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Introduction: Neurosurgery is one of the most complex surgical disciplines where
psychomotor skills and deep anatomical and neurological knowledge find their
maximum expression. A long period of preparation is necessary to acquire a solid
theoretical background and technical skills, improve manual dexterity and visuospatial
ability, and try and refine surgical techniques. Moreover, both studying and surgical
practice are necessary to deeply understand neuroanatomy, the relationships
between structures, and the three-dimensional (3D) orientation that is the core of
neurosurgeons’ preparation. For all these reasons, a microsurgical neuroanatomy
laboratory with human cadaveric specimens results in a unique and irreplaceable
training tool that allows the reproduction of patients’ positions, 3D anatomy, tissues’
consistencies, and step-by-step surgical procedures almost identical to the real ones.
Methods: We describe our experience in setting up a new microsurgical
neuroanatomy lab (IRCCS Neuromed, Pozzilli, Italy), focusing on the development
of training activity programs and microsurgical milestones useful to train the
next generation of surgeons. All the required materials and instruments were listed.
Results: Six competency levels were designed according to the year of residency,
with training exercises and procedures defined for each competency level: (1) soft
tissue dissections, bone drilling, and microsurgical suturing; (2) basic craniotomies
and neurovascular anatomy; (3) white matter dissection; (4) skull base transcranial
approaches; (5) endoscopic approaches; and (6) microanastomosis. A checklist
with the milestones was provided.
Discussion: Microsurgical dissection of human cadaveric specimens is the optimal
way to learn and train on neuroanatomy and neurosurgical procedures before
performing them safely in the operating room. We provided a “neurosurgery
booklet” with progressive milestones for neurosurgical residents. This step-by-
step program may improve the quality of training and guarantee equal skill
acquisition across countries. We believe that more efforts should be made to
create new microsurgical laboratories, popularize the importance of body
donation, and establish a network between universities and laboratories to
introduce a compulsory operative training program.
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Introduction

Neurosurgery is one of the most complex and highly demanding

surgical disciplines. Intensive and long training is required to acquire

a solid theoretical background, deep anatomical knowledge, hand–

eye coordination, manual dexterity, and complex technical skills,

in addition to controlling physiologic and psychological tremors.

Young neurosurgeons must be aware of the intricate three-

dimensional neuroanatomy (3D), the psychomotor abilities, the

fatigue related to long operative surgeries, and accurate and safe

manipulation in deep and narrow operative corridors, which can

affect the surgical performance and results (1–3). For all these

reasons, neurosurgical laboratories with human cadaveric

specimens result in a unique and irreplaceable training tool for

developing and refining anatomical knowledge, dexterity, technical

skills, and surgical procedures before performing them on a living

patient (4–6). The use of a real human specimen gives the

possibility to reproduce the actual procedure, starting from the

head positioning to the step-by-step surgery facing narrow

corridors, fragile neurovascular structures, and a delicate brain

surface, which can give an idea of how gentle and accurate the

dissection has to be during the live surgery (4, 6, 7). Nevertheless,

permanent neurosurgical laboratories are not widespread all over

the world due to strict requirements and permissions, ethical and

legal issues, and the high costs related to equipment, materials,

and specimens. On the other hand, in the last few decades,

medicolegal issues in the medical field and, in particular,

neurosurgical practice have increased (8, 9). For these reasons,

neurosurgical training has become crucial, with increasing interest

in it, to train the next generation of neurosurgeons before

practicing on living patients to reduce perioperative complications

(10, 11). In this scenario, in recent years, the European Union has

increased its financial support to settle up new anatomical and

surgical laboratories, and, in parallel, the Italian government has

unlocked some restrictions on body donation (12, 13). Convinced

of the irreplaceable value of a cadaver lab, in this article we

describe our experience in setting up a new microsurgical

neuroanatomy lab (IRCCS Neuromed, Pozzilli, Italy), focusing on

the development of training activity programs and microsurgical

milestones useful to train the next generation of surgeons.
Materials and methods

