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Case report: High-resolution,
intra-operative µDoppler-imaging
of spinal cord hemangioblastoma
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Surgical resection of spinal cord hemangioblastomas remains a challenging
endeavor: the neurosurgeon’s aim to reach total tumor resections directly
endangers their aim to minimize post-operative neurological deficits. The
currently available tools to guide the neurosurgeon’s intra-operative decision-
making consist mostly of pre-operative imaging techniques such as MRI or MRA,
which cannot cater to intra-operative changes in field of view. For a while now,
spinal cord surgeons have adopted ultrasound and its submodalities such as
Doppler and CEUS as intra-operative techniques, given their many benefits such
as real-time feedback, mobility and ease of use. However, for highly
vascularized lesions such as hemangioblastomas, which contain up to capillary-
level microvasculature, having access to higher-resolution intra-operative
vascular imaging could potentially be highly beneficial. µDoppler-imaging is a
new imaging modality especially fit for high-resolution hemodynamic imaging.
Over the last decade, µDoppler-imaging has emerged as a high-resolution,
contrast-free sonography-based technique which relies on High-Frame-Rate
(HFR)-ultrasound and subsequent Doppler processing. In contrast to
conventional millimeter-scale (Doppler) ultrasound, the µDoppler technique has
a higher sensitivity to detect slow flow in the entire field-of-view which allows
for unprecedented visualization of blood flow down to sub-millimeter
resolution. In contrast to CEUS, µDoppler is able to image high-resolution
details continuously, without being contrast bolus-dependent. Previously, our
team has demonstrated the use of this technique in the context of functional
brain mapping during awake brain tumor resections and surgical resections of
cerebral arteriovenous malformations (AVM). However, the application of
µDoppler-imaging in the context of the spinal cord has remained restricted to a
handful of mostly pre-clinical animal studies. Here we describe the first
application of µDoppler-imaging in the case of a patient with two thoracic
spinal hemangioblastomas. We demonstrate how µDoppler is able to identify
intra-operatively and with high-resolution, hemodynamic features of the lesion.
In contrast to pre-operative MRA, µDoppler could identify intralesional vascular
details, in real-time during the surgical procedure. Additionally, we show highly
detailed post-resection images of physiological human spinal cord anatomy.
Abbreviations

AVM, arteriovenous malformation; CDI, color doppler Image; CEUS, contrast enhanced ultrasound; CT,
computed tomography; fUS, functional ultrasound; HB, hemangioblastoma; HFR, high-frame-rate; MEP,
motor evoked potentials; MRC, medical research council (MRC) scale for muscle strength; ne, ensemble
length; NVC, neurovascular coupling; PDI, power doppler Image; ROI, region of Interest; SCS, spinal cord
stimulation; SSEP, somatosensory evoked potentials; VHL, von hippel-lindau; VSA, ventral spinal artery.
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Finally, we discuss the necessary future steps to push µDoppler to reach actual clinical
maturity.
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1. Introduction

Hemangioblastomas are highly vascularized, benign tumors (1),

accountable for 2%–15% of all primary tumors in the spinal cord (2,

3), making them the third most common primary spinal cord tumor

after astrocytoma and ependymoma (4). Histopathologically,

hemangioblastomas are thought to consist of intricate vascular

networks containing microvasculature, primarily at a capillary

scale (5). Hemangioblastomas can either occur sporadically or as a

part of von Hippel-Lindau (VHL) disease (6, 7), a multicentric

disorder caused by an autosomal dominant tumor suppressor gene

mutation, leading to multifocal and recurrent hemangioblastomas

(8). In the majority of cases, hemangioblastomas present as

intramedullary lesions, with only sporadic reports of combined

intramedullary-extramedullary or exclusively intradural,

extramedullary presentations of the disease (9).

To this day, surgical removal of the lesion remains the primary

choice of treatment (10), with literature consistently reporting the

importance of achieving total tumor resection in terms of

minimizing recurrence of disease and improving functional

outcome (3, 11). However, the benefit of total versus subtotal

tumor resection is highly dependent on the surgical safety of the

procedure and risk of iatrogenic post-operative neurological

deficits (12). What is more, intra-operative identification of tumor

location and radicality of resections remains challenging, especially

as routine MRIs have led to an evolution of case load towards

earlier detection of small tumors or even incidental findings (13).

