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Effect of augmented reality
navigation technology on
perioperative safety in partial
nephrectomies: A meta-analysis
and systematic review
Cong Cheng, MaCheng Lu, Ye Zhang* and XingQian Hu

Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China

Aim: To evaluate the impact of augmented reality surgical navigation (ARSN)
technology on short-term outcomes of partial nephrectomy (PN).
Methods: A systematic literature searchwas conducted in PubMed, Embase,Cochrane,
and Web of Science for eligible studies published through March 28, 2022. Two
researchers independently performed the article screening, data extraction and quality
review. Data analysis was performed using Cochrane Review Manager software.
Results:Atotalof583patients fromeight studieswere included in theanalysis,with313 in
the ARSN-assisted PN group (AR group) and 270 in the conventional PN group (NAR
group). ARSN-assisted PN showed better outcomes than conventional surgery in
terms of operative time, estimated blood loss, global ischemia rate, warm ischemia
time, and enucleation rate. However, there were no significant differences in the rate
of Conversion to radical nephrectomy (RN), postoperative estimated glomerular
filtration rate (eGFR), positive margin rate, and postoperative complication rate.
Conclusion: The utilization of ARSN can improve the perioperative safety of PN.
Compared with conventional PN, ARSN-assisted PN can reduce intraoperative blood
loss, shorten operative time, and improve renal ischemia. Although direct evidence is
lacking, our results still suggest a potential advantage of ARSN in improving renal
recovery after PN. However, as the ARSN system is still in an exploratory stage, its
relevance in PN have been poorly reported. Additional high-quality randomized
controlled trial (RCT) studies will be required to confirm the effect of ARSN on PN.
Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.
php?RecordID=301798, identifier PROSPERO ID: CRD42022301798.
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1. Introduction

Over the past decade, nephron-sparing surgery (NSS) has gradually become the

preferred surgical approach for cT1a tumors (1). Compared to radical nephrectomy (RN),

partial nephrectomy (PN) preserves more of the renal parenchyma and improves recovery

of renal function after surgery (2).

In NSS for endophytic renal masses, the tumor cannot be localized by observing the

kidney surface, thus the treatment outcome largely depends on the surgeon’s competence

and experience (3). In addition, surrounding normal kidney tissue is often sacrificed to

ensure border security. Furthermore, when adherent perirenal fat (APF) is present, the

surgical field is disturbed and the operative area is compressed, making the surgery more
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difficult (4). Over the past two decades, different surgical

navigation techniques have been adopted for NSS to improve

surgical safety. Currently, the most commonly employed

navigation modalities are intraoperative ultrasound (IOUS) and

fluorescence guidance (5–8).

Consistent with the advancement of image guidance technology

in recent years, augmented reality (AR) technology has gradually

been applied in NSS’s navigation (9–11). Its approach is based on

reconstructing a three-dimensional kidney model (3D kidney

model) based on the imaging data (CT/MRI, etc.) of the patient’s

kidney before surgery and then superimposing the model on the

actual surgical area for intraoperative navigation (11). The

preoperative 3D kidney model can directly display the course of

vessels and ureters, as well as the location and shape of the tumor.

By carefully investigating the kidney model and performing virtual

surgery, the surgeon can obtain detailed anatomical information

about the surgical area, which helps to refine the preoperative

strategy (12, 13). Intraoperatively, the surgeon can directly view the

position of the tumor and its surrounding anatomical features using

a registered kidney model. Many studies on ARSN have indicated

its great potential for use in surgical procedures (6, 14–19).

Concerning PN, several previous studies have reported the

advantages of ARSN-assisted PN over the conventional approach (6,

20–26). However, the findings were not entirely consistent across

studies. Therefore, we conducted this meta-analysis to systematically

evaluate the effect of ARSN on the efficacy and safety of PN surgery.
2. Materials and methods

2.1. Search strategies

Two researchers independently searched PubMed, Embase,

Cochrane Library, and Web of Science. All studies up to March

28, 2022 were searched according to the following search strategy:

(((Nephrectomy [MeSH Terms]) OR (Heminephrectom*)) OR

(Nephrectom*)) AND (((((((((Augmented reality [MeSH Terms])

OR (Augmented Realit*)) OR (Realit*, Augmented)) OR (Mixed

Reality)) OR (Mixed Realit*)) OR (Realit*, Mixed)) OR (Reality,

Mixed)) OR (image-guided surgery)) OR (IGS)).

