test has been
123) NTLG mean
(N = 123)

Univariant p Univariant, OR
(95% CI)

63.5 ± 13.1 p≤ 0.05 1.278 (1.189–2.343)

) N/S

)

28.50 ± 4.41 N/S

) N/S

) N/S

) p≤ 0.05 1.440 (1.087–1.907)

p≤ 0.05 1.950 (1.416–2.684)

)

p≤ 0.05 1.578 (1.182–2.105)

)

49.73 ± 53.0 N/S

44.76 ± 56.6 N/S

87.1 ± 103 N/S

0.86 ± 0.56 p≤ 0.05 1.254 (1.136−1.908)

146.4 ± 7.9 N/S

) N/S

0.21 ± 0.24 N/S

)
al
)
2 (9.8%)

p≤ 0.05 1.986 (1.178–2.457)

) N/S

N/S

hepatitis C virus, Bb T, bilirubinemia; BMI, body mass index; DLP, dyslipidemia;

mic oxaloacetic transaminase; DM, diabetes mellitus; Na, sodium.

e (%), continuous variables expressed in their own units. Univariant study results
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TABLE 5 Scores average for 100 different re-orderings.

Validation Accuracy Precision Recall F1-score AUC
TT (20%) 72.01% 0.63 0.51 0.56 0.75

5-CV 71.84% 0.62 0.51 0.56 0.75

10-CV 72.54% 0.64 0.51 0.56 0.76

LOOCV 73.73% 0.66 0.51 0.58 0.78

TT (100%) 82.87% 0.81 0.66 0.73 0.91

This table presents the average scores obtained for five different types of validation:

train and test with a proportion of 0.2 (TT), fivefold and 10-fold cross-validations,

LOOCV, and train and test with a proportion of 1.0. For each of these validation

methods, the table reports the values of five evaluation measures.

Pontes Balanza et al. 10.3389/fsurg.2023.1048451
used for qualitative variables and the Student’s t-test for continuous

variables. All those variables that presented statistical significance

(p < 0.05) were included in the study. Based on the obtained

results in the univariant study, we have designed a computer

system that can help in the decision-making process to

determine the suitability or not of a graft.

(B) Expert machine-learning system for liver graft assessment

developed

The objective of the whole process is to obtain a mathematical

model capable of predicting the suitability of a liver graft for LT

from the diverse factors under study. To do this, a classic

supervised learning workflow is applied, consisting of three

different phases: (1) pre-processing and selection of the most

relevant attributes, (2) conducting tests with different

mathematical models that optimize a certain fitness, and (3)

validation of results to choose the best model.

The first step consists of a preliminary pre-processing phase

that includes feature selection (FS). This procedure often

improves the prediction rate of the classifiers (23), by choosing

the attributes presenting the greatest contrast or divergence for

each value in the target attribute (class). In our case, an ANOVA

F-test was applied, then selecting those attributes with the

highest statistical value, a sign of a greater difference between the

values of these attributes for transplantable and no

transplantable grafts.

To conduct the second step, we have opted for classifiers based

on decision tree ensembles. An ensemble is a model resulting from

the collaboration between several individual classifiers, such that

the final decision is the result of a consensus or vote. One of the

most widely used prediction models in this category is the

XGBoost (24) classifier. Furthermore, all machine-learning

models need to adjust their configuration parameters by adapting

to the data provided during the training phase.

Both Phases 1 and 2 have been performed using TPOT (https://

epistasislab.github.io/tpot/). TPOT is a Python-automated machine

learning (AutoML) (25). This tool performs an automatic search

between different combinations of selection and classification

strategies, providing the best setup, along with the necessary

configuration parameters in each phase. For this purpose, it

combines feature engineering, model selection, and

hyperparameter optimization, selecting and tuning an ML

algorithm for each stage. This whole process leads to the higher

efficiency of the system, outperforming the models designed by

hand. We have set TPOT with 200 generations, optimizing the

area under curve (AUC) score, and a cross-validation value

equaling 10. In summary, the obtained ML pipeline for our liver

graft data set consists of the following steps:

(1) Add several synthetic features, using Bernoulli, Naïve Bayes,

and XGBoost classifiers as estimators.