We set up a microsurgical neuroanatomy laboratory,

“Laboratorio di neuroanatomia G. Cantore” (Centro di Medicina

Necroscopica-Unità di Chirurgia Formativa), at Parco

Tecnologico IRCCS Neuromed in Pozzilli (Italy), according to

the Italian requirements (Law no. 10, 10 February 2020; G.U., 4

March 2020). The laboratory and all its activities on human and

animal specimens were approved by the ethical committee of

IRCCS Neuromed. Embalmed and latex-injected human

cadaveric heads have been used for dissections, while the human

placenta has been furnished by the Obstetrics and Gynecology

Department of the Istituto Clinico Mediterraneo (ICM, Salerno,

Italy) as a scientific donation after birth, and Sprague–Dawley
Frontiers in Surgery 02
rats were provided by the Neuromed stabularium according to

the Italian law on laboratory animal welfare (D.lgs. 26/2014). The

human placenta was prepared as reported elsewhere (14). A

dedicated veterinarian took care of the rodents, proceeding with

anesthesia, analgesia, and immobilization during the courses. All

the required materials and instruments are listed in Table 1.

Moreover, a permanent neuronavigation system (Treon,

Medtronic) is present in the lab for measurements and

anatomical verification during research activities.

The training program for neurosurgical residents has been

developed considering the progressive competency acquired in

each year of residency, from basic techniques and procedures to

complex anatomy and approaches. Four types of dissection

courses have already been organized at our laboratory for

neurosurgical residents and young neurosurgeons: (a) basic

techniques and approaches using the microscope; (b) the 3D

exoscope; (c) transcranial and endoscopic skull base approaches;

and (d) microvascular anastomosis on the human placenta and

rats. Furthermore, an ongoing anatomical research activity is

currently being performed.

A review of the literature on anatomy and dissection guides has

been done to provide a list of “suggested references” for the

preparation of trainees.
Results

Six competency levels were designed according to the year of

residency (PGY, from 1 to 5): (1) soft tissue dissections, bone

drilling, and microsurgical suturing; (2) basic craniotomies and

neurovascular anatomy; (3) white matter dissection; (4) skull

base transcranial approaches; (5) endoscopic approaches; (6)

vessel preparation on placenta and rats; and (7)

microanastomosis. For each level, a checklist with milestones is

provided in Table 2. Figure 1 shows the organization of our lab.
Level 1: soft tissue dissections, bone drilling,
and microsurgical suturing (PGY 1–2)

Level 1 represents the surgical basics for PGY1. The junior

resident should know the different myocutaneous layers, their

relationship with nerves and vessels, craniometric points, and

differences between cortical and cancellous bones. At this level, the

resident must become familiar with the Mayfield head holder,

macroscopic instruments, dissection techniques, engine functioning,

bone drilling, and macro and microscopic suture techniques.
Level 2: basic craniotomies and
neurovascular anatomy (PGY 2–3)

Level 2 corresponds to PGY2 and PGY3. The resident should

be able to perform basic craniotomies, that is, pterional,

subtemporal, parasagittal, retrosigmoid, and suboccipital

approaches. They must perform Sylvian and interhemispheric
frontiersin.org
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TABLE 1 Required materials and instruments.

Transcranial approaches Endoscopic approaches Vascular anastomosis White matter dissection
Tools Microscope Endoscope Microscope —

Exoscope Exoscope —

Specimens Human-injected cadaveric heads Human-injected cadaveric heads Silicone tubes Human brain hemispheres

Chicken wings

Human placenta

Human cadaveric head

Rats

Materials — — SP + dyes —

Drapes Drapes Drapes Drapes

Gauzes Gauzes Cotton fioc Gauzes

Syringes Syringes Syringes —

Stitches — Stitches

Mayfield Mayfield Approximators —

— — Pins —

Instrumentation Suction Suction — —

Engine, drills, perforator Engine, E. drills — —

Scalpel E. scalpel Microscalpel Tongue depressor

Retractors — Retractors (rats) —

Macrosetsa Endoscopic set Macroseta Dissector

Microsetsb — Bypass setc —

SP, physiological solution; E, endoscopic.
aTwo pairs of forceps, scissors, rongeurs, dissectors, backhaus clamps, klemmer forceps.
b(Bayonet-shaped) microscissors, two pairs of microforceps.
cNeedle holders, tying forceps, jeweler forceps.
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fissure openings and know the target anatomy exposed during each

approach. The resident must become familiar with bony drilling

without injuring neurovascular structures.
Level 3: white matter dissection (PGY 3–4)

