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Background: Machine learning (ML) is an inquiry domain that aims to establish
methodologies that leverage information to enhance performance of various
applications. In the healthcare domain, the ML concept has gained prominence
over the years. As a result, the adoption of ML algorithms has become
expansive. The aim of this scoping review is to evaluate the application of ML in
pancreatic surgery.
Methods: We integrated the preferred reporting items for systematic reviews and
meta-analyses for scoping reviews. Articles that contained relevant data
specializing in ML in pancreas surgery were included.
Results: A search of the following four databases PubMed, Cochrane, EMBASE,
and IEEE and files adopted from Google and Google Scholar was 21. The main
features of included studies revolved around the year of publication, the
country, and the type of article. Additionally, all the included articles were
published within January 2019 to May 2022.
Conclusion: The integration of ML in pancreas surgery has gained much attention
in previous years. The outcomes derived from this study indicate an extensive
literature gap on the topic despite efforts by various researchers. Hence, future
studies exploring how pancreas surgeons can apply different learning algorithms
to perform essential practices may ultimately improve patient outcomes.
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Introduction

Rationale

Machine learning (ML) is an inquiry domain that aims to establish methodologies that

leverage information to enhance performance on various applications. ML is an essential

branch of artificial intelligence that helps in solving traditionally-complex challenges (1).

In the healthcare domain, the ML concept has gained a lot of prominence over the years.

The adoption of ML algorithms has become numerous. Qayyum et al. claimed that

healthcare professionals could use ML in prognosis, diagnosis, treatment, and clinical

workflows (2). Pancreatic surgery represents a field of surgery whose primary purpose is
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to resect malignant tumors in an effort to improve patient survival.

Thus, the analysis of ML’s contribution to pancreatic surgery is

vital to understanding the algorithm’s various benefits,

shortcomings, and future expectations. The aim of the study is to

provide additional information concerning the utilization of ML

in pancreatic surgery, facilitating the development of more

algorithms in the field.

Previous researchers in the field have found a positive

association between the application of machine learning

algorithms and success in pancreatic surgery. For example, Dalal

et al. revealed that radiomics demonstrated promising outcomes

in the diagnosis and prognosis of pancreatic cystic lesions (3).

From a similar perspective, Zhou et al. indicated that ML-based

approaches had a higher prediction capacity to the point of

outperforming other conventional models used in predicting

acute pancreatitis (4). Additional studies have shown that

machine learning supported decision derivation in the

personalized oversight of pancreatic cancer (5). Furthermore,

Palumbo et al. established that ML algorithms was a significant

prediction tool for probability of recurrence in pancreatic

adenocarcinoma (6). This study offers a scoping review of the

relevant publications in the field of pancreatic surgery to aid in

developing sound conclusions.
Objectives

The primary goal of this scoping review is to evaluate the

application of ML in pancreatic surgery. The following objectives

were adopted to fullfil this aim:

• Evaluating the current application of machine learning in

pancreatic surgery

• Analyzing the benefits of integrating machine learning in

pancreatic surgery.

• Examining the future of the application of machine learning in

pancreatic surgery.

Methods

Protocol

This study followed the Preferred Reporting Itens for

Systematic Reviews and Meta-Analysis Extension for Scopic

Reviews (PRISMA-ScR) guidelines (7). The technique has twenty

compulsory features and two optional elements that are utilized

in scoping reviews to ensure quality results. PRISMA-ScR was

applied as it will allow assessment of the pros and cons of the

study to take place. Also, the process will facilitate the

duplication of review techniques used in future studies when

analyzing the topic. More importantly, the PRISMA-ScR

technique will ensure transparency and fairness in the current

study (8, 9). According to Sarkis-Onofre et al., the process

facilitates the amplification of the methods researchers use in

their studies, airing the results and developing research strategies
Frontiers in Surgery 02
(10). As a result, the PRISMA-ScR principle assists in presenting

