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Internal replacement of a vertebral
body in pseudarthrosis—Armed
kyphoplasty with bone
graft-filled stents: Case report
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1Spine Unit, Orthopedics Department, Coimbra University Hospital, Coimbra, Portugal, 2Anatomy Institute
and Orthopedics Department, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,
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Background: Post-traumatic vertebral necrosis and pseudarthrosis represents one
of the most concerning and unpredictable challenges in spinal traumatology. The
evolution of this disease at the thoracolumbar transition usually courses with
progressive bone resorption and necrosis, leading to vertebral collapse,
retropulsion of the posterior wall and neurological injury. As such, the
therapeutic goal is the interruption of this cascade, seeking to stabilize the
vertebral body and avoid the negative consequences of its collapse.
Case description: We present a clinical case of a pseudarthrosis of T12 vertebral
body with severe posterior wall collapse, treated with removal of intravertebral
pseudarthrosis focus by transpedicular access, T12 armed kyphoplasty with VBS®

stents filled with cancellous bone autograft, laminectomy and stabilization with
T10-T11-L1-L2 pedicle screws. We present clinical and imaging detailed results at
2-year follow-up and discuss our option for this biological minimally
invasive treatment for vertebral pseudarthrosis that mimics the general principles of
atrophic pseudarthrosis therapeutic and allows to perform an internal replacement
of the necrotic vertebral body, avoiding the aggression of a total corpectomy.
Conclusions: This clinical case demonstrates a successful outcome of the surgical
treatment of pseudarthrosis of vertebral body (mobile nonunion vertebral body) in
which expandable intravertebral stents allow to perform an internal replacement of
the necrotic vertebral body by creating intrasomatic cavities and filling them with
bone graft, obtaining a totally bony vertebra with a metallic endoskeleton, which is
biomechanically and physiologically more similar to the original one. This
biological internal replacement of the necrotic vertebral body technique can be a
safe and effective alternative over cementoplasty procedures or total vertebral
body corpectomy and replacement for vertebral pseudarthrosis and may have
several advantages over them, however long-term prospective studies are needed
in order to prove the effectiveness and advantages of this surgical option in this
rare and difficult pathological entity.
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Introduction

Avascular necrosis of the vertebral body diagnosis in post-traumatic context has been

increasing, probably due to population aging, being more commonly found in the

thoracolumbar transition and in elderlies with osteoporosis (1–7). It is estimated that

posttraumatic vertebral necrosis is underdiagnosed and that its real incidence is
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significant, with studies indicating its occurrence in 7 to 37% of

vertebral compression fractures, affecting more frequently the

more comminuted fractures, those with greater flattening and the

ones that reach the less vascularized regions of the vertebral

body. All of these are risk factors known for the development of

pseudarthrosis in general. Post-traumatic vertebral necrosis

represents a failure in vertebral bone healing and, thus, it makes

sense that the treatment aims to interrupt this disease’s evolution

and negative consequences, which represents one of the most

concerning and unpredictable challenges in spinal traumatology.