Level 3 represents the anatomical knowledge of white matter for

PGY3 and PGY4. Knowledge of the anatomy of the cerebral surface,

white matter fibers, deep nuclei, brainstem, and cerebellum is

mandatory. At this level, the resident becomes confident enough

in white matter dissection to dissect the main structures.
Level 4: skull base transcranial approaches
(PGY 4–5)

Level 4 represents the advanced transcranial craniotomies for

skull-base pathologies. This level is addressed to PGY4 and

PGY5. The resident should be able to perform those approaches

and recognize the extra- and intradural anatomies. Gentle

interdural dissection, bony drilling in deep and narrow fields,

and cutting the tent without injuring neurovascular structures are

important technical skills.
Level 5: endoscopic transnasal approaches
(PGY 4–5)

Level 5 is addressed to PGY4 and PGY5 and corresponds to

endoscopic transnasal approaches. The resident should learn the
Frontiers in Surgery 03
anatomy of the nasal cavity and its relationship with the

maxillary, orbital, ethmoidal, sphenoidal, clival, and

craniocervical junction (CCJ) compartments. Preparation of the

nasoseptal flap and the transsphenoidal approach to the sella is

the first step, followed by extended medial and lateral

approaches. The resident must become familiar with the

endoscope and one-hand dissection. Finally, an endoscopic

mucosal suture should be attempted.

Figure 2 shows the arrangement of the stations during our

microsurgical and endoscopic courses.
Level 6: vessel preparation and
microanastomosis on inert materials,
chicken wings, human placenta, human
cadavers, and rats (PGY 5)

Level 6 is addressed to PGY 5 and represents one of the most

difficult skills to acquire in neurosurgery, namely vascular

anastomosis. Starting from inert materials such as gauze and

silicon tubes, the resident should train in simple knots and end-

to-end, end-to-side, and side-to-side microanastomoses. Figure 3

shows the organization of the stations. Chicken wings and

human placenta are used to mimic the consistency of the vessels

and to train with vessel dissection. As described elsewhere (14),

the human placenta is prepared and injected continuously with

red and blue saline solution by cannulating the umbilical arteries

and veins (Figure 4). The following step is using human

cadaveric heads and in vivo rats. In particular, the human

specimen allows for the replication of a real surgical procedure

for bypass, dissecting vessels, and performing microanastomoses
frontiersin.org
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FIGURE 1

Workstations at “Laboratorio di neuroanatomia G. Cantore.”

FIGURE 2

Arrangement of the stations during our (A) microsurgical and (B) endoscopic courses.

Fava et al. 10.3389/fsurg.2023.1145881
in deep fields. On the other side, the in vivo rat is the most realistic

model through which it is possible to simulate bloody dissection,

blood pulsation, empathy, and anxiety (Figure 5).

Finally, in Table 3, we reported a list of some useful books and

articles’ references for each level of competency to guide the

residents during their studies and cadaveric dissections.
Discussion

The education and training needed to become a neurosurgeon

consist of a long and demanding program that consists of acquiring

a solid theoretical background and clinical and surgical experience.

Residents in neurosurgery have to spend a lot of time in the

operating room to become familiar with surgical anatomy and

techniques and to develop practical skills (1–3). Although

intraoperative surgical exposure represents the fundamental way

to train surgeons, several drawbacks are encountered in every

country. Differences between departments, hospitals, and nations

are wide, and residents often do not have the same opportunity

in their education and operation room in particular (101–107).
Frontiers in Surgery 05
Considering the European centers, recent surveys among

neurosurgical residents report very low satisfaction rates for the

theoretical and practical aspects of training in some countries

(101). Moreover, novel regulations on reducing working hours

for residents reduce the possibilities for practical and

psychophysical training, affecting the quality of the residency and

prolonging the learning curve (108, 109). These controversial

aspects are also critical for the increasing medicolegal issues

affecting medical practice in the last few decades (8, 9).