the techniques used to acquire outcomes.
Eligibility criteria

The relevancy of the study determined the type of eligibility

criteria implemented articles published between 2019 and May

2022 containing relevant data specializing in ML in pancreas

surgery and those with original study design undertaken on

human participates were included This timeframe was used to

guarantee gathering of recent, updated information concerning

the application of ML in pancreas surgery. Articles specializing

in other forms of surgery were excluded.
Information sources

Choosing the suitable files for the research topic entailed

performing a comprehensive literature scan of different databases

and search engines. Databases utilized included PubMed,

Cochrane, EMBASE, and IEEE, while search engines included

Google and Google Scholar. We explicitly searched for articles

printed from 2019 to 2022. The literature search was performed

in May 2022. Two team members with experience in the

techniques utilized took part in refining the adopted search

strategies. An equal chance to voice opinions in a group

discussion was undertaken. Subsequently, we evaluated the

references of relevant journals to access different properties that

were fit for inclusion. We also conducted a search of appropriate

journals to add to the study, utilizing Google and Google Scholar

search engines. The amalgamation of this approach endorsed a

broad literature search, thereby ensuring the gathering of

additional supporting information on the study topic.
Search

The search strategy used in the study entailed keying in specific

terms in the relevant search engines and databases. On the

PubMed, Cochrane, EMBASE, and IEEE databases, the words

used included “machine learning in pancreas surgery,” “benefits

of machine learning in pancreas surgery,” “definition of machine

learning,” and “disadvantages of machine learning in pancreas

surgery.” Filters used on PubMed were “best match” and “2019

to 2022.” On Cochrane, we used the date filter to certify that the

articles gathered were published from 2019 to 2022 and the trials

filter to guarantee acquired publications were original studies. On

EMBASE, the researchers integrated the “study type” and

“publication year” filters to gather relevant documents used in

the research. We used the “2019–2022” filter on IEEE to gather

relevant documents. On Google and Google Scholar search

engines, phrases used included “machine learning in pancreas

surgery,” “benefits of machine learning in pancreas surgery,” and

“definition of machine learning”. We did not incorporate any

filters on Google, though, on Google Scholar, the filters
frontiersin.org
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incorporated included “2019 to 2022,” “sort by relevance,” and

“any type.” A librarian was in charge of the oversight search

method as well as enlisting the search strategy. The additional

team members counter-checked the process to guarantee validity

and reliability by implementing the Peer Review of Electronic

Search Strategies (PRESS) checklist. According to Bramer et al.,

the PRESS agenda directs researchers to check the search

strategies included in the study (11). As a result, this method

enabled us to show that the foundations attained echoed a

precise understanding of the research question.
Selection of evidence sources

Choosing sources of extracting evidence necessitated focusing

on the screening process. All publications were screened to

guarantee that they were complete scripts and had the necessary

information to qualify for inclusion. We matched the abstracts

and complete texts to make sure they fitted. We exluded cases of

an included article lacking complete scripts as it would be

challenging to establish reliable conclusions. Workload was

reduced during screening by first assessing files from all

platforms before the process.
Data charting

We created a data charting form and outlined aspects to be

observed when gathering information. The form emphasized

elements such as ML in pancreas surgery.
Data items

Acquisition of information was based on various backgrounds

of articles. For example, the papers addressed the medical field and

emphasized spreading awareness of ML in pancreas surgery.
Synthesis of results

For this research, we arranged the journals according to their

primary area of concentration. The identified category was ML in

pancreas surgery.
FIGURE 1

Prisma flowchart.
Critical appraisal of results

We used the Measurement Tool to Assess Systematic Reviews

(AMSTAR) technique to analyze the operational quality used in

the incorporated studies that facilitated settlement of any

disagreements among the authors. Moreover, the tool guarantees

reliable satisfaction of different systematic reviews and

randomized controlled treatment trials (12). Furthermore, there

are eleven items in the tool the researcher should use to know
Frontiers in Surgery 03
the quality of the articles. The technique ensured the