(2) Add two new features, corresponding to the number of zero

and non-zero features for each sample.

(3) Perform Feature Selection, using ANOVA F-value between

label/feature.

(4) Perform classification with XGBoost classifier.
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The final step is validating the model. To avoid overfitting (the

resulting model does not generalize to other data), different

validation techniques may be used. In our case, both hold-out

and cross-validation have been used. Cross-validation (CV) (26)

is an iterative process that consists of splitting the data in two. In

every iteration, one part will be used to train the model while the

other part will be used to test it. The classification rate is

computed as the average of all tests performed. We have

validated our experiments with five different configurations. First,

five and 10 folders have been considered for CV (5-CV and

10-CV). Then, we have considered all but one instance in each

iteration, which is the leave one out cross -validation (LOOCV)

approach. Finally, we have conducted two additional experiments

named as train–test (TT), which performs a traditional train and

test splitter or hold-out validation. It splits the data into two

folders, containing 80% of the instances for training the model

and 20% for testing it. TT (100%) represents the best possible

evaluation, where the whole data set has been used both as a

train and a test set. Table 5 shows the score results for all these

types of validations. Furthermore, since our data had been

previously randomly shuffled, we have performed validations for

100 different re-orderings, reporting the average scores. This

process is similar to repeated k-fold cross-validation, with the

difference that in our case, a random shuffling of the data is

performed beforehand. In addition, this process is also

performed in the TT validations (see Table 5).

External validation has been excluded in this work mainly due to

the sample size. Instead, we have used five different types of validations

(see Table 5), three of which correspond to cross-validation, under

different numbers of subsets. In this context, cross-validation is a

preferred choice when dealing with small sample sizes as it

maximizes the data utilization, provides reliable performance

estimates, assesses model generalization, and facilitates effective

hyperparameter tuning. It helps mitigate the limitations imposed by

limited data availability and allows for a more thorough evaluation

of the performance of the model. In the field of medical applications,

cross-validation has been frequently used and accepted as a

validation strategy, as in these very recent works on cancer

classification or COVID-19 diagnosis (27–29). Furthermore, Bhat

et al. in their publication include numerous references to machine-

learning applications in both pre- and post-LT settings in which

cross-validation is used as the primary validation method.

In the following, a brief explanation of the scores in Table 5 is

provided, where positive instances refer to NTLG:
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• Accuracy: a fraction of all correctly classified instances.

• Precision: the proportion of true positives out of all positive

predictions.

• Recall: the proportion of true positives out of all actual positive

instances.

• F1-score: the harmonic mean of precision and recall.

• AUC: the measure of separability. It indicates the extent to

which a model is capable of distinguishing between classes.

Results

Training sample

A total of 350 liver grafts that were evaluated for LT were

studied: 123 NTLG vs. 227 TLG. The mean age was 60 years old,

and most donors were males. The most frequent cardiovascular

risk factor in the sample was arterial hypertension (AH), and

more than 50% of the sample had associated medical antecedents

other than the cardiovascular risk factors. The sample presented

obesity Grade 1, and the analytical values were in the

physiological range. The positive donors for antibodies against

hepatitis B capsid antigen (AcHBVc) or antibodies against

hepatitis C virus (AcHCV) were scarce.

The amines and their respective doses used for donor

maintenance were collets (Table 1).

The most frequent isolated reason argued by the LTS for

determining a liver graft as NTLG was steatosis. Regarding the

combination of factors, the most frequent were steatosis +

atheromatosis (Table 2). The most frequent histopathological

finding was also steatosis (Table 3).

In total, 79.6% of the NTLG had pathological biopsy

results while the remaining 20.4% were reported without

histopathological findings (Figure 1). In 59.3% of pathological

biopsies, the reason argued by the LTS coincides with the
FIGURE 1

Biopsy findings of NTLG determinates by LTS. Flowchart.
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histological diagnosis of the biopsy (concordance of 59.3%). In

the remaining 20.3%, although the histological findings discarded

the graft for liver transplant validity, they were different from

those described macroscopically by the LTS (Figure 1).
NTLG risk factors (univariant study results)

The NTLG risk factors identified in the univariant study were

age, dyslipidemia (DLP), PMH, PSH, bilirubinemia (Bb T), and the

result of previous liver ultrasound (p < 0.05).