In all cases, the use of intra-operative surgical tools can be of great

importance to ensure safe and complete surgical resection.

Current clinical practice for spinal cord tumor resections relies

heavily on a combination of pre-operative imaging (CT/MR/MRA)

combined with electrophysiological intra-operative neuro-

monitoring (IONM). Although literature shows that IONM can

significantly improve the prevention of neurological damage

during surgery (14), there is still a considerable percentage of

patients who experience significant long-term neurological

deterioration (12, 15, 16), despite use of IONM. What is more,

relying on pre-operative images to guide real-time intra-operative

decision-making is fallible, especially in the spinal cord, where

the laminectomy, myelotomy, locoregional swelling and bleeding,

as well as shifts due to the resection cavity itself can significantly

change the field of view as the surgery progresses, disturbing the

match with pre-operatively acquired images, despite the latest

neuro-navigation and -tracking software.

Intra-operatively, ultrasound and its submodalities (e.g.,

Doppler, Contrast Enhanced Ultrasound (CEUS)) have become a

more common practice during spinal procedures given their

many benefits including ease of use of the techniques, mobility,

and availability of real-time feedback during surgical resection
02
(17–27). For example, several reports in literature on CEUS

demonstrate how the technique could provide new insights on

localization (20, 21, 26), diagnosis (21) and surgical boundaries

(20, 26) during intra-operative resection of spinal cord tumors.

Over the last decade, µDoppler-imaging has emerged as a new,

high-resolution, contrast-free sonography-based technique which

relies on High-Frame-Rate (HFR)-ultrasound and subsequent

Doppler processing. In contrast to conventional millimeter-scale

(Doppler) ultrasound (28), the µDoppler technique has a higher

sensitivity to detect slow flow in the entire field-of-view which

allows for unprecedented visualization of blood flow down to sub-

millimeter resolution. The sensitivity to slow flow is attributed to

the large amount of frames available to calculate the Doppler signal

from and ability to separate it from the frame wide tissue motion

(29–31). Previously, our team has demonstrated the potential of

µDoppler-imaging and its functional counterpart called ‘functional

Ultrasound (fUS)’ during awake brain tumor resections, where we

showed highly detailed functional maps and vascular morphology

of a range of low and high-grade gliomas (31). Additionally, our

team has evaluated the potential of µDoppler-imaging in the

context of a cerebral arteriovenous malformation (AVM) (32),

where the technique was able to identify key anatomical features

including draining veins, supplying arteries and microvasculature in

the AVM-nidus intra-operatively.

Like many other developments in Neurosurgery, the focus of

µDoppler-imaging so far has primarily been on cerebral pathology,

with only a handful of animal (33–36) and in human (37, 38)

studies showing the potential for spinal cord imaging, with one in-

human study in particular focusing on functional images acquired

within the context of Spinal Cord Stimulation (SCS) for pain

treatment (39). What would make µDoppler-imaging specifically

valuable for the context of spinal cord hemangioblastomas, is the

technique’s unique potential to provide high-resolution, real-time

images of the vascular network of the lesion. Literature reports

recommendations on improving surgical safety and efficacy during

hemangioblastoma resection by focusing on vascular details

specifically (12). Compared to currently available ultrasound-based

techniques such as CEUS which aim to image these vascular details

(20, 21, 26), µDoppler-imaging would be able to achieve the same

if not better resolution images without the need for a contrast agent

(32). This means that µDoppler-imaging is continuous in nature,

whereas CEUS is contrast bolus-dependent (20, 21, 26). Similarly,

compared to conventional Doppler, µDoppler-imaging is able to

reach far superior resolutions (in the range of 100–500 µm,

depending on the transducer frequency) (40). µDoppler-imaging

might therefore be a valuable addition to provide real-time, high-

resolution vascular details to guide hemodynamics-based surgical

decision-making in the OR, especially when macroscopic or pre-

operative identification of vasculature is not sufficient.
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Here we describe the first application of µDoppler-imaging in the

