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Free tissue transfer is widely used for the reconstruction of complex tissue defects.
The survival of free flaps depends on the patency and integrity of the
microvascular anastomosis. Accordingly, the early detection of vascular
comprise and prompt intervention are indispensable to increase flap survival
rates. Such monitoring strategies are commonly integrated into the perioperative
algorithm, with clinical examination still being considered the gold standard for
routine free flap monitoring. Despite its widespread acceptance as state of the
art, the clinical examination also has its pitfalls, such as the limited applicability
in buried flaps and the risk of poor interrater agreement due to inconsistent flap
(failure) appearances. To compensate for these shortcomings, a plethora of
alternative monitoring tools have been proposed in recent years, each of them
with inherent strengths and limitations. Given the ongoing demographic change,
the number of older patients requiring free flap reconstruction, e.g., after cancer
resection, is rising. Yet, age-related morphologic changes may complicate the
free flap evaluation in elderly patients and delay the prompt detection of clinical
signs of flap compromise. In this review, we provide an overview of currently
available and employed methods for free flap monitoring, with a special focus
on elderly patients and how senescence may impact standard free flap
monitoring strategies.
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1. Introduction

Free tissue transfer (free flap; FF) represents a routine option for soft or composite tissue

reconstruction, with the goal of providing durable wound coverage, improving aesthetic

appearance, and restoring functional deficits. FFs offer a variety of tissue types, such as

skin, muscle, bone, nerves, or a combination thereof and allow the reconstruction of

sizeable tissue defects. The indications for FF surgery, therefore, are broadly defined,

ranging from congenital anomalies through burn injuries and cancerous lesions to severe

trauma-related tissue defects (1). Given the narrow diameter of FF vasculature, the blood

supply is ensured via microvascular anastomosis between the donor and recipient vessel

(2, 3). With the integrity and patency of this small-caliber anastomosis being crucial for

the FF survival, arterial and venous thromboses are considered the most common reasons

for FF failure (4–6). Vascular comprise typically manifests within 48 h after surgery (7, 8).
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Recent studies have demonstrated that, in these cases of vascular

occlusion, the likelihood of FF salvage primarily depends on

early diagnosis and return to the operating room. Briefly, the

longer it takes to detect vascular incidents, the poorer the overall

chances for FF survival (4, 9–11). Therefore, immediate detection

and prompt intervention are essential for FF salvage, rendering

close-knit postoperative FF monitoring indispensable.

With the ongoing demographic change, the number of older FF

candidates is on the rise (12). Generally, as patients age, their

cardiovascular stability, immune system competence, and wound

healing capacities decrease. This age-related decline in health

exacerbates surgical vulnerability and predisposes to postoperative

complications. Accordingly, close-knit FF monitoring in elderly

patients is of paramount importance, ensuring the early detection of

adverse events and allowing timely intervention. Such surveillance

strategy may, therefore, also prevent the need for reoperation and

avert repeated perioperative stress and risks for susceptible elderly
FIGURE 1

Illustrative comparison between young and aging skin. Age-related skin chang
and concealing common signs of free flap failure. Externally, deep wrinkles,
senescence of the skin structures. On the histological level, the dermo-epi
Due to a progressive subcutaneous fat reduction, decrease in water conten
over time.
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patients. However, age-specific skin changes, such as the loss of

elasticity, the decrease in water content, and the fragility of the

vascular bed (with subsequent vulnerability to hematoma), may

complicate FF assessment and delay the prompt detection of flap

failure (Figure 1) (13–16). In addition, advanced age has been

associated with an increased risk of morbidity and mortality

following FF surgery (17–19). Consequently, special attention must

be paid to this vulnerable and frail patient population in the

perioperative FF setting.

To date, the gold standard of FF monitoring includes clinical

examination (CE; i.e., flap color, capillary refill, tissue turgor,

temperature) and handheld acoustic Doppler sonography (ADS) (20,

21). However, an accurate and reliable CE requires experience and

well-trained eyes. Such expertise is all the more important considering

the diversity of warning symptoms and FF failure manifestations

among different genders, ethnicities, and age groups. For example,

assessment of skin changes (such as erythema) in Black patients may
es can manifest in various ways, thereby complicating free flap evaluation
dark-pigmented age spots, and superficial vascular drawings reflect the
dermal junction flattens and the fibrillar-connective structure collapses.
t, and loss of elasticity the impression of youthful smooth skin vanishes
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be less reliable (22). As a result, thesemethods of FF surveillance remain

a logistical challenge for small, limited-hour residency programs and

private practices as well as maximum-care hospitals with a high rate

of emergencies and residents assisting in the operating room (23). In

addition, CE and ADS may not be used for the monitoring of poorly

accessible and deeply-buried flaps (24).