The remaining 11 had no statistical significance (p > 0.05)

(Table 4).
Model results

The best performance reordering in terms of accuracy and AUC

corresponds to 76.29% of correct classifications, with an AUC value

of 0.79 (precision = 0.7, recall = 0.57, F1-score = 0.63). Figure 2 (left)

shows the number of hits and errors for each class value. In the first

column of this matrix, it was observed that 197 out of 227 liver grafts

classified as TLG for LTS were also classified as TLG for the

mathematical model. Also, 53 liver grafts classified as NTLG for

LTS were classified as TLG for the model, but 17 out of 53 liver

grafts were reclassified as TLG for the mathematical model,

belonging to the 25 liver grafts classified as NTLG for LTS with

biopsy without pathological findings (Figure 1).

In the second column, 70 out of 123 liver grafts classified as

NTLG for LTS were classified as NTLG for the mathematical

model. In addition, 30 liver grafts classified as TLG for LTS were

classified as NTLG for the model. As it can be derived from this

matrix, the rate of success is considerably higher for TLG, which

is 87% compared with 57% for NTLG. Figure 2 (right)

represents the ROC curve corresponding to an area of 0.79.
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FIGURE 2

Confusion matrix and ROC curve for the best shuffle. Confusion matrix in the left shows the number of hits [true positives (TP) and true negatives (TN)]
and errors [false positives (FP) and false negatives (FN)] for each class prediction. The ROC curve in the right represents the true positive rate (TPR) and
false positive rate (FPR) of the model as the decision threshold of the classifier is varied. Its corresponding AUC is 0.79.
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In addition, a study of prediction reliability has been carried

out. This is possible because the model provides the probability

of confidence for each predicted label. Table 6 presents the hit

probabilities for each interval of confidence, where the results

have been divided into confidence intervals.

From Table 6, it can be derived that if the class is predicted with

confidence between 0.5 and 0.6, the predictor is successful 29 times

out of 42; however, if the confidence stands above 0.9, the prediction

hit is almost 90%. The model not only provides a classification but

also a confidence index of reliability. If the confidence provided is

greater than 0.8 (more than half of the records), the probability

that the prediction is successful is 160/188 = 0.85.

The same distribution of hits and errors is depicted in Figure 3.

In this chart, the probabilities of the prediction for the NTLG are

represented on the x-axis. The bars in orange and blue represent

the distribution of the valid and not valid instances, respectively.

In the first half of the graph (x-axis), those TLG that have been

correctly classified can be seen in orange, as well as those NTLG

(in blue) that have been misclassified. Similarly, the second half of

the chart shows in orange those TLG erroneously classified, as well

as the NTLG (in blue) correctly classified. As can be seen, this

chart confirms the previous numerical results, where the system

shows much stronger behavior when predicting TLG than NTLG.
TABLE 6 Number of instances and hits by confidence intervals.

#instances #hits Hit
probability

Interval of
confidence

% of
instances

42 29 0.690 0.5–0.59 12%

53 34 0.642 0.6–0.69 15.14%

67 44 0.657 0.7–0.79 19.14%

76 60 0.789 0.8–0.89 21.71%

112 100 0.893 0.9- 32%

This table shows the hits probabilities for five different intervals of confidence. Each

row shows the number of predictions (#instances) falling within the specified

interval, and the corresponding number of hits (#hits) and their probabilities. The

percentage of the number of predictions (% of instances) for each interval of

confidence is also included.
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Furthermore, the XGBoost classifier provides us with a ranking

specifying the relevance of variables. Specifically, the sorted list of

variables in this study is the following: PMH, normal ultrasound,

pathological ultrasound, PSH, Bb T, gamma-glutamil transferase

(GGT), age, body mass index (BMI), DLP, amine doses,

glutamate pyruvate transaminase (GPT), amines, AH, sodium

(Na), and glutamic oxaloacetic transaminase (GOT). On the

other hand, the remaining variables: sex, diabetes mellitus (DM),

AcHCV, AcHBV, not performed ultrasound, have no

contribution to determining graft validity, according to XGBoost.