Accordingly, the impossibility to try or repeat surgical procedures

makes neurosurgical training more difficult. For all these reasons,

training on human cadaveric specimens results in an essential

and irreplaceable tool for residents and fully-trained

neurosurgeons (10). Similarly, the evolution of simulation

technology applied to surgery has assumed an important role in

learning anatomy, completing procedural tasks, and improving

accuracy and hand–eye coordination. In recent years, 3D inert

models and virtual and augmented reality have been popularized

among universities and through courses to train young residents

(110, 111). Nevertheless, the use of a real human specimen gives

the possibility to reproduce the real procedure starting from the
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FIGURE 3

Workstation for microanastomosis on (A) inert materials and (B) wet specimens.

FIGURE 4

(A) Preparation of human placenta for microanastomosis with cannulation of the umbilical arteries and vein. After washing arteries and veins with clean
water to remove blood clots, colored saline solution is used to continuously fill the vessels mimicking the blood. (B) Vascular dissection and
microanastomosis on human placenta using a 3D exoscope.
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head positioning to the step-by-step surgery facing narrow

corridors, fragile neurovascular structures, and a delicate brain

surface that can give an idea of how gentle and accurate the

dissection has to be during the live surgery. Last but not least,

training on human cadavers differs from inert materials or

simulation tools because the trainer must also manage the

emotional counterpart, empathy, and respect for the human body

that can approximate real surgery.
Laboratory setup

After the introduction in Italy of Law no. 10 of 10 February 2020

entitled “Rules regarding the disposition of one’s body and

postmortem tissues for study, training, and scientific research
Frontiers in Surgery 06
purposes,” our Neurosurgical Department and IRCCS Neuromed

have worked together to set up a new microsurgical neuroanatomy

laboratory called “Laboratorio di neuroanatomia G. Cantore”

(Centro di Medicina Necroscopica—Unità di Chirurgia Formativa)

at Parco Tecnologico Neuromed in Pozzilli (Italy). Finally, our

laboratory has been accredited as a no-profit laboratory for body

donation with other centers in Italy. This lab has been created

based on our previous experiences with neurosurgical dissections

in several laboratories around the world to offer educational

opportunities and training activities for residents and

neurosurgeons from Italy and abroad and establish research

fellowships and permanent surgical research. After the initial

funding for no-profit research, a policy of reuse has been applied

in our no-profit lab. The necessary equipment has been found

through the recovery of disused microscopes and instruments, a
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FIGURE 5

(A,B) Workstation to perform dissection and microanastomosis on in vivo rats.
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donation from retired surgeons, and second-hand instruments left in

the lab after courses. Expired or nonsterile materials are also

routinely brought into the operative room (OR) of our hospital.

For research fellows (two for each semester) and residents, a

“neurosurgical booklet,” represented in Table 2 as a checklist, is

furnished to give a progressive training guide. The concept is to

take all the time to perform slow and gentle step-by-step

dissection to preserve tissues and understand the 3D surgical

anatomy and intricate relationships between structures. Meticulous

work and a sound state of mind are essential to preparing the

fellow for the accuracy necessary to be a neurosurgeon. Moreover,

it is essential to acquire strong neuroanatomical knowledge

through transcranial and endoscopic dissections to understand the

anatomy from different perspectives directly on the specimen,

which is the basis for performing their research.

In parallel, fellows can observe surgical procedures to treat skull

base pathologies, gliomas, or epilepsy in our department, taking

inspiration to learn more about a procedure directly on the

specimen or to develop new anatomical research or approaches.
Courses

During the first year of activity, we organize six courses for

neurosurgical residents and young neurosurgeons, ranging from
TABLE 3 Suggested references for dissections.