To address the shortcomings of these conventional strategies,

there is an increasing interest in alternative techniques that may

complement or even replace CE and ADS. This review aims to

provide an overview of currently available and employed

techniques for FF monitoring, with a special focus on the care of

older patients. To this end, we discuss promising strategies

through a medical-technical lens, linking clinical findings with

relevant biophysical research. This may help physicians to

upgrade their armamentarium of FF monitoring techniques and

leverage their specific benefits.
2. Standard of care in free flap
monitoring

CE and handheld ADS still represent the standard of care in FF

monitoring (25). Recently, novel modalities emerged as alternatives

to these two well-established techniques (Figure 2). Yet, any of

these techniques have inherent strengths and limitations. In the
FIGURE 2

The current gold standard and novel techniques in the postoperative monito
acoustic Doppler sonography is still considered the state of art to monitor fr
serially evaluating the flap temperature, turgor, color, and capillary refill. Typ
Doppler sonography as an instrument to sound the blood flow and velocity
the active-practical involvement of the physician at periodic intervals. In rece
facilitate and refine free flap monitoring. These high-tech methods range
Doppler systems to hyperspectral and thermal imaging. In contrast to the c
digital (remote) equipment that allows the biophysical flap condition to be as
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following, we summarize the most frequently used techniques in

FF monitoring and outline their applicability (Table 1).
2.1. Clinical examination

Generally, a holistic overview of the patient’s health is

fundamental when evaluating the FF postoperatively. Thus, the

examiner can differentiate between systemic and FF-specific

disorders. Therefore, the FF appearance should always be viewed

and analyzed in comparison to the surrounding body parts. The

clinical examination (CE) of the FF includes an evaluation of the

flap’s temperature, color change, size and turgor, capillary refill,

and bleeding characteristics to fine-needle pin-prick (25). This

visual and tactile assessment of FF holds various advantages: It

enables fast, inexpensive, and simple to interpret FF monitoring.

Furthermore, this practicable method is noninvasive and harmless

to both, the patient and the FF. These strengths are reflected in a

systematic review revealing FF success rates of ≥95% with CE as

exclusive surveillance tool (26). It is, therefore, not surprising that

CE is still considered the accepted standard for FF monitoring in

an era of advanced and high-tech surveillance strategies (27, 28).

Nonetheless, a caveat of CE is the FF visibility and accessibility,

with a limited evaluability of buried FFs or FFs that are difficult to

access (e.g., oral cavity) (29). Lighting conditions may distort the

FF assessment, as the FF color and appearance depend on the
ring of free flaps. To date, the combination of clinical examination and
ee flaps. More specifically, the attending physician examines the free flap
ically, this cornerstone of free flap assessment is supported by acoustic
. Accordingly, the gold standard is based on a hands-on approach with
nt years, a broad spectrum of novel technologies has been proposed to
from the well-known color duplex sonography through implantable

onventional approach, this new generation of monitoring tools relies on
sessed in a technologically advanced and automatic-computerized form.
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TABLE 1 Detailed overview of the free flap monitoring methods. Each of the presented methods has its inherent strengths and limitations, with the
clinical examination in combination with acoustic Doppler sonography still being universally accepted as the gold standard in the postoperative
monitoring of free flaps. While modern technologies may offer unique benefits for both patients and physicians, their pitfalls thwart widespread
clinical implementation. This holds also true for the arguable field of free flap surveillance in elderly patients: Due to the lack of well-established and
age-appropriate methods/tools, the conventional approach continues to be applied.

Monitoring Method Strengths Limitations Applicability/Suitability in Elderly Patients
Clinical Examination Noninvasive

Low cost
Quick assessment

Limited use in buried flaps without skin island
Dependence on a light source
Lack of standardization
Expertise and experience required

Challenging due to interindividual skin/flap appearance
and lacking standardized protocols

Acoustic Doppler
Sonography

Noninvasive
Simple to use
Low cost
Quick assessment

Typically not applicable for buried flaps
Lack of quantitative measurement
Noncontinuous
Expertise and experience required

No definitive conclusions; age may be considered a
potential confounder

Color Duplex
Ultrasonography

Noninvasive
Use in buried flaps
Quantifications of vessel inflow
and outflow

Expertise and experience required
Expensive
Noncontinuous

Lack of robust data regarding postoperative free flap
monitoring

Flow Coupler Simple to use
Easy handling and simple setup
Use in buried flaps
Continuous