This way, patients with symptomatic vertebral necrosis (axial

pain and functional limitation), with or without neurological

compression symptoms, are candidates for surgical intervention,

ranging from vertebroplasty, kyphoplasty, posterolateral

arthrodesis to corporectomy and application of an intersomatic

spacer. The indications for each type of surgical intervention

depend on the integrity of the vertebral body, spinal stability, the

patient’s previous functional condition and the degree of future

solicitation of the spine for each patient, which can justify only a

percutaneous cementoplasty or a more invasive intervention like

a total vertebral body replacement. The risks-benefits of each

surgical solution must be weighed taking into account the level

of functional demand of each patient and the type of vertebral

necrosis, however the exact indications remain poorly defined in

the literature (1, 2, 8–11). Expandable intravertebral implants are

self-expanding devices applied percutaneously with posterior

transpedicular access. They are introduced inside the vertebral

body (armed kyphoplasty) and their expansion allows for

restoration of their height, integrity and stability, when filled with

bone cement or graft (12–22). The evolution of indications for

these recent devices has also shown promising results in vertebral

fractures evolving symptomatically and chronically to non-union

situations (23, 24).
Case presentation

We present a 71-year-old male patient, previously autonomous

in daily living activities, with a history of type II diabetes mellitus,

arterial hypertension and dyslipidemia, who came to our center

emergency department bedridden with complaints of

thoracolumbar axial pain. This pain was severe (grade 7/10 on

Visual Analog Pain Scale—VAS) and had progressively worsened

over 2 weeks, leading to the patient being currently unable to sit

or walk (25). The patient had no radiculalgia or neurological

deficits and the assessed Oswestry score (ODI) was 96% (26). The

patient reported that 4 months before he had been diagnosed in

another hospital with a fracture of T12 following a fall from

standing height and he started conservative treatment with

Jewett-type brace and analgesia. After 2 months of treatment, the

pain disappeared, so the patient stopped using the Jewett-type

brace and did not return to hospital. The patient brought the

initial radiography and computed tomography (CT) performed at

another hospital, which demonstrated an acute compression

fracture of T12 vertebral body, with marked destruction of the

intrasomatic trabeculae, especially in the anterior half of the
Frontiers in Surgery 02
vertebral body, as well as an old fracture of the L1 lower body

endplate (Figure 1 Sag-Li, Sag-I and Figure 2—Rad-APi, Cor-I,

Ax-I). A CT scan was performed in the context of the current

episode and a pseudarthrosis of T12 vertebral body was

identified, with almost total somatic collapse, the presence of a

large anterior intrasomatic cleft and marked retropulsion of the

posterior wall (Figure 1 Sag-P and Figure 2—Color-P, Ax-P).

Average Hounsfield units at T11 and L1 and L2 vertebral body

on this CT was 180, so patient demonstrated normal bone

mineral density. Once this was a previously autonomous patient

with current inability to verticalize the trunk due to severe axial

pain in the context of T12 vertebral body pseudarthrosis and

collapse, we proceeded to the following surgical intervention:

laminectomy of T12 for spinal cord decompression, cleaning and

removal of intravertebral pseudarthrosis focus with curettes and

tweezers by bilateral transpedicular access, T12 armed

kyphoplasty with VBS® stents filled with cancellous bone

autograft (after the maximum expansion of the stents, we applied

and impacted the bone autograft through transpedicular cannulas

inside both stents until they were completely filled; autologous

bone graft removed from the spinous and laminae after

decompression and iliac bone) and stabilization with T10-T11-

L1-L2 pedicle screws. In Figure 3 we show an illustration of the

armed kyphoplasty with VBS® stents. We only performed the

open median posterior lumbar approach centered on T12, strictly

necessary for the T12 laminectomy and cruentation of the

adjacent lamina and zygapophysis, in order to promote

posterolateral arthrodesis of the T11-T12-L1 segment, while all

the remaining pedicle instrumentation was performed by

percutaneous approach. The patient walked on the first

postoperative day and was discharged 1 week after. At the

2-month follow-up visit, he already had no relevant pain

complaints and no limitations in activities of daily living, with

evaluated VAS of 1 and an ODI of 12% at this time. We

performed a control CT at the end of the first year after the

surgery, in which we could verify the complete healing of the

pseudarthrosis, with no signs of migration or failure of

intrasomatic stents or pedicle screws, as well as of bone graft

resorption, which indicates its osseointegration and healing

(Figure 1 Sag-Fm, Sag-Fr and Sag-Fl; Figure 2 Cor-F and Ax-F).

At 2-year follow-up, the patient was satisfied, pain free (VAS 0)

and without relevant limitations in activities of daily living, with

an assessed ODI of 4%. We present the final radiographic

control at 2 years postoperatively, which demonstrates

maintenance of the integrity of the vertebral body and implants

(Figure 1 Rad-Lf and Figure 2 Rad-APf).
Discussion

In the present clinical case, the marked destruction of the

intrasomatic trabeculae in the initial fracture associated with its

location in the thoracolumbar transition, a region of important

mobility, would, in our opinion, be a criterion for performing an

ad inicium T12 armed kyphoplasty in order to guarantee the

anterior column support, stabilize it and thus precisely prevent
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FIGURE 1