implemented studies fulfilled and met the needs of the criterion.
Results

Selection of evidence sources

The search on the four databases adopted (PubMed, Cochrane,

EMBASE, and IEEE) yielded 117 results. The number of files

acquired from Google and Google Scholar was twenty. Out of

the included articles, there were seventy-five duplicate

documents. The screening process identified fifty-three articles

eligible for inclusion. After seeking retrieval and assessing

eligibility, only twenty-one articles were deemed appropriate for

inclusion Figure 1. The main themes of the included studies

revolved around ML integration in pancreas surgery. Most

studies tested machine learning’s prediction abilities in the sector

(Table 1).
Study characteristics

The main features of included studies revolved around the year

of publication, the country, and the type of article. The majority of

articles incorporated into this study were journal articles (n = 21).

Only one conference proceedings paper was included.

Additionally, the publication of all included articles occurred

between 2019 to May 2022. Articles selected discussed various

ML algorithms, including linear regression, support vector
frontiersin.org
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TABLE 1 Main themes of included studies and characteristics.

Author/Years Country Primary Theme
Kang et al. (13) 2020 South Korea ML algorithm was successful in predicting

risk of pancreatic malignant intraductal
papillary mucinous neoplasm (PDAC)

Springer et al. (14)
2021

USA CompCyst showcased success in guiding
the management of pancreatic cysts

Awe et al. (15) 2022 USA XGBoost successfully predicted mucinous
pancreatic cysts using compted tomography

radiomics

Qiu et al. (16) 2019 Multiple
countries

ML accurately predicted the
histopathological grade of PADC

Kaissis et al. (17)
2019

Germany XGBoost accurately identified the various
subtypes of PDAC

Savareh et al. (18)
2020

Iran ML demonstrated success in diagnosing
pancreas cancer using microRNAs

Kaissis et al. (19)
2020

Germany ML successfully predicted molecular PDAC
subtypes essential for patient treatment

Wang et al. (20)
2021

China ML can facilitate the early detection of
PDAC

Lan et al. (21) 2020 Multiple
countries

ML showcased success in predicting
surgical intervention timing for necrotizing

pancreatitis

Merath et al. (22),
2020

USA Decision tree models predicted 13 out of 17
complications among pancreatic, liver, and

colorectal surgery patients

Kambakamba et al.
(23) 2020

Switzerland ML-based texture analysis assisted in
predicting postoperative pancreatic fistula

Cos et al. (24) 2021 USA ML successfully predicted postoperative
morbidity among pancreatectomy patients

Pfitzner et al. (25)
2021

Germany Logistic Regression was the best performer
in predicting perioperative risk

Qu et al. (26) 2020 China XGBoost demonstrated high performance
in predicting acute kidney injury among

pancreatitis patients

Yokoyama et al. (27)
2021

Japan Support vector machine and neural network
successfully predicted survival of pancreatic

cancer patients after surgery

Iwatate et al. (28)
2020

Japan Radiogenomic could successfully predict
p53 mutations among patients

Toyama et al. (29)
2020

Japan Radiomics with random forest were
successful in enhancing prognosis among

pancreatic cancer patients

Baig et al. (30) 2021 Canada Supervised ML helps with prognosis among
patients

Hayashi et al. (31),
2022

Japan ML-based algorithms were successful in
predicting recurrence of pancreatic cancer

