
TYPE Original Research
PUBLISHED 22 June 2023| DOI 10.3389/fsurg.2023.1172313
EDITED BY

Enrico Gallazzi,

Istituto Ortopedico Gaetano Pini, Italy

REVIEWED BY

Simone Faenza,

Istituto Ortopedico Gaetano Pini, Italy

Valerio Maria Caccavella,

Istituto Ortopedico Gaetano Pini, Italy

*CORRESPONDENCE

Tito Bassani

tito.bassani@grupposandonato.it

RECEIVED 23 February 2023

ACCEPTED 08 June 2023

PUBLISHED 22 June 2023

CITATION

Bassani T, Cina A, Galbusera F, Sconfienza LM,

Albano D, Barcellona F, Colombini A, Luca A

and Brayda-Bruno M (2023) Automatic

classification of the vertebral endplate lesions in

magnetic resonance imaging by deep learning

model.

Front. Surg. 10:1172313.

doi: 10.3389/fsurg.2023.1172313

COPYRIGHT

© 2023 Bassani, Cina, Galbusera, Sconfienza,
Albano, Barcellona, Colombini, Luca and
Brayda-Bruno. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Surgery
Automatic classification of the
vertebral endplate lesions in
magnetic resonance imaging by
deep learning model
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Introduction: A novel classification scheme for endplate lesions, based on
T2-weighted images from magnetic resonance imaging (MRI) scan, has been
recently introduced and validated. The scheme categorizes intervertebral spaces as
“normal,” “wavy/irregular,” “notched,” and “Schmorl’s node.” These lesions have been
associated with spinal pathologies, including disc degeneration and low back pain.
The exploitation of an automatic tool for the detection of the lesions would facilitate
clinical practice by reducing the workload and the diagnosis time. The present work
exploits a deep learning application based on convolutional neural networks to
automatically classify the type of lesion.
Methods: T2-weighted MRI scans of the sagittal lumbosacral spine of consecutive
patients were retrospectively collected. The middle slice of each scan was manually
processed to identify the intervertebral spaces from L1L2 to L5S1, and the
corresponding lesion type was labeled. A total of 1,559 gradable discs were obtained,
with the following types of distribution: “normal” (567 discs), “wavy/irregular” (485),
“notched” (362), and “Schmorl’s node” (145). The dataset was divided randomly into a
training set and a validation set while preserving the original distribution of lesion
types in each set. A pretrained network for image classification was utilized, and fine-
tuning was performed using the training set. The retrained net was then applied to
the validation set to evaluate the overall accuracy and accuracy for each specific
lesion type.
Results: The overall rate of accuracy was found equal to 88%. The accuracy for the
specific lesion type was found as follows: 91% (normal), 82% (wavy/irregular), 93%
(notched), and 83% (Schmorl’s node).
Discussion: The results indicate that the deep learning approach achieved high
accuracy for both overall classification and individual lesion types. In clinical
applications, this implementation could be employed as part of an automatic
detection tool for pathological conditions characterized by the presence of endplate
lesions, such as spinal osteochondrosis.
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1. Introduction

The vertebral endplate is a crucial structure situated between

the vertebral body and the intervertebral disc. It serves as a

mechanical interface between the rigid bone and the flexible disc,

playing a vital role in maintaining the morphological integrity

and physiological function of the disc. Traditionally, most

endplate pathologies or lesions were classified as Schmorl’s

nodes, which refer to the protrusion of disc tissue through the

endplate into the vertebral marrow (1). Schmorl’s nodes are often

asymptomatic and are frequently discovered incidentally during

clinical practice through magnetic resonance imaging (MRI)

scans. However, in recent years, several studies have aimed to

differentiate Schmorl’s nodes from other morphological

abnormalities such as indentations or defects on the endplate (2).

For instance, Feng et al. distinguished among focal, corners, and

erosive endplate lesions (3). Another study employed a more

comprehensive endplate scoring system based on T1-weighted

MRI scans to correlate lesion presence with the transport of a

contrast agent into the intervertebral disc (4). More recently,

Brayda-Bruno et al. proposed a novel classification scheme for

endplate lesions based on T2-weighted MRI scans, which

simplified and adapted the aforementioned scoring system (5). In

this scheme, the intervertebral spaces are classified as “normal,”

“wavy/irregular,” “notched,” and “Schmorl’s node” (Figure 1).

This classification scheme has been validated in terms of

reliability between different observers and within the same

observer, and has been evaluated for potential associations with

disc degeneration, disc herniation, and low back pain (5–7).