Imaging evolution of the clinical case in lateral view radiography images and sagittal CT sections: Rad-Li—initial radiograph in lateral view, showing T12
and L1 vertebral body flatenning and extensive bone destruction at T12 (arrow); Sag-I—initial median sagittal view of computed tomography, showing
acute T12 fracture and old L1 fracture. Note the extensive bone trabeculae destruction at anterior half of the vertebral body; Sag-P—Median sagittal
view of tomography, showing T12 vertebral body pseudarthrosis with a large anterior intravertebral cleft and marked posterior wall retropulsion; Sag-
Fm—Median sagittal view of CT at 1 year after surgery, showing T12 vertebral body pseudarthrosis filled with stent and signs of T12 laminectomy;
Sag-Fr—Right parasagittal view of CT at 1 year after surgery, showing the right stent filled with bone graft and the right pedicular screws, note the
pseudarthrosis healing; Sag-Fl—Left parasagittal view of CT at 1 year after surgery, showing the left stent filled with bone graft and the right pedicular
screws. Note the pseudarthrosis healing; Rad-Lf—Final radiograph in lateral view at 2 years after surgery, showing T12 stents, adjacent pedicle screws,
rods and crosslink.
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vertebral collapse due to non-union. The repeated excessive loads

on the mobile thoracolumbar transition, in view of the weakened

fractured T12 vertebral body with marked destruction of the

anterior column, led to insufficient stability to provide bone

healing, which led to progressive bone reabsorption and necrosis,

with consequent loss of its structural integrity and support

function, following vertebral flattening and collapse with

retropulsion of the posterior wall and neurological risk (1, 2, 8–11).

During the first two months of conservative treatment, the use of

Jewett brace ensured some stability to the thoracolumbar transition

and, together with analgesia, attenuated the symptoms;

however, the non-union and progression to pseudarthrosis led to

worsening pain mainly due to intravertebral instability. Vertebral

lack of stability led to progressive bone resorption and the

appearance of an intrasomatic cavity or focus of pseudarthrosis,

which means pathological intravertebral mobility clinically

characterized by axial mechanical pain. The non-interruption of the

natural course of this case of vertebral pseudarthrosis, which
Frontiers in Surgery 03
presents several risk factors for unfavorable evolution, such as

being located at the mobile thoracolumbar transition, reaching

the posterior wall and with the presence of a large intravertebral

cleft, would certainly lead to progressive vertebral collapse,

accentuation of posterior wall retropulsion and severe neurologic

damage (1, 2, 4, 5, 8, 27, 28).

Based on the scarce scientific literature available, the authors

propose post-traumatic vertebral necrosis evolution stages

(Figure 4) built on the grounds of parameters that directly

influence the surgical therapeutic guidance based on the

possibility or not to preserve the vertebral body, namely the

morphology and dynamics of the necrotic vertebra (29–34).

We distinguish, therefore, two types of vertebral morphology,

the situations of vertebra non-plana and vertebra plana

(defined as height inferior than one third of the height of the

original body along its entire length), as well as two types of

mobility, vertebrae with mobile deformity or pseudarthrosis

(1–10, 28).
frontiersin.org
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FIGURE 2

Imaging evolution of the clinical case in anteroposterior view radiography and coronal and axial CT sections: Rad-APi—initial radiograph in
anteroposterior view, showing T12 and L1 vertebral body flattening and extensive bone destruction (arrow) at T12; Cor-I—initial coronal view of CT,
showing acute T12 fracture and old L1 fracture. Note the extensive bone trabeculae destruction across the entire width of the vertebral body; Cor-P
—Coronal view of CT, showing T12 vertebral body pseudarthrosis with a large intravertebral cleft across the entire width and height of the vertebral
body; Cor-F—Coronal view of CT at 1 year after surgery, showing T12 vertebral body pseudarthrosis cleft filled with stents with bone graft inside,
which demonstrates signs of bone healing and osteointegration. Also note the development of lateral osteophytes that help to stabilize the vertebral
body to the adjacent ones; Rad-APf—Final radiograph in anteroposterior view at 2 years after surgery, showing T12 stents, adjacent pedicle screws,
rods and crosslink; Ax-I—Initial axial view of CT, showing acute T12 fracture. Note the extensive bone trabeculae destruction across the entire width
of the anterior half of the vertebral body; Ax-P—Axial view of CT, showing T12 vertebral body pseudarthrosis with a large intravertebral cleft across
the entire width of the anterior half of the vertebral body; Ax-F—Axial view of CT at 1 year after surgery, showing T12 vertebral body pseudarthrosis
cleft filled with two stents with bone graft inside, which demonstrates signs of bone healing and osteointegration. Also note T12 laminectomy
procedure, the crosslink applied at that level and the remodeling of posterior wall retropulsion with reabsorption of intracanalar bone.
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In mobile vertebrae (pseudarthrosis, that is, with intravertebral