Sala-Elarre et al.
(32) 2019

Spain ML algorithms successfully predicted the
risk of relapse among pancreatic cancer

patients

Li et al. (33) 2021 China ML algorithms predicted relapse risk

Taha et al. 10.3389/fsurg.2023.1142585
machine, and extreme gradient boosting (XGBoost). Details of

included articles are displayed in Table 2.
Discussion

Summary of evidence

Multiple articles have explored the integration of ML in

pancreatic surgery. One of the main domains of ML is

prediction, which studies implemented in diagnostics for
Frontiers in Surgery 04
pancreatic diseases. Kang et al., found that the pancreatic surgery

domain applies ML techniques after comparing the performance

of ML and logistic regression in predicting the risk for pancreatic

malignant intraductal papillary mucinous neoplasm using

preoperative clinical data and radiological features (13). In this

international multicenter study, patient variables of 3708 subjects

were included. The ML method developed consisted of a

combination of numerous algorithms such as XGBoost, deep

learning, distributed random forest, generalized linear model,

gradient boosting machine, randomized trees, and stacked

ensemble. The results indicated that both models, logistic

regression and ML models, demonstrated similar performance

outcomes. The authors asserted that logistic regresion

demonstrated higher practicability and interpretability than the

ML algorithm (13).

Springer et al. demonstrated the benefits of applying a ML

algorithm in pancreas surgery by demonstrating its capability to

improve the management of patients with pancreatic cysts (14).

The researchers established the CompCyst classifier to suggest

various approaches to managing cysts. The study’s outcome

indicated that the ML algorithm prompted the sparing of surgery

among half of the patients who had undergone unnecessary cyst

resection. Surgeons can use such machine algorithms to

minimize morbidity and the extensive economic expenses of

current management practices (14). From a synonymous

perspective, Awe et al. examined the integration of ML in

pancreatic surgery to predict the occurrence of mucinous

pancreatic cysts through the integration of computed tomography

(CT) radiomics (15). The specific ML algorithm implemented

was XGBoost, which facilitated the generation of mucinous

classifiers via texture characteristics or radiological and clinical

combined models. The results indicated that ML could aid in

pancreatic cyst identifiecation by enabling the creation of suitable

classifiers (15). These arguments insinuate that many researchers

will continue to explore ways to exploit ML techniques to their

advantage.

Moreover, further research spearheaded by Qiu et al. revealed

that ML was applicable in the pancreatic surgery domain in

predicting the histopathological grade of pancreatic ductal

adenocarcinoma (PDAC) among patients using preoperative CT

scans (16). The tested data size was 56 patients, whereas the

adopted ML algorithm was the support vector machine. After a

thorough texture analysis, the ML technique achieved an

accuracy of 86%, a sensitivity of 78%, and a specificity of 95%

(16). Hence, the success of the support vector machine in

making predictions about histopathological subtypes among

PDACs indicates that the application of ML algorithms will

benefit medical practitioners in individualizing treatment options

for patients undergoing pancreas surgery. Kaissis et al. also

showed the that ML radiomics could facilitate the prediction of

molecular subtypes in PDAC (17). The authors aimed to

establish a supervised ML approach for predicting the subtypes

using diffusion-weighted-imaging-derived radiomic feature

characteristics. The ML model used was XGBoost, and it

demonstrated success in predicting the various subtypes of

PDAC (17). Accordingly, ML integration and consideration into
frontiersin.org
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TABLE 2 Data types, sizes, and evaluation metrics of included articles.

Author Datatype Dataset-
Size

Test
-Size

ML Type Evaluation Metrics

Kang et al. (13) Float n = 3708 n = 3708 Extreme gradient boosting (XGBoost), deep learning, distributed
random forest, generalized linear model, gradient boosting machine

(GBM), extremely randomized trees, and stacked ensemble

Performance outcome of 72,5%

Springer et al.
(14)

Integer n = 875 n = 862 CompCyst Successful performance

Awe et al. (15) Float n = 99 n = 99 XGBoost Success in developing a classifier

Qiu et al. (16) Integer n = 132 n = 56 Support vector machine (SVM) 86% accuracy, sensitivity of 78%, and
59% specificity.