Invasive
Implantable probe needs to be removed, (possible
port of entry for infectious agents)

Might be beneficial, future large scale-studies are
needed

Implantable Doppler Simple to use
Easy handling and simple setup
Use in buried flaps
Continuous

Invasive
Expensive
Implantable probe needs to be removed (possible
port of entry for infectious agents)

Might be beneficial, future large scale-studies are
needed

Laser Doppler Flowmetry Noninvasive
Continuous
Arterial and venous occlusion
differentiation

Expensive
Lack of quantitative measure
User training and experience required

Blood flow parameters may differ among elderly
patients; standardized norm values are lacking

Near-Infrared
Spectroscopy

Noninvasive
Continuous
Real-time measurement
Simple to use
Remote monitoring possible

Expensive
Regional oxygen saturation might be influenced by
internal and external variables
Patient mobility can influence signal quality
Requires skin island and taping of large probe that
can limit clinical assessment of flap

Might be beneficial, future large scale-studies are
needed

Hyperspectral Imaging Noninvasive
Quick assessment
Ability to differentiate arterial
and venous occlusion

Noncontinuous
Expensive
Sensitivity to small movement
Lack of large-scale validation studies
Reliance on ambient lighting

Resting posture might be problematic in elderly patients
(e.g., due to tremor and restlessness)

Thermal Imaging Noninvasive Unclear, future studies are needed Future large scale-studies are needed

Oxygen Partial Pressure
Measurement

Continuous Invasive
Single-point measurement

Might be beneficial, future large scale-studies are
needed
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illumination/light source (30). In this context, CE of intraoral,

gluteal, and head and neck FF reconstructions are particularly

challenging: The complex three-dimensional oral cavity and throat

area can limit visual inspection and accessibility. In addition,

interindividual FF appearances (e.g., due to age and skin color)

and inconsistent warning symptoms of FF failure entail the risk of

poor interobserver agreement. In this context, Mofikoya et al. has

highlighted the limited validity of CE in Black FF patients (31).

The colorimetric evaluation is challenging in this patient

population and subtle skin changes may be missed. In elderly

patients, morphological age-related variations may hamper the

early detection of FF failure in CE. Namely, age spots conceal the

actual skin appearance, dermal layers thin out exposing superficial

blood vessels, and deep wrinkles complicate adequate turgor

assessment (Figure 1) (13, 14, 16, 32). This interindividual

heterogeneity of skin appearance may lead to CE-related variance

in clinical practice and evaluation, with a lack of standardization

and objectification. Varying skill levels and expertise of the

assessors can be considered another confounding factor (33, 34).
Frontiers in Surgery 04
Therefore, easy-to-use and objective tools are needed to quantify

and/or objectively determine FF viability.

Previously, complementarymethods have been proposed to account

for some of CE-related shortcomings. While Urken et al. proposed the

exteriorization of a well-vascularized FF segment in buried head and

neck defect coverages, van Genechten suggested the use of high color-

rendering index, light-emitting diodes to overcome poor lighting

during CE of intraoral FFs (30, 35). Such modifications of the

rudimentary CE may increase its accuracy and widen its applicability;

however, further age-adjusted configurations are required. To date, no

standardized protocols for the CE of FF in older patients have been

published. As a result, benchmarks for the comparability of CEs in

elderly patients undergoing FF surgery are lacking.
2.2. Acoustic Doppler sonography

Another adjunct to the basic concept of CE is the use of

acoustic Doppler sonography (ADS) as an instrument to sound
frontiersin.org
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the blood flow and velocity. Most commonly employed as a

handheld device, ADS detects reflected ultrasonic waves (5–

8 MHz) and translates these bio-signals into an acoustic feedback

(36). Accordingly, the shift in signal quality from a three-phase

(tri-or biphasic) to a single-phase (monophasic) arterial response

can be an early warning sign of imminent arterial occlusion. In

contrast, the initial stages of venous occlusion usually remain

unnoticed, whereas in the late stages the arterial signal takes on a

“water-hammering” characteristic prior to vanishing (37). The

absence of any arterial or venous signal can be deemed advanced

vascular blockage and requires immediate intervention (1, 38).

Yet, the acoustic differentiation of the microvascular anastomosis

from adjacent native vessels requires extensive training. Acoustic

coupling/impedance and hard-to-reach flaps are additional

obstacles to an accurate assessment of FF.