PROSPERO (International Prospective Register of Systematic

Reviews) number CRD42022301798 was used to register this study.
2.2. Inclusion and exclusion criteria

The inclusion criteria are as follows: (1) Population: Patients

requiring PN; (2) Intervention: PN guided by ARSN system; (3)

Comparison: PN guided by preoperative imaging (CT/MRI),

IOUS, or fluorescence imaging; (4) Outcomes: estimated blood

loss (EBL), operative time (OT), postoperative complication,

warm ischemic time (WIT), eGFR, and rate of enucleation,

global ischemic, positive surgical margin and conversion to RN.

Exclusion criteria: (1) Duplicate publications by the same

author or institution. (2) Non-comparative research, such as case

reports, and cross-sectional studies.
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Two researchers independently scanned the titles and abstracts

for initial screening. Then, carefully read the full text in order to

define whether each of them was eligible for the analysis. Upon

differences that could not be resolved after discussion, a third

author was consulted.
2.3. Data extraction

Two researchers collected pertinent data separately. The data would

be reviewed to ensure correctness. Data extracted from each paper

included: the author’s name(s), year and country of publication,

number of participants, patient’s age, gender, body mass index (BMI),

tumor size, Padua and R.E.N.A.L score, and outcome data.

Major outcomes include operative time (OT), estimated blood

loss (EBL), warm ischemic time (WIT), and eGFR changes

(Postoperative, 3-month postoperative, and 6-month postoperative

data); Minor results include postoperative complication (Clavian-

Dindo classification), and rate of enucleation, global ischemic,

positive surgical margin and conversion to RN.
2.4. Quality assessment

Each trial was independently assessed by two evaluators. The

Cochrane Risk of Bias (RoB) tool was used to assess the bias risk of

RCTs. Prospective cohort studies (PCSs) and retrospective cohort

studies (RCSs) were evaluated by Newcastle–Ottawa scale (NOS) (27).
2.5. Statistical analysis

Cochrane Review Manager (version 5.3) was used to analyze the

data for this research. Risk ratios (RR) and 95% confidence intervals

(CI) are used to show the results of categorical variables. For

continuous variables, the weighted mean difference (WMD) and

95% CI were used. When the study’s continuous variables were

means (range) or medians (IQR), the standard deviations were

calculated using Luo’s approach (28). Due to the differences in

patient characteristics across studies, a random-effects model was

preferred. The degree of statistical heterogeneity was estimated by

Cochran’s chi-square test and I2. We defined I2 values of 25%,

50%, and 75% as low, moderate, and high heterogeneity (29). Due

to the small number of studies included, funnel plot and Begg’s

and Egger’s test were not used to test the studies’ deviation. The

included studies were excluded one by one for sensitivity analysis.
3. Results

3.1. Study selection and quality assessment
and risk of bias

According to the pre-established search strategy, a total of eight

studies were included in the final discussion (Figure 1), including

two RCT and six cohort studies (PCS: 2, RCS: 4) (6, 20–26). The
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FIGURE 1

Flow chart illustrating summary of literature search results.
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cohort studies were evaluated using modified NOS. Six studies

scored 7–9 points and were indicated to be of high quality. Risk

of bias assessment for RCTs is shown in Table 1.
3.2. Characteristics of included studies

Finally, we included eight studies with a total of 583 patients, of

which 313 were in the ARSN-assisted PN group (AR group) and

270 were in the conventional PN group (NAR group). The baseline

characteristics of the included studies are summarized in Table 2.

The retroperitoneal approach was employed in all PN procedures.