Kaissis et al. (17) Integer n = 102 n = 55 XGBoost Excellent performance

Savareh et al. (18) Float n = 671 n = 671 Particle Swarm Optimization, Artificial Neural Network, and
Neighborhood Component Analysis

93% accuracy and sensitivity and 92%
specificity

Kaissis et al. (19) Float n = 207 n = 207 Random forest (RF) 84% sensitivity

Wang et al. (20) Float n = 1033 n = 1033 Greedy algorithm and SVM 86% accuracy

Lan et al. (21) Float n = 223 n = 183 Logistic regression (LR), SVM, and RF Successful prediction of surgical
intervention timing

Merath et al. (22) Float n = 15675 n =
15675

Decision tree model (DT) C-statistic of 74%

Kambakamba
et al. (23)

Integer n = 110 n = 110 k-nearest neighbors (KNN), C5.0, sequential minimum optimization,
multilayer perception, RF

96% sensitivity and 98% specificity

Cos et al. (24) Float n = 54 n = 48 RF, gradient boosted trees, KNN, SVM with linear kernel, and LR Performance AUROC curve of 78%

Pfitzner et al. (25) Float n = 521 n = 521 LR with L2 regularisation, DT, SVM, GBM, and a combination of
feed-forward neural network and rated recurrent unit

AUPRC of 51% for death prediction and
53% for the prediction of significant

difficulties

Qu et al. (26) Float n = 334 n = 334 SVM, RF, classification and regression tree and XGBoost XGBoost demonstrated the highest
performance

Yokoyama et al.
(27)

Float n = 191 n = 191 SVM and neural network Successfully distinguished patients with
pancreatic cancer

Iwatate et al. (28) Float n = 140 n = 107 Mann–Whitney U test and XGBoost Success in predicting p53 mutations

Toyama et al.
(29)

Integer n = 161 n = 138 Radiomics with RF Provided vital prognosis data

Baig et al. (30) Float n = 113 n = 93 SVM, RF, and Naïve Bayes SVM attained a 75% accuracy, 41%
sensitivity, and a specificity of 97.5%

Hayashi et al. (31) Float n = 524 n = 524 Convolutional Neural Network and RF 1.000 predictive accuracy

Sala-Elarre et al.
(32)

Float n = 40 n = 36 LR, Decision Tree, RF, SVM and KNN Success in predicting relapse risk

Li et al. (33) Float n = 262 n = 183 RF, SVM and KNN The SVM was the best-performed
method

Taha et al. 10.3389/fsurg.2023.1142585
pancreas surgery are likely to increase since knowing the multiple

subtypes of PDAC is vital to predict patient survival, response to

chemotherapy, and recurrence-free survival.

Regarding diagnostics, Savareh et al. demonstrated that ML

could aid in diagnosis of pancreatic cancer via circulating

microRNA signatures (18). The ML algorithms used in this study

were Particle Swarm Optimization, Artificial Neural Network,

and Neighborhood Component Analysis. The outcomes

illustrated that the developed algorithm showcased 93% accuracy

and sensitivity and a 92% specificity (18). This factor implies that

the future application of ML in the field is inevitable. In a

different study, Kaissis et al. evaluated how pancreas surgeons

can apply ML and radiomics to develop a non-invasive approach

for facilitating clinical imaging (19). The authors combined

features from CT imaging with random forest. The results found

that the ML algorithm was influential in predicting the

histological phenotyping of PDAC with a sensitivity of 84% (19).

Another study by Wang et al. supported this argument

highlighting the effectiveness of the greedy algorithm and

support vector machine in early detection of PDAC using a
Frontiers in Surgery 05
combination of metabolomic features. Their approach yielded an

86.74% accuracy and AUC of 0.9351 in the validation cohort of

1,003 patients. Furthermore, in the added prospective collected

data of 300 patients, the approach performed with an 85%

accuracy and 0.9389 AUC (20). Hence, the approaches were

deemed successful in detecting and analyzing the metabolism

and systems of PDAC. ML methods may facilitate diagnosis and

prediction of malignant pancreatic lesions and even their

molecular features. Thus, ML’s future application in diagnostics

related to pancreas surgery will likely increase in the coming years.