Despite relatively few clinical studies investigating the efficacy

of ADS alone, this noninvasive and recordable method is

widespread in FF monitoring (1). The popularity of ADS is likely

due to its convenient, fast, and cost-effective application. In

addition, the concept of ADS has been established in various

other medical settings, underscoring its universal applicability.

However, the sensitivity of the ADS mainly concentrates on the

detection of blood flow through superficial FF vessels, with poor

specificity (38). Given this narrow detection distance, the

assessment of blood perfusion in buried flaps is often not

possible or reliable. The impact of aging on the detectability of

ADS remains to be elucidated: While Marioni et al. and Soria

et al. demonstrated inconsistencies in acoustic patterns of ADS

among elderly patients, Turrà et al. reported the successful usage

of CE and ADS to monitor head and neck FFs in 28 patients

aged >60 years and above (39–41).

In sum, ADS has its raison d’être as a valuable adjunct to mere

CE and as an initial screening tool for blood flow in the FF. Yet, no

definitive conclusions regarding the FF condition can be drawn

from ADS alone, rendering the pairing with CE mandatory.

Future studies are needed to investigate whether senescence and

age-related changes may confound the signals of ADS.
3. Modern and innovative alternatives/
adjuncts in free flap monitoring

3.1. Color duplex ultrasonography

Leveraging the same technology as ADS, color duplex

ultrasonography (CDS) is an instrument to visualize ultrasonic

waves and thus FF vascularity. FF viability can therefore be

assessed acoustically through Doppler outputs, and visually by

correlating colors with blood velocities (42). To this end, the

microvascular anastomosis is traced via a handheld probe, with

the perfusion being examined on a viewing monitor (21). Several

studies have demonstrated the applicability of CDS as a useful

monitoring technique of buried FFs: While Vakharia et al.

provided evidence on the usefulness of CDS as a safe and

noninvasive monitoring tool in buried facial reanimation FFs, a

German study highlighted CDS as a time-efficient and reliable
Frontiers in Surgery 05
method for the postoperative assessment of vascularized free

bone flaps (43, 44). Further, Cuthbert et al. verified the potential

of CDS in monitoring a free jejunal flap for oesophageal

reconstruction (45). In a comparative study of 45 elderly FF

patients (mean age: 66 years), Lethaus et al. concluded that CDS

is more precise and reliable than ADS. When localizing FF

perforators preoperatively, the authors calculated a sensitivity and

positive predictive value of 97.9% and 100% for CDS,

respectively (46).

However, these advantages are (partially) countered by costly

resources. In order to accurately harness and interpret CDS, an

ultrasound technician and a radiologist are needed to take care

of the device maintenance/handling and visual analysis,

respectively. In addition, the equipment is quoted at up to

$225,000 (43). If surgeons are to reliably analyze the diagnostic

signals of CDS, they need to undergo thorough training and

instruction beforehand. Therefore, this resource-consuming

method is more likely to be implemented as selective-

complementary than as serial-standard FF monitoring technique.
3.2. Flow coupler

The Flow Coupler (FC) technology combines a coupler that is

commonly used during anastomosis in FF surgery with an

implantable ultrasonic micro-doppler probe. Intraoperatively

inserted, the device allows continuous postoperative monitoring

of the venous anastomosis, with change or loss of the signal

possibly indicating microvascular compromise (21, 47). Zhang

et al. highlighted the potential of FC in head and neck FF

surgery, reporting an accurate flow signal interpretation in 90%

of all cases (48). Furthermore, FC was found to be particularly

suitable for the monitoring of buried FFs and difficult-to-reach

FFs, such as in oropharyngeal reconstruction cases (49).

In contrast, when comparing FC with a non-flow coupler

(including external Doppler monitoring) in 119 patients

undergoing abdominal-based breast reconstruction, Kempton

et al. shed light on the adverse side effects of FC. Namely, a high

false positive rate in intra- and postoperative settings resulted in

frequent signal-correcting procedures and significantly more

thrombotic events have been documented in FC usage (50).

However, these findings should be interpreted with cautions

since such FC-related complications could not be confirmed in

further studies. Instead, in a 2014 study investigating 220

outcomes of free-flap breast reconstructions, no statistically

significant differences were found between an implantable

Doppler probe and FC, with comparable false-positive rates and

thrombotic events (51). Similarly, while Chadwick et al.

highlighted the safe and reliable usage of FC for buried free flap

monitoring, Bowe et al. reported no false positives/negatives and

a significantly higher flap salvage rate (compared to CE) during

their five-year FC experience (52, 53).