Sex, age, BMI, Padua score, R.E.N.A.L score and tumor size were

comparable between the two groups of patients in all studies (Table 2).
3.3. Outcome

3.3.1. EBL
All studies reported EBL (6, 20–26). We discovered that the

EBL of the AR group was significantly lower than that of the
TABLE 1 Risk of bias assessment of the randomized controlled trial.

Study Random
sequence
generation

Allocation
concealment

Blinding of
participants and

personnel
Li 2021 Unclear risk Unclear risk High risk

Zhang
2021

Low risk High risk Unclear risk
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NAR group. The high heterogeneity led to the adoption of a

random effects model (MD =−21.86; 95% CI: −30.21, −13.51;
p < 0.00001; I2 = 69%, Figure 2A).
3.3.2. OT
All studies provided data on OT (6, 20–26). The Meta-analysis

suggested that the application of ARSN could significantly reduce

the OT. However, there was high heterogeneity in the results

(MD =−22.59; 95% CI: −34.03, −11.16; p = 0.0001; I2 = 92%,

Figure 2B).
3.3.3. eGFR
Five studies published data on perioperative eGFR (6, 20, 21,

23, 26). Four of these studies reported postoperative eGFR (6, 21,

23, 26), two of which reported postoperative eGFR at 3 months

(23, 26), and one of which reported postoperative eGFR at

6 months (20). The result showed no significant difference in

eGFR between the AR and NAR groups at all postoperative

periods (MD = 0.65; 95% CI: −1.09, 2.40; p = 0.46; I2 = 0%,

Figure 2C).
Blinding of
outcome

assessment

Incomplete
outcome data

Selective
reporting

Other
bias

Low risk Unclear risk Low risk High risk

Low risk Unclear risk Unclear risk Unclear
risk
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3.3.4. WIT and global ischemia
We analyzed the WIT in six studies (6, 20–24, 26) and showed

that the application of ARSN significantly shortened this factor.

However, the heterogeneity test revealed high heterogeneity in

the results (MD =−3.96; 95% CI: −6.93, −1.00; p = 0.009;

I2 = 97%, Figure 2D). In terms of ischemia, three studies

reported ischemic protocol (6, 21, 26), and we found a lower

global ischemia rate in the AR group (RR = 0.50; 95% CI: 0.32,

0.80; p = 0.003; I2 = 46%, Figure 2E).

3.3.5. Enucleation and conversion to RN
Two studies by Porpiglia et al. (6, 21) described the rate of

enucleation, and the result showed that the proportion of

enucleation was higher in the AR group (RR = 1.72; 95% CI:

1.18, 2.49; p = 0.005; I2 = 0%, Figure 2F). The rate of conversion

to RN was recorded in five studies (6, 21, 22, 24, 26). Overall,

there was no substantial difference between the AR and NAR

groups (RR = 0.67; 95% CI: 0.43, 1.02; p = 0.06; I2 = 0%,

Figure 2G).

3.3.6. Postoperative complication and positive
margin rate

Six studies provided data on the rate of postoperative

complications (6, 21–24, 26), and the results revealed no

difference between the two groups (MD = 1.15; 95% CI: 0.70,

1.89; p = 0.59; I2 = 0%, Figure 2H). Only four robot-assisted

partial nephrectomy (RAPN) studies reported positive surgical

margins (6, 21, 23, 26). The results showed no difference

between the two groups (RR = 0.64; 95% CI: 0.15, 2.74; p = 0.55;

I2 = 0%, Figure 2I).

3.3.7. Subgroup analysis
We performed subgroup analyses due to the high heterogeneity.

Subgroup analyses were based on the different surgical techniques

and their associated risk: Laparoscopic partial nephrectomy (LPN)/

RAPN subgroup and Low-Risk/High-Risk subgroup. Padua and

R.E.N.A.L scores are valid indicators to assess the complexity of

PN (30). According to the study by Li et al. and Porpiglia et al.

(6, 24), we classified Padua ≥10 or R.E.N.A.L score >7 as high

risk for surgery and below-threshold values as low risk. Except for

the study by Zhang et al. (25), which did not provide score data,

only the studies by Wang et al. and Satoshi et al. (20, 23) were

deemed to be in the low-risk subgroup.