The efficacy of ML models in prediction is also demonstated by

the approaches to evaluate the ideal timepoint for surgical

intervention. For example, a study conducted by Lan et al.

revealed that ML approaches could assist in predicting the timing

of surgical intervention among individuals with necrotizing

pancreatitis (21). Three ML classifiers were used: logistic

regression, support vector machine, and random forest. The

results generated via the study indicated that ML could be

beneficial in predicting the critical features related to

surgical timing.
frontiersin.org

https://doi.org/10.3389/fsurg.2023.1142585
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Taha et al. 10.3389/fsurg.2023.1142585
Moreover, the advantages of ML in pancreas surgery are

highlighted by studies evaluating postoperative outcomes. Merath

et al. assessed how ML algorithms could help predict

complications after pancreatic, liver, and colorectal surgeries (22).

The researchers used the decision tree models, which accurately

forecasted 13 out of 17 complications evaluated. The model

demonstrated a significant predictive capability and superiority

over previously developed methods. Kambakamba et al. found

that ML-based tissue analysis in CT could predict the occurrence

of pancreatic fistula preoperatively (23). The pilot study involved

110 patients who had undergone pancreatoduodenectomy from

2008 to 2018. The results reveiled that CT had a sensitivity of

96% and a specificity of 98% in predicting pancreatic fistula after

pancreatoduodenectomy (23).

Another study conducted by Cos et al. provides more evidence

of ML applications in pancreatic surgery, by predicting

postoperative morbidity outcomes among individuals undergoing

pancreatectomy through ML and wearable devices (24). The

study consisted of 48 patients, using ML methods of random

forest, gradient boosted trees, k-nearest neighbors, support vector

machine with linear kernel, and logistic regression with L1

penalty. The integrated ML approach utilized patient clinical

features and patient activity information to develop the model.

The outcomes indicated that the adopted ML algorithm attained

the highest performance after scoring an AUROC curve of

0.7875 (24). Further, Pfitzner et al. showed that ML effectively

predicts perioperative morbidity and mortality among patients

with pancreatic cancer (25). The specific algorithms used were

logistic regression, decision tree, support vector machine,

gradient boosting machine, and a mixture of feed-forward neural

network and rated recurrent unit. The best performing algorithm

was logistic regression (25). The results indicated that more

interest into ML in pancreas surgery is unavoidable.

Furthermore, Qu et al. presented a synonymous argument by

stating that pancreas surgeons could integrate ML algorithms to

facilitate the prediction of severe kidney injury among individuals

with acute pancreatitis (26). The ML model used consisted of a

support vector machine, random forest, classification and

regression tree, and XGBoost. Out of all the approaches, the

XGBoost demonstrated the best performance in making

appropriate predictions after demonstrating an accuracy of

91.93% (26). Thus, it remains evident that machine learning

integration into pancreatic surgery could also aid in predicting

clinical outcomes.

Yokoyama et al. claimed that ML application in pancreatic

surgery could assist in predicting oncological outcomes after

resection in patients with pancreatic carcinoma (27). The

authors proposed to use tissue samples from individuals with

pancreatic neoplasms to assess whether they could act as

predictive biomarkers for patients` 5-year overall survival. The

integrated ML algorithm was a prognostic classifier formed after

integrating support vector technologies, a neural network, and

multinomial-based approaches (27). The results supported the

approach’s success in predicting survival prognosis in their

cohort of patients. Different research initiated by Iwatate et al.

revealed that ML via CT could predict the genetic data for
Frontiers in Surgery 06
pancreatic tumors in an easy, economical, and non-invasive

method via cancer imaging analysis (28). The results

demonstrated radiogenomic’s success in predicting p53

mutations and the consequent prognosis of PDAC patients.