These contradictory findings reflect the unclear relevance of FC

in postoperative FF surveillance. Given the novelty of FC (FDA

approval in 2010), long-term studies are still lacking (51).

However, in the FF surgery of elderly patients, FC was found to
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be beneficial. Investigating the use of FC in 217 FF patients with a

mean age of 63 years, Troob et al. reported positive and negative

predictive values of 64,3% and 98.9%, respectively (47). FC was

able to accurately detect venous thrombosis, while being safe in

application and holding the potential to improve FF salvage

rates. Despite these promising findings, future large-scale studies

are necessary to validate its gerontological efficacy and reliability

as well as to identify possible perioperative risks.
3.3. Implantable Doppler

First introduced in 1988 by Swartz et al., the implantable

Doppler (ID) probe has been established as a valuable FF

monitoring technology (54). A piezoelectric crystal embedded in

a silicon sheath is attached directly to the microanatomized

venous and/or arterial vessel. Connecting wires then transmit the

signals to an equivalent of an acoustic Doppler device (21).

Hence, the implantable Doppler offers instantaneous and

permanent monitoring of the blood flow through the artery and/

or vein. Given the direct implantation on the vessel, this method

is particularly suitable for the postoperative evaluation of buried

FFs (55). Any alteration of the signal’s strength and consistency

may indicate vascular comprise (54). Theoretically, such

immediate feedback on the FF viability allows prompt (surgical)

intervention and, therefore, increases the likelihood of FF salvage.

A 2016 meta-analysis corroborated these theoretical

considerations: Han et al. demonstrated that ID was associated

with significantly better rates of FF success and salvaging when

compared with conventional clinical monitoring methods (56).

However, the same meta-analysis also revealed an ID-related

false-positive rate of up to 17%. This is in line with a case series

of 74 pharyngoesophageal and tracheal reconstructions, in which

ID generated 31% of false-positive rates (24). The lack of ID-

related specificity resulted in unnecessary surgical exploration.

Such concerns about ID malfunctions and the susceptibility to

false-positive signals were also raised in a study published in

2021 by Pier et al. (57). Specifically, the authors highlighted the

detrimental nature of false-positive ID signal loss and reported

that one-third of ID malfunctions were associated with patient

complications.

Interestingly, an in-depth analysis by Schmulder et al.

demonstrated that the value of ID varies by subspecialty (58).

While ID was found to be particularly effective in FF monitoring

of head and neck and breast reconstructions, trauma/orthopedics

specialties benefited less from this technology. The special

suitability of ID for postoperative assessment of FFs in the head

and neck region was verified in a recent study. In a retrospective

analysis of 65 cases with different FF types and locations across

the head and neck area, Dunklebarger et al. concluded that ID

was highly effective for the surveillance of buried FFs (55).

Furthermore, a meta-analysis investigating the diagnostic test

precision suggested that arteries can be more accurately evaluated

than veins via ID (59). A cost-effectiveness analysis reflects these

pros and cons regarding the use of ID: While Poder et Fortier

confirmed the effectiveness of ID, they also indicated excess costs
Frontiers in Surgery 06
of nearly EUR 100 per patient (compared to conventional

methods) (60).

In sum, ID holds promising potential as an innovative FF

monitoring tool with significantly higher FF salvages rates than

CE (61). Kim et al. have demonstrated the successful application

of real-time FF monitoring via wireless Wi-Fi technology (62).

This concept enabled simultaneous and convenient FF

surveillance at any time and in any situation, with high

sensitivity and specificity. However, regardless of the novelty and

the advantages of ID, institutions planning to adopt ID should

also account for its drawbacks such as the high incidence of

false-positive signals and surcharges. In this context, it is

noteworthy, that in a matched case-control study investigating

the utility of ID among patients with a mean age of 60 years,

ID’s effectiveness and potential to increase FF success were

reaffirmed (63). This finding suggests that ID could also be

beneficial among elderly patients.
3.4. Laser Doppler flowmetry

Laser Doppler Flowmetry (LDF) is another noninvasive

monitoring technique for microcirculation in FFs. LDF also

exploits the Doppler effect, with light-tissue interactions as the

underlying biotechnical principle (64). A light source emits laser

signals that are scattered and reflected by the FF. These

reflections are subsequently detected by an optical fiber (65).