case of a patient with hemangioblastomas located in the thoracic

spinal cord. We demonstrate how µDoppler is able to identify

intra-operatively and with high-resolution, key anatomical and

hemodynamic features of the lesion. In contrast to pre-operative

MRA, µDoppler could identify intralesional hemodynamic details,

in real-time during the surgical procedure. Additionally, we show

post-resection µDoppler-images of physiological human spinal cord

anatomy. Finally, we discuss the necessary future steps to push

µDoppler reach actual clinical maturity.
2. Case description

2.1. Patient characteristics

The patient is a female in her 60’s with an extensive prior history

of hypertension and recurrent spinal hemangioblastomas, for which

she had three prior surgical procedures: two procedures to remove

intramedullary hemangioblastomas in the lumbar region (6 years

apart, including laminectomy Th12-L3) and one procedure to

remove a high cervical, intramedullary hemangioblastoma
FIGURE 1

Pre-operative MRI and MRA. (A) Timeline of relevant surgical treatments unde
during this episode of care. (B) Sagittal MRI-section of the thoracic spinal cord (
after gadolinium) of lesion 1 at T10 (yellow asterix) and lesion 2 at T11 (green
lesions. HB, Hemangioblastoma; R, Right; T1-w, T1-weighted; gd, gadolinium
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(Figure 1A). This surgery was complicated by neurological

deterioration. After rehabilitation, she was able to walk

independently with the aid of crutches. Four years after the last

surgical procedure, the patient returned with complaints of loss of

strength in the right leg and shooting pains towards the foot.

Neurological examination showed complete loss of right-sided lower

leg strength (MRC gastrocnemius (GC) 0, Tibialis Anterior (TA) 0),

and pre-existent weakness in the left leg (overall MRC 4).

Additionally, the patient reported hypesthesia and loss of sharp-dull

distinction on the lateral side of the right-sided lower leg and foot.
2.2. Pre-operative imaging

Pre-operative imaging (MRI/MRA) confirmed the presence of

multiple intradural hemangioblastomas. The largest (lesion 1)

appeared to be both intra- and extramedullary and was located at

Th10-Th11 on the right posterior side of the myelum (1.0 cm ×

1.4 cm × 2.2 cm, Figures 1B–C), causing myelum compression.

An additional, extramedullary lesion was found at level Th11-

Th12 (lesion 2). MRA (Figure 1D) did not show hypertrophy of

the radiculary artery or dural fistuling. Prominent, probably
rgone by the patients described in this case. Green labels indicate events
T1-weighted FLAIR after gadolinium). (C) Axial MRI-slices (T1-weighted FSE
asterixis). (D) MRA of the full spinal cord. (E) Zoom in on the MRA of both
; MRA, Magnetic Resonance Angiography.
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venous vessels were seen directly caudal from lesion 1, suspected to

be formed after local hemodynamic changes due to compression

and/or congestion (Figure 1E).
2.3. Ethical statement

The patient was treated at the Department of Neurosurgery of

Erasmus MC in Rotterdam. Prior to inclusion, written informed

consent was obtained in line with the National Medical-Ethical

Regulations (MEC2020-0440, NL67965.078.18).
3. Imaging procedure

3.1. MicroDoppler data acquisition

High-frame-rate (HFR)-acquisitions were performed using our

experimental research system (Vantage-256, Verasonics, United

States) interfaced with a L8-18I-D linear array (GE, 7.8 MHz,

0.15 mm pitch, probe footprint of 11 by 25 mm) or a 9l-D linear

array (GE, 5.3 MHz, 0.23 mm pitch, probe footprint of 14 by 53 mm).

Acoustic safety measurements were performed in collaboration with

our department of Medical Technology prior to obtaining medical

ethical approval to perform this study. For all scans we acquired

continuous angled plane wave acquisition (10–12 angles equally

spaced between −12 and 12 degrees) with a PRF ranging from 667 to

800 Hz depending on the imaging depth and transducer. The average
FIGURE 2

Intra-operative experimental acquisition of µDoppler-images. (A) Our custom C
of a hand-held acquisition along a continuous trajectory. (C) Our intra-operati
the spinal cord after opening the dura.
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ensemble size (number of frames used to compute one Power

Doppler Image (PDI)) was set at 200 angle-compounded frames from

which the live PDIs were computed, providing a live Doppler FR

ranging between 3 and 4 Hz. The PDIs as well as the raw, angle

compounded beamformed frames were stored to a fast PCIe SSD

hard disk for offline processing purposes. Parallel to our HFR-

acquisitions, patient’s vital signs (EKG, arterial blood pressure) were

recorded using a National Instruments’ CompactDAQ module (NI

9250) at 500 Hz and stored for post-processing purposes.