The presence of endplate lesions and their relation to spinal

pathologies, such as disc degeneration, disc herniation, and

juvenile vertebral osteochondrosis (Scheuermann’s disease), has

been extensively investigated and confirmed in numerous studies

(3, 8–17). The development of an automatic tool for classifying

the type of endplate lesion would offer advantages in clinical

practice by reducing the workload for operators and the time
FIGURE 1

Classification scheme with examples for the endplate lesion types.
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required for diagnosis. In addition, such a tool would enable the

rapid and accurate processing of large datasets for research

purposes. In this regard, artificial intelligence techniques have

been increasingly employed in spine research to predict

parameters from radiological images, aiming to provide

reproducible and reliable evaluations (18, 19). Deep learning

methods utilizing convolutional neural networks have been

applied to recognize vertebral landmarks, reconstruct spinal

alignment from radiographic images (20–23), and automatically

segment and identify vertebrae in computed tomography and

MRI scans (24). Moreover, specific applications, like the

“SpineNet” computer vision-based system, have been developed

to extract relevant measurements, such as Pfirrmann grade,

Modic changes, spinal stenosis, and disc herniation, from MRI

scans (23, 25–28). As a novel contribution, the present work

exploits a deep learning model based on convolutional neural

networks to automatically classify the type of endplate lesion

according to the scheme proposed by Brayda-Bruno et al. (5), in

a dataset of 1,559 intervertebral spaces obtained from

retrospectively collected subjects.
2. Materials and methods

2.1. Classification of the endplate lesions

The scoring system for classifying intervertebral spaces based

on endplate lesions, as described in reference (5), is summarized

as follows: (i) “normal” classification is assigned when no lesions

are visually identified in the sagittal MRI slices that encompass

the intervertebral space. The endplates appear structurally intact

without any noticeable abnormalities; (ii) “wavy/irregular”

classification is given when there are no specific lesions

detectable in the intervertebral space, but the shape of at least

one of the endplates exhibits alterations compared with the

typical curvature seen in a healthy intervertebral space. The

endplate may appear wavy or irregular in shape; (iii) “notched”

classification is assigned if a small lesion is visible in at least one

slice of the sagittal MRI. The lesion has a V-shaped or circular

appearance and is present on one or both of the endplates. These

notches may indicate small defects or indentations on the

endplates; (iv) “Schmorl’s node” classification is used when a

deep focal defect is observed in the vertebral endplate. The lesion

has a smooth margin and a rounded appearance. Schmorl’s

nodes are characterized by disc tissue protruding through the

endplate and into the vertebral marrow.

It is important to note that the additional class “fracture”

mentioned in the reference study was excluded in the present

work due to its limited representation in the considered group of

subjects. Therefore, the focus of the study was on classifying

intervertebral spaces into normal, wavy/irregular, notched, and

Schmorl’s node categories based on the identified lesions in the

MRI scans (Figure 1). For more detailed information on the

scoring system and its validation, please refer to the original

reference (5).
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2.2. Dataset and image processing

In this study conducted at the IRCCS Istituto Ortopedico

Galeazzi in Milan, Italy, a retrospective search was performed

using the Picture Archiving and Communication System (PACS)

to identify anonymized subjects who had undergone lumbosacral

MRI scans between June 2016 and January 2018 (Figure 2). The

search included a Caucasian population ranging in age from 10

to 90 years. The MRI scans were performed using either 1.5 T

scanners (Avanto and Espree, Siemens AG, Erlangen, Germany)

or a 1.0 T scanner (Harmony, Siemens AG, Erlangen, Germany).

The resulting dataset partially integrates that exploited in our

previous study by Brayda-Bruno et al. (5). T2-weighted sagittal

MRI scans of the lumbosacral spine were collected for

consecutive patients. Only subjects with at least one spinal level

showing the presence of endplate lesions were included in the

study. An experienced radiologist reviewed the MRI scans and

identified the lesion type for each intervertebral space from levels

L1L2 to L5S1, according to the classification scheme proposed by

Brayda-Bruno et al. (Figure 1).

The most representative slice image, typically the middle slice,

was selected for each patient. Spinal levels with certain conditions,

such as vertebral fractures, limbus vertebra, spondylolisthesis,

severe disc degeneration [graded Pfirrmann 5 (29)], severe Modic
FIGURE 2

Chart diagram illustrating the workflow for the image selection.
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changes (30) (extending over 25% or more of the vertebral

height), as well as image artifacts and postsurgical conditions

(e.g., interbody fusion), were excluded from the analysis

(Figure 3). The selected slice images were imported into a

custom tool developed using MATLAB software (MathWorks

Inc., Natick, MA, USA). The tool allowed the manual

identification of the region of interest (ROI) for the intervertebral

spaces by selecting the corners of the corresponding upper and

lower vertebral endplates (Figure 4, left panel). The images were

preprocessed by contrast enhancement (saturation of the bottom

1% and the top 1% of all pixel values), and the ROIs

encapsulating the disc and approximately 30% of the upper and

lower vertebrae, along with some spinal canal cerebrospinal fluid,

were resized to 128 × 128 pixels. Gray padding was applied to fill

the image height (Figure 4, right panel). A total of 1,559 images

of intervertebral spaces were obtained, distributed among the

following lesion types: “normal” (567 discs), “wavy/irregular”

(485), “notched” (362), and “Schmorl’s node” (145).