We performed a subgroup analysis of EBL. The results showed

that heterogeneity was mainly in the LPN subgroup (MD=−23.59;
95% CI: −32.15, −15.03; p < 0.00001; I2= 83%, Figure 3A). There

was no heterogeneity in the RAPN subgroup (MD= 7.24; 95% CI:

−27.19, 41.68; p = 0.68; I2= 0%, Figure 3A). In addition, the EBL

results in the LPN subgroup were consistent with the overall

results, whereas, in the RAPN subgroup, there was no statistical

difference in EBL between the AR and NAR groups (p = 0.68,

Figure 3A). According to the result of the subgroup analysis of

surgical risk, there was high heterogeneity in both subgroups and

no statistical difference between subgroups (p = 0.46, Figure 3B).

We observed that the result of EBL in the high-risk subgroup was
frontiersin.org
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FIGURE 2

Forest plots for (A) estimated blood loss; (B) operative time; (C) perioperative eGFR; (D) warm ischemic time; (E) the rate of global ischemic; (F) the rate of
enucleation; (G) the rate of conversion to RN; (H) postoperative complication; (I) positive margin rate.

FIGURE 3

(A) Subgroup analysis by surgical technique for EBL; (B) subgroup analysis performed by the risk of the surgery for EBL; (C) EBL excluding Li 2020.
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consistent with the overall result, but in the low-risk subgroup, there

was no statistical difference in EBL between the AR and NAR groups

(MD=−4.98; 95% CI: −58.16, 48.20; p = 0.85; I2= 69%, Figure 3B).

The study by Li et al. (22) contributed the most heterogeneity in this

meta-analysis. After excluding this study, I2 dropped to 21%, while

the result of EBL did not change (MD=−14.96; 95% CI: −27.35,
−2.56; p = 0.02; I2= 21%, Figure 3C).

For OT, subgroup analysis based on surgical technique showed

that heterogeneity was mainly from differences in surgical

techniques (p < 0.00001, Figure 4A), with no heterogeneity present

within either LPN or RAPN subgroup. The result of OT in both

subgroups was consistent with the overall result. The results of the

subgroup analysis based on surgical risk showed that surgical risk

was not a source of heterogeneity (p = 0.77, Figure 4B), with high

heterogeneity within both subgroups. The result for OT in the

high-risk subgroup was consistent with the overall result, but in

the low-risk subgroup, there was no statistical difference in OT

between the AR and NAR groups (MD=−18.80; 95% CI: −48.39,
10.79; p = 0.21; I2= 88%, Figure 4B).

For WIT, subgroup analysis based on surgical techniques

showed that the LPN subgroup was the main source of

heterogeneity (MD = −7.09; 95% CI: −10.29, −3.89; p < 0.0001;
FIGURE 4

(A) Subgroup analysis by surgical technique for OT; (B) subgroup analysis per

FIGURE 5

(A) Subgroup analysis by surgical technique for WIT; (B) subgroup analysis perf
2021.
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I2 = 94%, Figure 5A), and no heterogeneity existed in the

RAPN subgroup (MD = −1.79; 95% CI: −2.74, −0.83;
p = 0.0002; I2 = 0%, Figure 5A). The results of WIT in both

subgroups were consistent with the overall result. Subgroup

analysis based on surgical risk indicated high heterogeneity in

the high-risk subgroup (MD = −4.84; 95% CI: −8.27, −1.41;
p = 0.006; I2 = 97%, Figure 5B) and no heterogeneity in the

low-risk subgroup (MD = −1.75; 95% CI: −3.67, −0.16;
p = 0.07; I2 = 0%, Figure 5B). The result of WIT in the high-

risk subgroup was consistent with the overall result, but in the

low-risk subgroups, there was no statistical difference in WIT

between the AR and NAR groups (p = 0.07, Figure 5B). After

excluding two studies from the same author (Li 2020 and Li

2021) (22, 24), I2 decreased to 0 and the result of WIT

remained unchanged (MD = −1.75; 95% CI: −2.66 −0.83;
p = 0.0002; I2 = 0%, Figure 5C).