To make our PDIs trackable in the OR, we integrated our

transducers into Brainlab neuronavigation software by attaching

the conventional optical tracking geometry to the transducer

casing using custom-made 3D-printed attachments. An overhead

camera recorded the surgical field as the surgeon performed

µDoppler-acquisitions and removed the tumor. Through

integration of our custom CUBE-cart in the OR-system, our live

PDIs were displayed in real-time on the OR-screens (Figure 2A).
3.2. Intra-operative imaging procedure

Our experimental image acquisitions were integrated into the

conventional surgical workflow, with an acquisition session both

pre- and post-resection. First, the patient was placed in prone

position and head-fixated in the Mayfield. A medial incision was

made at the level of T9-T11, before stripping paraspinal muscles

from the spinous processes and inserting a wound distractor. A

laminectomy was performed from T9-T11, revealing the dura
UBE-cart integrated into the conventional neurosurgical OR. (B) Example
ve surgical arm used to stabilize the probe of ROI. (D) Microscopic view of
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surrounding the spinal cord. The pre-resection HFR-acquisitions were

performed prior to durotomy. First, hand-held 2D-images were made

along a continuous trajectory spanning the full axial and sagittal

length of the exposed myelum (Figure 2B) for orientation

purposes. Next, stable acquisitions of 30 s were made by placing the

probe over a ROI using a modified intra-operative surgical arm

(Trimano, Gettinge) with a transducer-holder (Figure 2C). In

sagittal plane, the surgical field allowed for positioning of both the

L8-18I-D linear array and 9l-D linear array. For the axial plane, the

surgical field was too narrow for the larger 9l-D array, so only the

L8-18I-D linear array could be used in this context. Saline was

added frequently to the operating field by the OR nurse to ensure

adequate acoustic coupling during imaging. After the first HFR-

acquisitions, the dura was opened (Figure 2D). Both tumors were

removed microscopically and under guidance of IONM including

measurements of Somatosensory Evoked Potentials (SSEPs) and

Motor Evoked Potentials (MEPs). The most cranial lesion (lesion 1)

revealed to have both an intramedullary and extramedullary

component. The caudal lesion (lesion 2) revealed to be only

extramedullary. Finally, the post-resection µDoppler-acquisitions

were performed, again both hand-held and using the intra-operative

surgical arm. The total intra-operative acquisition time of the

µDoppler-data was around 30 min.
3.3. MicroDoppler data processing

In offline processing, PDIs were computed using an adaptive

SVD clutter filter (20% cut-off percentage) over each ensemble

and mapped onto a 100 µm grid using zero-padding in the

frequency domain. The ensemble size was kept similar to the one

used in acquisition (ne = 200). Given the significant, mostly in-

plane motion due to the patient’s breathing, single PDIs at the

end of the inhale or exhale were manually selected from each

dataset to ensure presentation of the most stable images.

Color Doppler Images (CDIs) were computed by taking the

mean of the difference of the instantaneous phase signal for all

frames in one ensemble as described by Kasai et al. (41). All

initial µDoppler-data processing was performed using custom

scripts in Matlab 2020b (MathWorks, Inc.).
4. Results

4.1. Pre-resection μDoppler images

2D-µDoppler was able to identify an intricate microvascular

network inside both hemangioblastoma foci (Figures 3A–C)

None of these details were visible in the pre-operative MRA

(Figure 1E). Zooming in on one of the vascular details in the

sagittal µDoppler-image (Figure 3A), we see the submillimeter

level of detail µDoppler is able to provide in real-time during the

surgery. Interestingly, when comparing the sagittal µDoppler-

image (Figure 3A) to its conventional greyscale Bmode

counterpart (Figure 3B), this particular vessel seems to

demarcate the contour of the compressed healthy myelum. In
Frontiers in Surgery 05
Figure 3D we see an axial image of the most cranial (yellow

asterix) hemangioblastoma, again revealing µDoppler’s ability to

detect microvascular details. Figure 4A shows a final pre-

resection sagittal image of the spinal cord, now focusing on a

larger network of more prominent vessels, seen directly caudal

from lesion 1. These vessels seem to be similar to the ones seen

pre-operatively in MRA (Figure 1E), where they were suspected

to be formed due to compression and/or congestion.
4.2. Post-resection μDoppler images