Long-term, this could assist in establishing personalized

precision treatment by gathering information from CT scans

(28). Toyama et al. found that ML algorithms can help in

estimating prognosis among pancreatic cancer patients (29). By

using radiological features from F-fluorodeoxyglucose-positron

emission tomography prior to treatment from 138 patients,

results indicated that the ML algorithm adopted provided

essential prognostic data by using radiomics only. Similarly,

Baig et al. found that ML algorithms could help with outcome

prognosis among individuals with cancer of the pancreatic head

(30). Their main aim was to analyze whether the ML algorithm

developed could successfully predict the survival chances of

patients. The authors adopted a supervised ML algorithm which

attained a 75% accuracy, 41.9% sensitivity, and 97.5% specificity

(30). These studies indicate that ML adoption in pancreatic

surgery can lead to multiple positive advantages and the

implication has already been broad with oncological outcome

prediction in pancreas surgery potentially becoming a domain

of ML algorithms.

Additionally, the integration of ML in pancreatic surgery

remains evident through the series of publications released on

the topic. ML techniques may also be beneficial in forecasting

cancer recurrence. For instance, Hayashi et al. aimed to establish

and forecast patients undergoing pancreatic surgery initial and

late cancer recurrence patterns and matestasis sites using a

histology-based ML technique (31). The ML method consisted of

a convolutional neural network and random forest combination.

The sample involved 524 who had undergone pancreatic cancer

surgery between 2001 and 2014. The results indicated that the

model had a predictive capacity of 1,000 for nonrecurrence in

both the training and test data (31). Moreover, Sala-Elarre et al.,

claimed that the pancreatic surgery domain could apply ML

algorithms in pre-treated patients with pancreatic cancer to help

in predicting their risk of developing a recurrence (32). The

algorithm developed by the researchers entailed the combination

of an intensified induction polychemotherapy with

chemoradiation. The results of logistic regression indicated that

the algorithm had the potential to predict long-term outcomes

and could be a vital tool for predicting the threats of patients

relapsing (32). Similarly, a study by Li et al. revealed that ML

approaches like random forest, support vector machine and k-

neighbor algorithms demonstrated success in predicting the

relapse among PDAC patients within a one-year and two-year

range using patient-related and histopathological features (33).

The results indicated that support vector machine (SVM) had

the most accurate approach for predicting relapse among

patients who had undergone radical resection (33). Based on

these results, it remains evident that pancreatic surgeons are

likely to know the various advantages of incorporating ML into

the field. Hence, future applications are broad since the

algorithms can help guide the establishment of personalized

observation systems after surgery.
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The increasing integration of ML in pancreas surgery is

inevitable due to the efficacy of the models in prediction. Thus,

it remains evident that ML integration into pancreatic surgery

could help with multiple activities, mainly aiding in diagnostics

and prediction of postoperative complications and oncological

outcomes.
Limitations

The study’s primary limitation is the paucity of information on

the research topic. However, the probable cause for the research

gap is the focus on recent articles released from 2019 to 2022.

Also, the study exclusively included studies in English, implying

that there is a possibility of excluding relevant studies published

in other languages.
Practical and research implications

This research’s outcomes are essential as they will improve care

of pantients with undergoing pancreatic surgery by suggesting

various diagnosis and outcome prediction approaches.

Nevertheless, more research into the sector is necessary to ensure

recent and accurate information concerning ML incorporation in

pancreas surgery.
Conclusions

The integration of ML in pancreas surgery has gained much

attention in previous years. However, the outcomes derived from

this study indicate an extensive literature gap on the topic

despite efforts by various researchers. Hence, future research

should explore how pancreas surgeons can apply different

learning algorithms to perform essential practices that ultimately

improve patient outcomes. Future studies should also conduct
Frontiers in Surgery 07
original studies that test ML algorithms’ performance using

factual data from human participants. This will facilitate

increased supporting information that can help delineate the

future of ML in pancreas surgery. Further, researchers should

explore the various shortcomings associated with ML in pancreas

surgery. Mastering the limitations will be essential to developing

relevant solutions to the issues. Increased evidence will ensure

that surgeons can use ML techniques to make their work easier

and guarantee enhanced prediction and diagnosis for pancreatic

surgery complications.
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