In addition, we have conducted an overfitting analysis of our

tool using learning curves. Learning curves provide insights into
FIGURE 3

Histogram predictions of the best model. X-axis represents the
probabilities of predictions for non-transplantable liver grafts. In the
first half of the graph (x-axis), orange bars correspond to
transplantable liver grafts correctly classified, while blue bars
correspond to non-transplantable liver grafts misclassified. The
second part of the graph represents the reverse situation.
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how the performance of the classifier evolves as the size of the

training set increases. By plotting the training and validation

accuracies of the classifier against the number of training

instances, it is possible to identify if overfitting or underfitting is

occurring.

In particular, the classifier is overfitting the training data when

the training accuracy is high, and the validation accuracy remains

significantly lower along the graph. This means that the classifier is

memorizing the training examples and performing poorly on

unseen data. On the other hand, when the training and

validation accuracy curves converge at a certain accuracy level, it

suggests that the performance of the classifier stabilizes, and it is

not significantly affected by adding more training examples. The

accuracy level of the convergence indicates a situation of

underfitting (low level) or a well-generalized classifier (high

level). As it can be seen in Figure 4, the convergence of both the

training and validation curves of our tool occurs at a desired

level of accuracy, indicating that our system generalizes well to

unseen data.
Discussion

In this study, we present a mathematical model that initially

classifies the liver graft as transplantable or not based only on

LDP information. LDP is an official ONT document that is sent

to the liver transplant team that is valuing the liver graft,

containing the most important features of the donor. It is the

first information known and constitutes a very important

element in the decision-making process. The information that

the mathematical model gives us relates to the possibility of

using the liver graft for LT. It does not match the

donor–recipient, does not calculate the index of risk of primary

graft failure (PGF), and does not make predictions about patient

post-transplant mortality, survival, or complications.
FIGURE 4

Learning curves to diagnose model performance. X-axis represents the
incremental sizes of the training sets. Accuracy levels of both training
and validation sets are represented in y-axis. It can be observed that
both accuracies tend to converge as the size of the training sets
increases.
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The liver graft assessment for transplantation is a complex

process. The two main tools that the LTS can use to carry out it

are the LDP and the experience of the surgeon (30). This

experience is not subjective; it is the result of the accumulated

experience of each surgeon and is built on knowledge acquired

for years by themselves, which improves that assessment

capacity, increasing the number of correct evaluations. An

important characteristic of this tool is that it has been designed

based on the accumulated personal experience of not only one

LTS but all the LTS of our Unit. Only a correct liver graft

assessment can determine the optimal use of the current donor

pool, avoiding the loss of potentially useful grafts. We aim to

develop a tool that supports the surgeon responsible for liver

donation in the decision-making process whether to accept a

graft or not for LT, using the initial variables available to it.

Currently, the process for liver graft assessment can be

improved; the rate of NTLG without pathological findings that

confirm it is between 20.4%–35.5% (31, 32). It refers to liver

grafts rejected for LT that could have been used for that. In

addition, the two main reasons argued by the LTS for rejecting

the liver graft are steatosis and macroscopic aspect; in Spain,

these arguments constituted 21%–29.4% and 29.6%–31.5%,

respectively, in the last 2 years (9, 33). Steatosis and the

macroscopic graft features are two arguments that should be

used with great caution. Both depend on a macroscopic valuation

made by the LTS, which is based on their personal experience.

For classifying a liver graft as NTLG for steatosis, the

macroscopic and visual assessment is not enough, because it is

not dependent on steatosis “per se,” but on the percentage and

type of steatosis. On the other hand, the macroscopic features of

the graft constitute an indeterminate item defined by the absence

of the specific macroscopic criteria for rejection. In our study, up

to 66.6% of the organs discarded for this reason presented a

biopsy without pathological findings. In these cases, an

intraoperative biopsy could help the surgeon make decisions, but

it is not always possible to perform it.