Figure 4B shows a post-resection sagittal µDoppler-image

of the decompressed humans spinal cord, showing key

anatomical features such as the Ventral Spinal Artery (VSA)

and peripheral branches from the pial plexus, penetrating the

spinal cord.
4.3. Color Doppler images (CDIs)

Figure 5A shows the CDI of the same plane shown in

Figure 3A, demonstrating the differences in flow directionality in

the two hemangioblastoma foci. Figure 5B shows the CDI of the

decompressed myelum post-resection of both foci (same plane as

shown in Figure 4B). As we expect based on the anatomical

organization of the spinal cord, the penetrating peripheral

branches from the pial plexus clearly present with different flow

directionalities in the dorsal and ventral side of the spinal cord.
4.4. Post-operative patient outcomes

Directly post-operatively, neurological examination showed

similar motor scores for the right leg as were seen pre-

operatively. The patient underwent an intensive rehabilitation

programme and was seen for regular check-ups with MRI-scans

every 6 months. One year after surgery, walking and standing

had subjectively improved based on patient report, without

significant change on the MRC-scale for both legs. The patient

expressed to be satisfied with the surgical outcomes. The one-

year MRI showed a slight growth of tissue in the thoracic

surgical region, which now warrants more close monitoring with

more regular MRI-scans (every 3 months).
5. Discussion

To the best of knowledge, this work presents the first

µDoppler-images of human spinal hemangioblastomas. We show

how µDoppler has the ability to detect intricate, intralesional

microvasculature, which is otherwise not available pre- or intra-

operatively with the currently available clinical techniques such

MRI, MRA or conventional ultrasound. Having access to a real-

time, high-resolution technique which can visualize

hemodynamics in particular, could be valuable to support the
frontiersin.org
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FIGURE 3

µDoppler-images of two hemangioblastoma foci. (A) Sagittal µDoppler-image spanning both hemangioblastoma foci. Lesion 1 (yellow asterix) and Lesion
2 (green asterix). The zoom-in panel shows an interesting vascular detail on what seems to be the contour of the healthy myelum. (B) Bmode
corresponding to the µDoppler-image in panel A. (C) Sagittal µDoppler-image, again spanning both hemangioblastoma foci. (D) Axial image of the
most cranial (yellow asterix) hemangioblastoma. Sag, Sagittal; Ax, Axial.
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neurosurgeon in their balancing act between removing too much or

too little of the hemangioblastoma intra-operatively. The hope is

that by having access to demarcating microvascular details as we

show here (for example Figures 3A–C, Figure 4A), combined

with µDoppler’s real-time hemodynamic information such as

flow directionality (Figure 5), neurosurgeons will be able to

identify key anatomical features, and how these change as

surgery progresses. Within the neurosurgical field, colleagues

such as Siller et al. recommended to use vascular details to guide

resection. For example, to first coagulate and transect feeding

arteries before tumor resection and occlusion of the draining

veins (12). Being able to identify these vessels easily and reliably,

as well as monitor in real-time what would be the hemodynamic

consequences of a surgical decision, would be an addition to the

neurosurgeon’s toolbox.

However, in this first description of intra-operative µDoppler-

imaging applied to hemangioblastoma, we have not described any

immediate surgical impact on the case. In fact, the Dutch
Frontiers in Surgery 06
medical-ethical committee explicitly restricted the use of our

experimental technique for surgical decision-making at this point

of the study. Until now, the resolution we could achieve while

imaging the spinal cord with µDoppler was not available intra-

operatively using ultrasound, with only CEUS coming somewhat

close (20, 21, 26). Therefore, this current report aims to create

scientific awareness of the availability and image quality of

µDoppler, hoping to inspire others working on

hemangioblastoma to join in studying its surgical potential.