clefts—Figure 4), such as the present clinical case, regardless of

their non-plana or plana morphology, it is possible to restore at

least a part of vertebral body height through the positioning of the

spine in hyperextension, which causes the separation of the upper

and lower halves of the pseudarthrosis, increasing the size of the

cleft and restoring the vertebral body height, which is filled

internally (Figure 4). Thus, in these cases, a vertebral body still

with sufficient bone tissue, namely with preserved bone cover

(cortical ring and endplates), allows for containing the application

of expandable intravertebral implants, permitting a vertebral body

interior reconstruction instead of its total replacement. As such, in

the face of necrosis with this vertebral dynamics, we recommend

an armed kyphoplasty, in which expandable intravertebral

implants will fill the empty cavity within the vertebral body

surrounded by bone trabeculae impacted by the devices, and the

body is then filled with bone cement or graft, which provides it

with interior consistency and stability. The complete filling of the

intrasomatic cleft is essential to stabilize the vertebral body,

eliminating pathological and symptomatic intravertebral mobility

(1–10, 28). Our clinical case was a mobile necrotic vertebra plana,

which corresponds to Stage 2 m in Figure 4.
Frontiers in Surgery 04
Authors usually choose VBS® stent implants in vertebrae with

mobile deformity (Figure 3 and Table 1), an implant with a high

capacity for space occupation, allowing the creation of large

intrasomatic cavities with a cover made of the metallic mesh of the

devices and impacted bone trabeculae, which allows for the

application of a greater amount of bone cement or graft (12–18, 20,

21). The application of bone cement aims to fill and stabilize the

interior of the vertebral body in an inert way, not expecting bone

healing, solving the problem of bone regeneration inability.

However, the authors defend, in post-traumatic vertebral necrosis in

active patients with non-osteoporotic bone, instead of bone cement,

the intrasomatic application of cancellous bone graft associated with

expandable implants, seeking to obtain bone matrix colonization by

osteoprogenitor cells, its vascular invasion and osseointegration,

with the objective of achieving a vertebra that is biomechanically

and physiologically more similar to the original in terms of loads

distribution towards an active patient with a high functional

demand in the future. We use autologous cancellous graft extracted

regionally after laminectomy or from the patient’s iliac bone for

intrasomatic filling, and, if necessary, to obtain more quantity, we

mix the autograft with cancellous allograft from bone bank. In the

same way of the treatment concerning general bone pseudarthrosis,
frontiersin.org
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FIGURE 4

Suggested post-traumatic vertebral necrosis evolution stages: stage 0—initial fracture without necrosis; stage 1i—Immobile necrotic vertebra non-plana;
stage 1 m—Mobile necrotic vertebra non-plana; stage 2i—Immobile necrotic vertebra plana; stage 2 m—Mobile necrotic vertebra plana; highlighting the
presence of intravertebral cleft only in the mobile vertebrae marked with m(obile). Immobile vertebrae do not present intravertebral cleft and are marked
with (i)mmobile. The drawings on the right side demonstrate vertebral body pseudarthrosis or mobile necrotic vertebra morphology and biomechanics.
The determination of vertebral morphology and mobility in the context of post-traumatic necrosis must be performed through the combination of
radiographs, including dynamic radiographs in hyperextension and orthostatism, CT and magnetic resonance imaging, also allowing to evaluate the
amount of the remaining bone tissue.

FIGURE 3

Armed kyphoplasty with VBS® in treatment of posttraumatic vertebral necrosis with mobile vertebrae non-plana and plana. The present clinical case was a
mobile vertebra plana; however, the treatment of armed kyphoplasty is similar to the one of plana or non-plana mobile necrotic vertebrae, as is illustrated
in this figure. After removal of pseudarthrosis region (the same as the intravertebral cleft) and proper intravertebral cleaning, the implants are expanded
and then filled with bone cement or graft (in this clinical case, we chose bone graft).

Moura and Cavaca 10.3389/fsurg.2023.1142679
in vertebral necrosis we sought to use a type of bone graft combining

all the properties of osteoconduction, osteoinduction, osteointegration

and osteogenesis that are favorable to bone healing, which is the
Frontiers in Surgery 05
autologous one (27, 35–42). The application of the bone graft

combined with expandable intravertebral implants not only ensures

the maintenance of vertebral height in time but also protects the
frontiersin.org
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TABLE 1 Biomechanical characteristics of the expansive intravertebral implants VBS® (vertebral body stenting) (12–22).