3.3.8. Sensitivity analysis
We performed a sensitivity analysis of the results by excluding

the individual experiments showing substantial heterogeneity.

None of the study removals from the model showed an effect on

our preceding main conclusions.
formed by the risk of the surgery for OT.

ormed by the risk of the surgery for WIT; (C) WIT excluding Li 2020 and Li
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4. Discussion

According to GOBALCAN 2020, renal cancer accounted for

2.2% of all new cancer cases in 2020, as well as 1.8% of cancer

deaths (31). NSS is the preferred treatment for stage cT1a renal

tumors and one of the interventions for stage cT1b and cT2

renal tumors (32). Compared to RN, patients undergoing PN

usually have a better prognosis for renal function and a lower

risk of chronic kidney disease (CKD) (1). The key factors

influencing the prognosis of patients undergoing PN are surgical

margin, renal parenchyma volume preservation, and ischemia

time. In PN, ensuring the negative surgical margin has the

highest priority, which is directly related to the outcome of the

treatment. For patients with a single kidney, multifocal masses,

and other potential risks for future CKD, postoperative renal

function should be improved by preserving as much renal

parenchyma as possible and reducing renal damage due to

ischemia (1).

Traditional DICOM format (CT/MRI) pictures are two-

dimensional and shown in monotone grayscale, making it

impossible to directly view complex anatomical features. For that,

surgeons are required to mentally reconstruct these two-

dimensional pictures into three-dimensional images. However, this

largely depends on individual capabilities and expertise among

surgeons, therefore the “imaging reconstruction” can be unstable

and consequently unreliable. In contrast, utilizing AR technology,

the surgeon could directly observe the critical structures in the

surgery area by zooming in, rotating, and altering the transparency

with a 3D model of the kidney (12, 13). Our findings suggest that

utilizing ARSN in PN could significantly reduce OT, which might

benefit from detailed preoperative planning and intraoperative

visualization of renal anatomy based on 3D models. Moreover, 3D

model-based preoperative virtual surgery allow surgeons to

familiarize themselves with surgical procedures in advance. We

discovered that using ARSN significantly reduced EBL. In ARSN-

based PN, surgeons had immediate access to anatomical

information about the tumor location and surrounding tissues,

which allowed them to perform purposeful tumor excision while

avoiding unneeded intrusive procedures. Through subgroup

analysis, we observed that this difference was not significant in

RAPN. This could be due to the surgical equipment’s benefits

obscuring the effect of ARSN.

The amount of parenchyma saved is the most critical factor

influencing the recovery of renal function after PN (33). Greater

resection volume is frequently linked to a worse prognosis for

renal function following surgery in patients with complicated

renal malignancies (1). Enucleation is a surgical treatment

strategy that can maximize the preservation of normal renal

tissue. Enucleation is effective in treating small renal lesions,

although it can be challenging to determine safe boundaries

(34–36). Here, we noticed that enucleation was more commonly

employed in the AR group, which may benefit from the

application of high-precision three-dimensional images of the

kidney in the surgical procedures (6, 21). The utilization of

ARSN could broaden the indications for PN and improve the

success rate of NSS surgery compared to the conventional
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surgical approach (24). However, there was no significant

difference in the probability of conversion to RN between the

two groups in this study. That might owe to the fact that

patients were screened for inclusion in the trials.

In addition to parenchymal mass preservation, Ischemia

duration is also an important factor affecting postoperative renal

function recovery after PN (1, 33). Although the threshold of

warm ischemia duration that causes substantial impairment to

renal function is unclear, it is widely accepted that WIT of less

than 25–30 min has little effect on renal function (37, 38).

However, it is still suggested that the early release of warm

ischemia is more beneficial for functional recovery (39–41). We

found that AR navigation significantly reduced WIT, which may

be due to the visual display of the renal mass and vessels,

reducing intraoperative exploration time and making it easier to

determine the boundaries of resection. Compared with reducing

the time of ischemia, avoiding ischemia is a more direct means.