Strikingly, circulating blood cells create—depending on the

velocity of blood flow—a characteristic pattern (that differs from

that of non-moving tissue) (38). Based on this pattern,

information about the relative value of blood flow can be

derived; absolute and exact numbers cannot be measured via

LDF (38).

Several studies have advocated the use of LDF as FF monitoring

technique, emphasizing its real-time measurement, accuracy, and

objectivity (38, 66–69). Yuen and Feng reported their five-year

experience using LDF in 232 microvascular composite-tissue

transfers: LDF detected vascular comprise in all cases, with no

false positive or negative misinterpretations. Even more, the flap

viability was nearly 100%. In addition, LDF may help differentiate

arterial from venous occlusion in free tissue transfer (65).

Researchers report mainly a pragmatic-economic downside of

this technology. Expensive start-up and maintenance costs

relativize the aforementioned advantages (38). Accordingly, in

more recent years, the number of studies investigating and

recommending the use of LDF is decreasing. Further, using LDF,

Zhang et al. provided evidence that age has a remarkable impact

on blood flow (70). LDF-related reference ranges, scores, and

relative flow parameters may differ significantly among elderly

patients. However, to date, standardized LDF norm values and

comparison charts for older patients are lacking. Despite its

limitations, LDF may be considered a valuable adjunct in the

detection of suspected FF failure and as a validation tool. Of

note, LDF has also been studied in combination with tissue

spectroscopy/spectrometry. Both technologies apparently
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complement each other favorably, with promising results in reliable

prediction of ischemia in FFs (71–73).
3.5. Near-infrared spectroscopy

Near-infrared spectroscopy (NIRS) is a useful adjunct to LDF

in that it allows continuous, noninvasive, and bedside monitoring

of FF tissue oxygenation (74). NIRS-based devices measure the

selective absorption of near-infrared light by oxygen-dependent

tissue chromophores contained in hemoglobin (75). The

percentage of saturated hemoglobin (StO2) is then computed

from the ratio of oxygenated and deoxygenated hemoglobin (74,

76). Indicating the balance between oxygen supply and

consumption, StO2 is a biomarker for tissue (and FF)

oxygenation. As such, StO2 also indirectly reflects tissue

perfusion/vascularity (76). Therefore, NIRS not only

complements other FF monitoring techniques but also functions

as a stand-alone instrumental tool for the real-time measurement

of fluctuations in FF hemodynamics, thus indicating early

detection of vascular compromise (75, 77). NIRS can even detect

vascular compromise prior to any clinical manifestation (77).

Given these features, numerous studies accredit NIRS special

suitability as a monitoring technique. Namely, versatility,

accuracy, and reliability were found to be NIRS’ key aspects (74–

81). With nearly 100% sensitivity and specificity, NIRS has been

found to be an excellent tool for identifying arterial and venous

comprise (74, 77, 82). This pinpoint detectability has translated

into FF salvage rates of about 90% (75, 77). In addition, NIRS

can be used to adequately monitor buried FF—as long as the

covering skin thickness does not exceed the penetration range of

the NIRS sensor (83). According to Ouyang et al. and Chao

et al., depth detection down to 20 millimeters is achievable by

NIRS (1, 79). This variety of NIRS advantages is further

extended by its user-friendliness (76). Although there are no

strict cut-off values and manufacturer-dependent variations, a

relative drop (compared with baseline readings) of about 20

points commonly indicates FF perfusion failure (76, 84). Thus,

inexperienced nursing staff and junior physicians/residents can

take over FF monitoring. Even more, NIRS holds potential for

remote FF monitoring, without the need for in-hospital presence

(78). These strengths of NIRS are reflected in a recent systematic

review: Bian et al. concluded that NIRS “provides superior flap

salvage and survival rates compared with [CE], which translates

to cost savings and a reduction in workload” (85). As a result,

this NIRS concept is particularly exciting for smaller peripheral

facilities with limited manpower and may possibly balance the

additional IRS-associated costs.

In fact, implementing NIRS as standard technique should not

be underestimated financially, with reported device costs up to

$30,000 and maximal sensor costs as high as $1,200 (76).

Notably, after performing a comparison of cost-effectiveness

between CE alone and NIRS, Schoenbrunner et al. drew

surprising conclusions (86): The complementary use of NIRS was

found to increase the effectiveness minimally and thus, CE alone

represented the more cost-effective FF monitoring option. Along
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with the debatable cost-effectiveness, there is the question of how

susceptible NIRS measurements are across a diverse FF patient

population. Indeed, Salgarello et al. identified several variables

that correlate significantly with regional oxygen saturation (81).