Neurosurgical basics White
matter

Anatomical basics and surgical approaches (15–31),
temporal muscle and pterional approach (32–37), neck
anatomy (38, 39), suboccipital (40), retrosigmoid (41–
46), subtemporal (31, 47)

Fundamentals
(48–69)

FTOZ (70–
(30, 76–80)
posterolater
approach (

FTOZ, fronto-temporal orbito-zygomatic.
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basic to more complex: (a) basic techniques and approaches

using the microscope and (b) the exoscope, (c) transcranial and

endoscopic skull base approaches, and (d) microvascular

anastomosis on the human placenta and rats. The costs for

human specimens and organization are supported by sponsors

and participation fees. Each specimen preserved in a solution of

alcohol, water, and softener can be reused for different courses,

lowering the final cost. Considering the aforementioned checklist

(Table 2), we have organized these courses taking into account

the year of residency and related neurosurgical milestones. Each

course included theoretical lectures and practical lab sessions.
Basic techniques and approaches

The goal of these courses is to introduce the young resident to the

basics of neurosurgery. Milestones of these courses include soft tissue

dissection preserving the facial nerve and superficial temporal artery

(STA), drilling techniques, basic craniotomies, sinus exposure, dura

opening, interhemispheric and Sylvian fissure dissections, relevant

intradural anatomy, and dura closure with a patch. During these

courses, residents become familiar with instruments and techniques,

can perform more common approaches such as pterional, parasagittal,

and retrosigmoid approaches, and study surgical anatomy. Given the

technological advancements in the neurosurgical field and the recent
Skull base Endoscopic
skull base

Vascular
anastomosis

75), clinoidectomy and cavernous sinus
, petrosal approaches (81–86),
al approaches (39, 87, 88), anterolateral
89–91)

(92, 93)
Reconstruction (94–
96)

(4, 97–100)
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introduction of 3D exoscopes in surgical practice (112), we organize

courses that not only use microscopes, but also hybrid

microexoscopes and only exoscopes. The use of a 3D exoscope during

a cadaveric course has gained widespread approval from trainees due

to the limited presence of this technology in Italian hospitals.
Transcranial and endoscopic skull base
approaches

These courses are addressed to senior residents and

neurosurgeons and consist of lectures and practice on skull base

anatomy, pathologies, surgical strategies, and both transcranial

and endoscopic approaches. Great emphasis is given to

extradural anatomy and corridors. Participants exercise accurate

drilling techniques and gentle intradural dissection in narrow

and deep corridors. A combination of transcranial and

endoscopic approaches can provide a 360° view of anatomy.
Microvascular anastomosis on inert
materials, placenta, and rats

The course is aimed at senior residents and neurosurgeons who

want to learn the techniques of microsuturing and train their skills.

Sutures, dedicated instruments, and step-by-step techniques are

illustrated during lectures. In the lab, each participant has their own

station with microscopes, instruments, and sutures (from 6.0 to

10.0). Starting from inert materials, like gauze and synthetic vessels,

the participant can practice different anastomotic techniques on

fresh human placenta, which simulates the vessels, arachnoid, and

pia mater. The placenta is cannulated and perfused first with water

and then with a colored saline solution (red for arteries and blue for

veins). After practicing on ex vivo specimens and trying to perform

a patent and functional anastomosis, the participant could perform it

on in vivo rats under sedation. It is the most realistic model through

which it is possible to simulate bloody dissection, blood pulsation,

empathy, and anxiety with the aim of not killing the specimen.

Depending on specific areas of training, these presented

milestones could be fine-tuned and expanded by training experts.
Universities and international networks

Considering the aforementioned drawbacks, limitations, and

differences among the neurosurgical training centers, in

particular, in Europe and especially in our country (101, 109),

that affect the learning curve of young neurosurgeons and

ultimately the quality of medical assistance, the authors believe

that it is time to renovate the residency systems. As previously

proposed by Stienen et al., European standard guidelines for

neurosurgical training could help further harmonize training

among European countries and facilitate exchange (101). As

regards the last decade, great work has been done by the

European and Italian Neurosurgical Societies (EANS, SINCH) to

contribute to the improvement of neurosurgical education
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through EANS training courses, the EANS spine diploma,

SINCH basic courses for young residents, and hands-on courses.