Implant name VBS® (Vertebral Body Stenting)

Illustration

Morphology Cylindrical shape network (stent). Two implants by bipedicular access

Material Chromium-cobalt

Expansion direction Circumferential and centrifugal in the coronal plane (craniocaudal + lateral)

Expansion
mechanism

Hydraulic mechanism, through a kyphoplasty balloon (controlled pressure and volume)

Expansion force Maximum pressure of 30 Atm; Maximum expansion volumes: #Small stent = 4 ml; #Medium stent = 4.5 ml; #Large stent = 5 ml

Goal Vertebra reduction and space occupation

Rationale The application of expandable intravertebral implants, also known as armed kyphoplasty, in addition to allowing the immediate analgesia and
stabilization benefits of vertebroplasty and kyphoplasty, also theoretically guarantees, through a metallic endoskeleton, a greater strength of the
vertebral body and a long-term maintenance of restored vertebral height. This happens because vertebral endplates, after reduction, are mechanically
supported by the expanded devices, decreasing or preventing vertebral flattening after its expansion and also lowering the risk of post-traumatic local
and segmental kyphosis, while ensuring very stable anterior support at the vertebral body. VBS® is a reduction and space-filling implant system since it
can multidirectionally expand (vertically and laterally). It is indicated for internal replacement/reconstruction of the vertebral body, preserving its bone
cover, which must be enough to contain the expansive implants and the bone cement or graft. Stents are implants that by its expansion form two big
cavities within the vertebral body, coated by a casing of surrounding impacted trabeculae. These implants form cavities that, after being filled with bone
cement or graft, replace much of the vertebral body interior, filling and stabilizing it. Moreover, they minimize cement extravasation by recreating the
walls of the vertebral body by impaction of bony trabeculae containing the cement.
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bone graft from excessive loads, minimizing its damage and

resorption until its osseointegration is achieved, allowing to obtain a

totally bony vertebra with a metallic endoskeleton. The limited

histological evidence carried out in cases without the use of

intravertebral implants demonstrated, in some patients, the absence

of intrasomatic graft integration, with frequent microscopic findings

of partial graft necrosis even in the presence of clinical and imaging

signs of bone healing. This suggests a likely excessive load on the

not yet osseointegrated graft (not protected by the intravertebral

implant) and a weak histology-clinical correlation. Other studies

have demonstrated the efficacy and revascularization of bone grafts

applied in the context of vertebral pseudarthrosis (27, 42–49). The

use of cancellous autograft as a method of intrasomatic filling

inside the stents makes it possible to guarantee a completely bony

vertebra with a metallic endoskeleton, which constitutes a more

biological treatment of vertebral pseudarthrosis compared to the

application of intravertebral bone cement, which, in addition to

having a risk high level of extravasation in vertebral necrosis

situations, cannot mimic the biology of bone healing, remaining as

inert substance, biologically inactive and with excessive rigidity

compared to adjacent levels, which in theory can favor fractures of

adjacent vertebral bodies. Nevertheless, in spine, cementoplasty

techniques (vertebroplasty and kyphoplasty) have been used to treat

this disease, immediately stabilizing the vertebral body without

waiting for bone healing (5–9). The option of not applying bone

cement in this clinical case was based on the high risk of posterior

leakage, given the morphology of the vertebra plana and the severe

destruction and collapse of the posterior wall, but also because this

was an active patient, with a non-osteoporotic resistant bone still

with healing potential. Even in a 71-year-old patient with a severe

vertebra plana stage pseudarthrosis, the combination of a proper

pseudarthrosis cleaning, intrasomatic stents application and filling

with bone graft allowed a sucessful internal replacement of the
Frontiers in Surgery 06
vertebral body, demonstrated by clear signs of bone healing and

osteointegration (Figures 1, 2), which guaranteed symptoms relief.