What is more, in line with our previous report on µDoppler-

imaging in the context of cerebral AVMs (32), real-time imaging

of spinal cord hemodynamics and morphology has many other

benefits than improving surgical decision-making alone:

increasing our understanding of neurovascular pathology. Up

until now, there is only a handful of reports in literature showing

images of the human spinal cord (37–39). This means that, as

we continue to acquire µDoppler-images of the spinal cord in

both health and disease, a wealth of new information becomes
frontiersin.org
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FIGURE 4

Pre-and post-resection µDoppler-images of a hemangioblastoma. (A) Sagittal µDoppler-images made pre-resection, showing a larger network of
prominent vessels, similar to the ones seen pre-operatively in MRA. (B) Sagittal µDoppler-images made post-resection, showing the decompressed
myelum.

FIGURE 5

Color Doppler images (CDIs) pre-and post-resection of a hemangioblastoma. (A) Pre-resection, sagittal CDI of the same plane as in Figure 3A, The color
axis depicts flow directionality with positive values indicating flow towards the transducer, and negative values indicating flow away from the transducer.
(B) Sagittal CDI of the same plane previously shown in Figure 4B. CDI, Color Doppler Image.
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available for study. This could for example improve our

understanding of how hemangioblastomas and other spinal cord

tumors manifest and grow. But also outside of oncology, fields

such as neurotrauma and spinal cord injury in particular, would

benefit from understanding physiological vascular patterns in the

human spinal cord (36). Hopefully, this kind of knowledge could

in turn circle back to improve surgical procedures and ultimately,

patient outcomes.

To truly add to surgical decision-making in the future, we will

need to take our limited 2D-images and move to real-time 3D-

imaging in the OR, an effort currently being undertaken by our

team and many others alike. For 3D to succeed, but also to
Frontiers in Surgery 07
improve 2D-image quality, we will need to find better ways to deal

with the breathing motion artefacts. In this paper, we chose to

avoid motion compensation altogether by selecting specific,

relatively stable PDIs which we acquired using our intra-operative

surgical arm. Although our approach with the surgical arm has

minimized motion artefacts, the ideal scenario would be to correct

or compensate for the breathing motion artefact altogether.

Motion correction would be especially essential in the context of

functional mapping of the spinal cord. As discussed in the

introduction, the microvascular hemodynamics measured with

µDoppler-imaging form the basis of ‘functional Ultrasound’ (fUS)

(30, 42). Through the process of neurovascular coupling (NVC),
frontiersin.org
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hemodynamics can serve as an indirect measure of neuronal activity

and therefore brain functionality (30, 31, 43). So far, two teams have

demonstrated how fUS can be used to map brain functionality during

awake brain tumor resections, where patients were able to perform

simple functional tasks such as lip pouting or word repetition (29,

31). Although spinal cord tumor resections are not performed

awake, they are at times guided by neurophysiological signals or

electrical stimulation during IONM, which can serve as functional

task patterns to use for functional mapping of the spinal cord. In

animals, fUS proved to be reliable in tracking of spinal cord

responses to patterned epidural electrical stimulations (34). The

authors also demonstrated how fUS had a higher sensitivity in

monitoring spinal cord response than electromyography, with fUS

being able to detect spinal cord signals subthreshold to motor

response level of SCS (34). Similarly, a first application of fUS in

the human spinal cord during standard-of-care implantation of a

SCS paddle lead showed the technique’s ability to capture

functional response in the axial plane after electrical stimulation in

the context of pain treatment (39). A future direction of our team

will be to expand µDoppler-imaging to IONM-guided functional

mapping of the spinal cord during spinal cord tumor resections.

One important point of focus in this effort will be to increase our

understanding of the similarities and differences between the brain

and spinal cord in terms of NVC.

This case report marks the first application of µDoppler-imaging

in the case of a patient with two thoracic spinal hemangioblastomas.

We demonstrate how µDoppler is able to identify intra-operatively

and with high-resolution, hemodynamic features of the lesion. In

contrast to pre-operative MRA, µDoppler could identify

intralesional vascular details in real-time during the surgical

procedure, without the need for a contrast-agent. Additionally, our

technique was able to capture highly detailed post-resection images

of physiological human spinal cord anatomy. Although immediate

surgical impact could not be achieved in this single case report, we

hope this demonstration will add to scientific awareness of the

availability of µDoppler-imaging, as well as the quality of its images

when applied to new contexts such as hemangioblastoma.
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