For all that, there exists a percentage of liver grafts rejected for

LT that could have been used for this purpose or that could have

benefited from a more comprehensive assessment process, at

least, based on the following:

• The argument of the surgeon: up to 36.5% of the grafts in our

sample represent the total percentage of grafts discarded

because of steatosis and macroscopic features. In the case of

the national series in recent years, this percentage has ranged

between 50.6% and 60.9% (9, 33).

• The biopsy reports: up to 60.2% in our series, the summation of

NTLG with biopsy, without pathological findings and with

steatosis findings.

The model proposed in this study can be a useful support tool in

the process of liver graft assessment. It not only produces a

prediction but also informs of the probability with which each

prediction has been selected. The best results obtained by the

system in terms of precision corresponded to 76.29% with an

AUC value of 0.79. This success rate is established for a

confidence interval of >0.8, with an error probability of 0.15. To
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design the model under the most realistic conditions possible, the

inclusion criteria used were the LTS assessments and not the biopsy

findings, since it is known later. Therefore, the system has been

tested with data in which the group of grafts considered as

NTLG contains grafts that could have been used (20.4%). Of

these 25 NTLG that presented a biopsy without pathological

findings, 17 belong to the 53 NTLG predicted by the

mathematical model as a TLG. It is an interesting finding

because it means that the model predicts TLG more accurately

than NTLG, identifying TLG classified as NTLG by LTS, which

is in this case, 17 grafts of 25 (68%). However, it is important to

note that classifiers should not replace clinical expertise and

domain knowledge. Instead, they should complement the

decision-making process by providing additional insights and

supporting doctors in their clinical judgment. In this context,

using classifiers for making predictions in health applications

offers several advantages over the traditional statistical

techniques. On the one hand, it allows handling more complex

relationships and interactions between multiple variables in the

data, since they are well-suited to capture non-linear

relationships. Also, classifiers can adapt and update their

predictions as new data become available. This adaptability to

changing data allows incorporating new evidence to the model,

making them very suitable to real-time decision support.

The scientific community has already used math for aiding this

complex process and make the liver graft pool available for LT

profitable. Based on classical statistics, there are tools that

calculate the index of risk of FPI, or even, the survival of the

patient with crossed data of donors and recipients (34, 35). In

addition, over the last few years, the number of studies

researching to explore AI applicability in the LT field has been

growing. The main areas of LT where this technology is being

developed are screening and matching donor–recipient and post-

transplant mortality, survival, and complication predictions

(16, 20). In 2020, a very interesting study was published by

Moccia et al. (10) using AI for determining liver graft steatosis.

To do so, liver graft visual features are studied by using a

smartphone. The authors propose a computer-assisted

assessment that evaluates hepatic steatosis based on the visual

characteristics of the graft. This is a very interesting approach

that helps the LTS in the decision-making process. By going

through two phases of training, supervised and semi-supervised,

they develop a system capable of determining hepatic steatosis.

There are two main differences with the model we propose:

• The assessment we perform with our model is global, based on

donor characteristics. We do not focus on just one of the reasons

of graft rejection.

• We do not need to travel to obtain the images to carry out the

assessment. The ONT sends the LPD before moving the surgical

team, so the assessment is performed very early. This avoids

unnecessary travel, with the consequent economic savings for

the health system.

As we previously described, we aim to develop a tool that supports

the LTS in the decision-making process whether to accept a graft or

not using the initial variables available to it. To make the most of
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the previous information on liver grafts provided by LDP, we

propose to study and learn from the previous and accumulated

experience of the LTS, using AI techniques. The LTS experience

is based on a non-analytical model of clinical reasoning. The

outcome of the decisions we make can be optimized by the

analytical processes of our AI-based tool (36, 37). It is

interesting, as doctors use hypothetico-deductive reasoning to

arrive at a diagnosis. In this case, our system is based on the

knowledge of previous experiences, which come from expert LTS,

learning from their successes and mistakes. Therefore, it does not

perform deductive reasoning but is based on the result of

previous experiences. Thanks to it, the system manages to

improve its future assessments as we introduce more information

from previous assessments. To improve its predictions, the

system requires new information, from which it learns. In this

way, it improves its predictions. So, the system learns from

accumulated experience.