In situations of vertebral necrosis with pseudarthrosis already with

marked bone resorption and vertebral collapse (vertebra plana), as

in this clinical case, it is frequent, even with the positioning of the

column in hyperextension and the expansion of the intravertebral

implants, that only a partial height restoration is achieved and not

its entirety. In this clinical case, the possible vertebral body height

gain was about half of its original height; nonetheless, the

stabilization and healing of the vertebral body with this

morphology was enough to stop the progression of pseudarthrosis

and vertebral collapse, allowing for the resolution of patient´s

complaints. A proper cleaning of the pseudarthrosis region, keeping

only the bone cover of the vertebral body, is essential when

applying bone graft inside the stents, seeking to bring blood inside

the vertebra and, as such, the necessary mediators to provide

invasion by vessels of the bone graft matrix, and guarantee its

desired osseointegration, without interference from interposed

necrotic tissues and the fibrocartilaginous membrane that

characterizes the false joint and that internally lines the

intravertebral cleft, making local blood access difficult (Figure 3)

(1–10, 13–18, 27, 50). In this clinical case, given the accentuated

posterior wall retropulsion with compression of the medullary cord

and even in the absence of neurological deficits, we initially chose

to perform local prophylactic laminectomy in order to obtain the

greatest possible neurological decompression. Also, this act helps to

easily identify with direct visualization the pedicle entry points,

which can be difficult by anteroposterior fluoroscopy because of the

severe vertebral body destruction. Besides that, laminectomy allows

to obtain regional bone autograft with excellent properties for

intrasomatic application to seek consolidation of pseudarthrosis.

The decompression performed and the extensive vertebral body

bone destruction, as well as the total collapse of the posterior wall,
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determined the option for posterolateral arthrodesis of the T11-T12-

L1 segment and percutaneous pedicle instrumentation two levels

above and below, seeking to stabilize the vertebra as much as

possible, reducing the loads on the posterior wall in order to

minimize the risk of worsening its intracanalar retropulsion.

In this way, we consider this surgical technique a useful

minimally invasive biological option that preserves the vertebral

body in vertebral pseudarthrosis, avoiding corpectomy, which is

thus only reserved for situations of non-union with immobile

vertebra plana characteristics (Figure 4), that is, without

pseudarthrosis, without intravertebral cleft, therefore without the

possibility of increasing the vertebral height and of applying any

support inside it (38, 41, 43, 50–55).

In view of this suggested post-traumatic vertebral necrosis

evolution stages, it is easily understood that we should early

intervene in situations of post-traumatic vertebral necrosis, ideally

in vertebrae non-plana stages (stages 1i and 1 m—Figure 2), so

that there is still enough bone tissue in the vertebral body to allow

for the less invasive treatment, with percutaneous access and faster

convalescence, which is the armed kyphoplasty. A late diagnosis or

an unnecessary postponement of surgical intervention causes bone

necrosis and resorption to progress, leading to situations of

vertebra plana (stages 2) and increasing the risk of developing

neurological damage due to retropulsion of the posterior wall and

collapse of the vertebral body, which requires more aggressive

surgical solutions. However, even the percutaneous current

vertebral body reconstruction technique is not risk-free, and there

may be migration or failure of intrasomatic stents or pedicle

screws, as well as of bone graft resorption, which indicates failure

to obtain osseointegration and healing of pseudarthrosis. It is also

possible that the stents don’t expand and as such it is not possible

to put any bone inside them filling the vertebral body, which leads

us to reinforce the indication of armed kyphoplasty only in the

mobile vertebra plana (pseudarthrosis) and not in the rigid

vertebra plana. Attempting to place expandable intravertebral

implants in this type last of vertebrae involves high risks and may

have serious consequences, from migration of the implants,

because they are not stable within bone tissue, with damage to

major neurological and vascular tissues. Also this technique

requires some experience and a learning curve both in

transpedicular access to the vertebral body and in percutaneous

techniques with fluoroscopy.

In conclusion, this clinical case demonstrates that the treatment

of pseudarthrosis of vertebral body, even in vertebra plana stage, can

be carried out as an internal replacement of the necrotic vertebral

body performed by posterior transpedicular access in which

expandable intravertebral stents allow to create intrasomatic

cavities, which are filled with bone graft, obtaining a totally bony

vertebra with a metallic endoskeleton. This biological internal

replacement of the necrotic vertebral body technique can be a safe

and effective alternative over cementoplasty procedures or total

vertebral body corpectomy and replacement for vertebral

pseudarthrosis and may have several advantages over them, like
Frontiers in Surgery 07
allowing by a less invasive posterior technique to obtain a totally

bony vertebra biomechanically and physiologically more similar to

the original one and avoiding the risks of bone cement leakage.

Our clinical case shows quite satisfactory clinical and radiographic

results regarding this technique in a vertebra plana pseudarthrosis;

however, long-term prospective studies are needed in order to

prove the effectiveness and advantages of this surgical option in a

rare and difficult pathological entity.
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