Nevertheless, all these opportunities remain at the discretion of

the single resident and professor, are limited in time, and are

affected by economical and organizational issues. The authors

believe that the same compulsory theoretical program has to be

suggested for all European countries during all the years of

residency, in addition to being a parallel compulsory operative

training plan that sustains and reinforces the surgical training in

the OR with a uniform and verified number of procedures

performed by the resident. Acquiring 3D anatomical knowledge,

technical skills, manual dexterity, visuospatial ability, and surgical

procedures should not be a choice for a neurosurgical resident,

but rather a mandatory requirement to become a neurosurgeon.

For this reason, the authors believe that each resident of all

residency programs must have the opportunity to spend a period

during each year of their residency in a cadaveric laboratory with

a precise step-by-step “neurosurgical training checklist” with

progressive milestones to improve the quality of operative

training and guarantee equal skill acquisition all over the world.

However, high costs, difficult human specimen acquisition, and

bureaucracy issues make this goal impossible. As reported by

Italian anatomists (13), although Italian law is now more

permissive about body donation, the number of centers

performing anatomical dissections for the benefit of medical

students and residents has decreased in favor of the few

universities that can afford it.
Limitations

Although human cadaveric specimens and fixed brain

hemispheres are the most reliable models for reproducing anatomy

and surgery on a living patient, technical limitations are not

negligible. If embalmed specimens can be easily conserved, their soft

tissue and brain stiffen, affecting the qualitative and quantitative

study of the approach. On the contrary, fresh specimens overcome

this issue, resulting in a greater similarity to the living one at the

cost of limited conservation and use, increasing the costs. Second,

the absence of the cerebrospinal fluid or the pathology of interest,

such as tumors and vascular malformations, makes the cadaver

defective and far from a real model.

Furthermore, the resident who spends some time in the

laboratory should not forget that their experience in the OR is

essential and irreplaceable for the emotional counterpart and the

anxiety for responsibility related to the patient’s expectations.
Future directions

As neurosurgeons are involved in intense cadaveric activities,

we believe that more efforts should be made to create

collaboration between universities and laboratories to optimize

human, material and financial resources with the aim of

establishing a solid and equitable operative training program. For

this purpose, the provided “neurosurgery booklet” could be a
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starting point to be spread among universities and hands-on

courses. The usefulness of this milestone approach should be

discussed in the neurosurgical community and validated through

questionnaires given to faculty experts and trainees. In this

regard, we are formulating dedicated surveys for each level of

competency to administer to participants of our cadaveric

courses and research fellows in our lab. Similarly, training

protocols on cadaveric specimens could be developed for spinal

and peripheral neurosurgery. Although the higher costs of

specimens and instrumentation could limit the possibilities,

permanent laboratories for spinal and peripheral nerve surgery

should be developed.

On another aspect, despite the great knowledge of

neuroanatomy and surgical advances in the last few decades,

descriptive neurosurgical anatomy is continually evolving

through multidisciplinary description, new surgical corridors, and

the improvement of minimally invasive skull base approaches

(15). In this scenario, cadaver laboratories play a fundamental

role in enhancing neuroanatomical knowledge and surgical

outcomes. Different skull base research projects could be

performed in the lab: description of anatomy with the integration

of radiological examinations, development of three-dimensional

models for surgical and training purposes, description of

minimally invasive corridors, and comparison between surgical

approaches. For this reason, a permanently equipped laboratory

with research fellows is imperative.
Conclusion

Microsurgical dissection of human cadaveric specimens is the

optimal way to learn and train on neuroanatomy and

neurosurgical procedures before safely performing them in the

operating room. The authors believe that the neurosurgical

preparation has to be integrated with a compulsory operative

training program as a complementary activity during all the

years of residency. The goals are acquiring three-dimensional

anatomical knowledge, technical skills, manual dexterity,

visuospatial ability, and surgical procedures. We provided a

“neurosurgery training checklist” with progressive milestones for

neurosurgical residents. This step-by-step operational program

may improve the quality of training and guarantee equal skill

acquisition across countries. We believe that more efforts should

be made to create new microsurgical laboratories, popularize the

importance of body donation, and encourage collaboration

between universities and laboratories.
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