Traditional PN surgery frequently employs Hilar occlusion to

obtain a safe and effective view, although this results in global

ischemia. However, studies in recent years have indicated that

Hilar occlusion is not required in PN (42–44). Studies by Smith

et al. and Desai et al. (42, 43) have shown that selective clamping

could better preserve renal function without compromising the

oncological efficacy. However, selective clamping and zero

ischemia require a more detailed dissection of the branch vessels,

which makes these techniques more challenging. Three-

dimensional CT reconstruction of renal vessels, intraoperative

color Doppler ultrasonography, and near-infrared fluorescence

imaging were the main employed techniques in clinical practice to

guide selective clamping. Here, we analyze the application of

selective clamping and zero ischemia in PN based on ARSN and

conventional navigation (IOUS, CT images, etc.). The result

showed that a lower rate of patients underwent global ischemia in

the AR group compared with the NAR group. Therefore, ARSN

may provide more aid for PN surgery than conventional methods.

In terms of renal function, we found no statistically significant

difference between the two groups. However, the amount of

preserved renal parenchyma was theoretically closely associated

with the eventual level of postoperative eGFR (45). The

compensatory effect of contralateral healthy and remnant kidneys

and the lack of long-term eGFR monitoring may lead to masked

differences in renal function between the two groups. In isolated

renal patients, Li et al. (26) discovered that patients in the AR

group had lower levels of reduced eGFR than those in the NAR

group. Furthermore, Porpiglia et al. (6) used renal scintigraphy

to assess the effective renal plasmatic flow of operated kidneys

and found that patients in the AR group performed better. As a

result, we conclude that ARSN has a beneficial effect on renal

function recovery in patients receiving PN.

There was no statistically significant difference in the rates of

positive surgical margins and postoperative complications

between the AR and NAR groups, which may be due to the

surgeon’s caution and extensive experience in NSS. Larcher

et al. (46) and Porpiglia et al. (47) evaluated the learning curve

of NSS and discovered that the rate of complications steadily

declined and renal ischemia improved as the number of surgical
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cases increased. When the image-guided system was not utilized,

it took a long time to reach the learning curve (46). In contrast,

ARSN could provide surgeons with reliable intraoperative

guidance while shortening the formidable learning curve

required for NSS (48).

The reconstruction and intraoperative registration of AR

models in all studies were performed manually. Studies have

shown that the constructed 3D models of the kidney can

objectively and realistically reflect the anatomical features of the

kidney (6, 20–26). Intraoperative manual registration of the

models can also achieve the required clinical accuracy (6, 20–26).

The augmented reality techniques used across studies were not

fundamentally different. Differences in processes may lead to

high heterogeneity in results, but after sensitivity analysis, we

found that such differences do not affect the final results.

Concerning the cost of ARSN, one study reported that a higher

amount of money (additional 500–600 dollars for the engineers)

together with labor costs were unavoidable due to the manual

involvement required for 3D model reconstruction and

intraoperative model registration (26). The application of

automated registration may reduce these additional costs in the

future, thanks to advances in artificial intelligence technology (49).

This study has several limitations. First, the included studies

were few and primarily retrospective, with only two RCTs

reporting limited data, which may have resulted in confounding

factors that could not be eradicated. Second, because our data

were mainly from patients with complex renal neoplasms, our

conclusions may be more applicable to these patients. Third, the

application of ARSN is still in its early stages and lacks a

uniform and standardized approach; therefore, the procedures of

ARSN used in all of the selected research differ, which may lead

to the high heterogeneity of some results.
5. Conclusion

In summary, the application of ARNS in NSS can effectively

reduce intraoperative blood loss, shorten the duration of

operation, and reduce damage to normal renal tissue. Although

there is no direct evidence, our results still show that AR

navigation technology has potential advantages in improving the

recovery of renal function after PN. It is worth noting that the

application of augmented reality technology in surgery is still in

the early stage of exploration, and the research we report has the

limitations of a rigid 3D model and manual registration
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technology. In the future, more intelligent and accurate AR

navigation technologies may be able to achieve better clinical

results in PN. Until then, we need high-quality RCTs to further

improve the credibility of the conclusions.
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