AI can be understood as the part of science in charge of

developing a set of mathematical algorithms that allow computers

to perform processes such that they can pose solutions to

determinate problems after reaching their conclusions, which are

the result of analyzing a large amount of data (38). For a long time,

this concept belonged to the field of science fiction; however, at

present, it is a field with great growth and capacity for expansion

that demonstrates its usefulness and applicability in different fields

of science and, of course, in surgery. AI encompasses different areas

of knowledge, and for this project, we have utilized ML. ML enables

computers to identify patterns and make predictions based on

them. In contrast to classical computer science programming, which

relies on predetermined patterns (e.g., pressing a button always

opens the same screen), ML allows for predictions without explicit

programming by utilizing labeled data (supervised learning)

(39, 40). By leveraging the provided labels, the computer learns to

recognize patterns and make predictions accordingly. In this

context, ML permits the computer to learn from its own mistakes

when performing a certain task (41), leading to gradual

improvement with each repetition of the function it was

programmed for. In supervised learning, the algorithm is trained on

a labeled data set, adjusting its internal parameters or model

representation to minimize the difference between its predicted

outputs and the true labels. This iterative learning allows the

algorithm to refine its performance over time. In our specific case,

XGBoost gradually improves its performance and predictive

capability by making predictions on the validity or otherwise of

transplant candidate liver grafts. The debate on the ability of

machines to reason has been one of the most relevant topics in the

field of AI. While it is true that advances in this area have enabled

machines to perform increasingly complex tasks, such as voice

recognition and machine translation, the consensus is that these

machines do not reason in the human sense of the term. Instead,

they learn patterns from data and build computational models

based on those patterns. In the context of AI, ML is the most widely

used approach to create systems capable of recognizing complex

patterns in large data sets. ML is based on the idea that machines

can learn from examples and then use that knowledge to make

predictions about new data. However, this approach does not
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necessarily imply that machines reason in the same way that humans

do, since human reasoning implies an ability to make inferences and

use prior knowledge effectively (36, 42).

The main limitation of the development of this technology is

the lack of data. AI needs large databases to serve as a source of

information to develop new models of data analysis and

interpretation and to improve the existing ones (39). For this, the

collaboration between different surgical teams from different

cities, communities, or even countries is very important. The

development of national networks for information flow between

the different surgical groups that allow for real and rapid

updating of data is fundamental if we want to optimize and

implement this technology in the 21st-century surgery (43).

Currently, we are in the initial development phase of this system.

The main limitations associated with our study are that it is a

retrospective study; the mathematical model has been trained with

the results of only one liver transplant team and must be externally

validated. In addition, the tool has been trained with a pool of

grafts in which steatosis of >30% was considered a criterion for

graft rejection. The pairing policy has changed in our region, and

donor–recipient matching is allowed, so grafts with steatosis of

up to 60% are accepted. Therefore, the tool may classify grafts as

NTLG that we can currently use. We hope that all these

limitations will be addressed in the future as we train the tool, as

machine learning can learn as it is trained with new data.

Thanks to this capability, it can adapt to such modifications.

For all these reasons, we currently continue to introduce new

data in the model, so we hope that the system improves its

predictive capacity.
Conclusions

The tool presented in this paper obtains a high accuracy in

predicting whether a liver graft will be transplanted or deemed

non-transplantable based on the initial variables assigned to it;

thus, we think that it can become an important tool to help in

the decision-making process supporting the valuation of the LTS.

The fact that the model presents better results identifying TLG is

very interesting because the final objective is to decrease the

number of TLG discharged to liver transplantation that could

have been used for LT.

AI and big data technology need the collaboration of the surgical

community to advance. So, these systems learn and improve as they

analyze more data. In this way, the creation of large databases that

include as many patients as possible is necessary if we want to

implement these novel mathematical technologies.
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