Besides FF size and skin FF area, the patient BMI also markedly

affected NIRS oximetry data. The assumption that age also has a

relevant impact on NIRS measurements is, therefore, plausible

but has not yet been investigated. Such an age-specific impact

may shift or invalidate the currently applied NIRS interpretation

thresholds. Takasu et al. has provided first evidence that NIRS

may also be used effectively in elderly patients (87): More

specifically, in two 63-year-old patients, rapidly dropping StO2

values triggered the FF re-exploration—at an early stage and

prior to any clinical manifestation. Thus, venous occlusion could

be promptly diagnosed, with both flaps being salvaged via re-

anastomization. Yet, future studies defining the relevance of

senescence are needed to conclusively assess the usefulness of

NIRS in elderly patients. Otherwise, NIRS is a modern and

promising FF monitoring technique that offers a variety of

benefits and may—after robust validation—find more widespread

acceptance.
3.6. Hyperspectral imaging

Hyperspectral Imaging (HSI) is a fast and noninvasive and

nonionizing monitoring technique based on spectrometric tissue

analysis (88–90). The target tissue is illuminated by halogen

lamps and remitted light is detected in a wavelength spectrum

from visual to near-infrared light (380–1000 nm) (91). Due to

the heterogeneity of the tissue, distinct remission spectra are

generated and subsequently saved as a three-dimensional data

cube (92). Built-in software tools then process the data into high-

resolution color-coded images, with four computed tissue

parameters (76, 92): While the hemoglobin oxygenation (StO2)

and the near-infrared perfusion index (NIR) report the surface

hemoglobin oxygen saturation, the distributions of hemoglobin

and water are depicted in form of the tissue hemoglobin index

(THI) and the tissue water index (TWI), respectively. As a result,

HSI provides precise, objective, and reproducible information on

FF viability. In a recent systematic review, NIRS and HSI as two

innovative FF technologies were compared (76). While both

methods were found to yield comparable effectiveness, Lindelauf

et al. also highlighted their technological-methodological

differences. HSI does not—unlike NIRS—feature continuous

measurement and, thus, does not allow permanent FF

surveillance. Any moving or manipulation of the recorded tissue

will skew the HSI measurements. However, with HSI being a

contactless monitoring technique, imaging can also be performed

intraoperatively and in a more patient-comfortable manner.

Due to the novelty of HSI, large-scale validation studies and

robust clinical data are lacking so far. However, the studies

conducted to date share a consensus: HSI is an exceptionally

promising option for FF monitoring. The unique information

value derived from the four HSI tissue parameters delivers early

evidence of vascular comprise and accurately identifies necrotic
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FF areas (76, 92–95). In addition, HSI can help distinguish between

arterial occlusion (low THI and low StO2) and venous congestion

(high THI and low StO2) (93). In a prospective observational

cohort study with 22 patients undergoing FF surgery for soft

tissue reconstruction, Kohler et al. were able to reproduce these

HSI-linked benefits. These findings even encouraged the authors

to claim a “superiority [of HSI] to clinical and Doppler

ultrasound monitoring assessments” (96). Tiehm et al. also

joined this chorus of optimism, with the observation of HSI

revealing FF malperfusion nearly 5 h earlier than CE (95).

In contrast, HSI is criticized for its reliance on ambient lighting

(95, 97). To prevent a loss of data quality, interference/background

light should be minimized during imaging. Further, its cost-

effectiveness and long-term practicability remain to be elucidated

(96). HSI-related expenses, however, mainly include the one-time

purchase of the device (about $40,000); ongoing costs are rarely

incurred (76, 92). Regarding the applicability of HSI in elderly

patients, the necessary resting posture during recording (for

about 15 s) may be a potential problem. With many old patients

suffering from tremor and restlessness, HSI images may end up

blurred and invalid. This limitation was also reported by

Courtenay et al. who recently tested the HSI method in 115

elderly patients with non-melanoma skin cancer (98). The

authors also noted a lack of comfort among elderly patients. This

HIS-associated handicap could be overcome, for example, by

ergonomic support aids or platforms. Nevertheless, future

research is needed to both broadly validate HSI as FF monitoring

tool and to identify age-specific challenges.
4. Further free flap monitoring
methods and their applicability in
elderly patients

(i) Thermal Imaging (TI) is a novel and noninvasive modality to

detect vascular perfusion. By measuring radiation (which is

proportional to the body temperature) and converting it into

visible images, TI creates heat maps (13, 99). With the body

temperature correlating to the blood flow, TI can be

considered a surrogate detector of FF vascularity. Frohwitter

et al. reported the successful application of TI in a 90-year-

old woman who underwent microvascular radial forearm

flap reconstruction (13). The temperature dynamics

visualized by TI provided valuable insights into the rheology

of FF, both intraoperatively and postoperatively.

(ii) Oxygen partial pressure (PtO2) measurement within the FF

represents another promising apparative monitoring

technique. In this context, polarographic micro-catheter

probes surgically implanted in the FF provide continuous

electrochemical signals, with marked decreases in PtO2

indicating FF failure (100, 101). Depending on where the

PtO2-sensing needle tip is placed, this technique allows

measurements in variable tissue layers. One shortcoming of

most of these needle probes is a single point and, thus, very

selective PtO2 measurement within the tissue. Ashkenazi

et al. managed to overcome this issue, by developing a PtO2
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sensing probe, that enables multiple measurements along

the probe shaft (102). The underlying technology is based

on a side-firing and light-collecting optical fiber tip placed

in an oxygen-sensitive dye-coated glass capillary. This way

PtO2 scans at multiple tissue depths can be recorded at

the same time, avoiding the need for repeated needle

translocations and resulting tissue damage. In 2013, a

German study investigated the use of PtO2 surveillance in

125 microvascular FF cases (100). The polarographic

technology indicated the necessity of salvage surgery at an

early stage and error-free. This finding is particularly

relevant given the average patient age of over 60 years,

which underscores the instrument’s efficacy in an elderly

patient population. Similarly, when testing PtO2

monitoring during the surgical after-care of 21 elderly FF

patients (mean age: 61 years), Trignano et al. also

reported promising results (103). Alarming PtO2 values

accurately triggered the re-exploration of three FFs, one of

which could be salvaged. More recently, Dejean et al.

reported the successful use of this PtO2 technology in the

postoperative surveillance of elderly women who

underwent FF breast reconstruction (104). Nonetheless,

this method has been rarely used and clinicians insist on

the importance of parallel periodic clinical FF

examinations (103, 105, 106).

(iii) As mentioned above, in cases of hard-to-reach and buried

flaps, monitoring via skin paddles may represent a

valuable adjunct to CE. Recently, two case series have

documented the usefulness of such cutaneous paddles as a

monitoring strategy also in elderly FF patients. When

evaluating suprastomal skin paddle monitoring after FF

reconstructions of laryngopharyngectomies, Revenaugh

et al. found relatively few complication rates and low

false-positive rates (107). In addition, this method allowed

direct monitoring and did not interfere with speech and

swallowing functions. These findings are all the more

significant in view of the vulnerable patient cohort, with a

mean age of 62 years and a history of carcinoma. The skin

paddle method has also been shown to be effective in

scalp reconstruction: Park et al. reported significantly

higher FF salvage rates and total FF survival when

compared to conventional monitoring strategies (108).

Again, the average patient was older than 62 years and the

etiology was predominantly tumor-related. Taken together,

the externalization of a skin paddle seems to be a safe and

reliable method for FF monitoring, even in advanced

patient age. However, both research groups stress the need

for compatibility of vascular geometry, without undue

functional and aesthetic curtailment.
Further methods, such as the use of indocyanine green dye

angiography, spatial frequency domain imaging, carbon dioxide

monitoring, or microdialysis have been tested in small-scale

studies and/or exclusively in young/healthy patients and,

therefore, fall beyond the scope of this review.
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5. Conclusion

Free flap monitoring is crucial to ensure early detection of

vascular comprise and was shown to improve salvage rates.

Elderly surgical patients represent a particularly vulnerable

population due to an age-related decline in health, rendering

free flap surveillance all the more important. Yet, the demands

for the ideal monitoring method are high and range from

accuracy and reliability through reproducibility and objectivity

to cost-effectiveness and user-friendliness. In search of such

panacea, numerous monitoring tools and techniques have been

proposed, each with its inherent strengths and limitations. In

fact, despite promising potential, none of these emerging

methods has yet been accepted on a widespread front. In an

era of high-tech medicine, the basic clinical examination in

combination with Doppler sonography still represents the gold

standard although other technologies such as near-infrared

spectroscopy are increasingly used in clinical practice.

However, advancing digitization holds the potential to

compensate for the downsides of clinical assessment

(subjective, poorly reproducible, manpower-dependent). Thus,

in the future, original manpower may be (even more) replaced

by a finely balanced and efficient interaction of man and

machine.
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