The dataset was divided randomly into a training set (1,247

discs, 80%) and a validation set (312 discs, 20%), while

maintaining the original distribution of the four lesion types in

each set. A pretrained deep learning model based on the ResNet18

architecture, originally trained on the ImageNet dataset, was used

for image classification. The model was fine-tuned using the

training set by progressively unfreezing the weights of the deeper

layers in multiple steps with increasing numbers of epochs. The

network was trained for 100 epochs, with a learning rate of 0.001

that was reduced by a factor of 10 if the loss did not improve for

10 epochs. To address the class imbalance issue in the dataset,

sample weighting correction was applied during the training

process (31, 32). This correction involved assigning different

weights to individual samples, which influenced their probability

of being selected during the sampling process. The goal was to

give more relevance to the underrepresented classes, ensuring that

they had a higher chance of being chosen during training. This

approach helps to balance the training process and prevent the

model from favoring the majority class. A weighted random

sampler function was used with a batch size of 32. This allowed

for resampling the images from the underrepresented classes after

each batch set was preprocessed using augmentation techniques

such as small shifts, rotations, and flips, in order to increase the

variety of the dataset and the robustness of the model.

The validation set was used to evaluate the performance of the

trained model. The overall accuracy was calculated by dividing the

number of correct predictions by the total number of samples in

the validation set. In addition, the accuracy level for each specific

lesion type, referred to as class sensitivity, was determined by

dividing the number of correct predictions for that type by the

number of samples in that specific class. Model calibration was

performed using the Platt scaling method (33). This approach

rescaled the predicted probabilities of the model to make them

more representative of the true likelihood of occurrences of the

classes present in the training data. It helped to mitigate potential

overconfidence of the model, especially in the presence of

unbalanced classes (34). To provide accurate estimations of the

performance metrics, bootstrap resampling was carried out using a
frontiersin.org
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FIGURE 3

Excluded cases in the selection of the intervertebral spaces.

FIGURE 4

Example of identification of the region of interests for one subject, with
the manually handpicked vertebral corners of the upper and lower
endplates depicted as yellow dots (left panel) and the obtained
images for the corresponding spinal levels (right panel).

TABLE 1 Distribution of the endplate lesion types in the age range
(indicated as the number of cases and corresponding percentage in
the considered age).

Normal,
n (%)

Wavy/
irregular,
n (%)

Notched,
n (%)

Schmorl’s
node,
n (%)

10–20 25 (51) 10 (20) 13 (27) 1 (2)

21–30 32 (42) 13 (17) 26 (34) 5 (7)

31–40 124 (53) 50 (22) 51 (22) 8 (3)

41–50 134 (41) 90 (27) 86 (26) 21 (6)

51–60 130 (37) 118 (33) 83 (24) 22 (6)

61–70 119 (34) 131 (37) 63 (18) 37 (11)

71–80 2 (2) 57 (45) 29 (23) 37 (30)

81–90 0 (0) 16 (39) 11 (27) 14 (34)

Bassani et al. 10.3389/fsurg.2023.1172313
1-vs.-all approach. A total of 500 iterations were run on the

validation set to calculate the mean values of metrics such as area

under the curve (AUC), accuracy, precision, recall, specificity, and

F1-score. In addition, 95% confidence intervals were computed for

these metrics to provide a measure of their variability and

reliability. The image resizing and the implementation of the deep

learning model were performed using Python, utilizing the open-

cv library for image processing and the PyTorch framework (35)

for the deep learning model. These tools and libraries are

commonly used in computer vision and deep learning applications.
Frontiers in Surgery 04
3. Results

The final dataset included subjects with an age range of 10–88

years, with a mean age of 52 ± 15 years. The gender distribution

was equal, with 50% males and 50% females. The presence of

endplate lesions generally increased with age (Table 1 and

Figure 5A). The distribution of lesion types across age groups

showed that normal cases were more common in subjects

younger than 70 years, while Schmorl’s node cases were

predominantly found in subjects older than 40 years. The

distribution of lesion types along the spinal levels was similar for

normal and wavy/irregular types. Notched endplates were more

prevalent at higher lumbar levels, and Schmorl’s node cases were

less represented only at the L5S1 level (Table 2 and Figure 5B).

The deep learning model achieved an overall accuracy of 88%

when processing the validation set (Figure 6). Out of 312
frontiersin.org
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FIGURE 5

Scatter plots illustrating the distribution of the lesion types in the final
image dataset (1,559 samples) depending on the age of the subjects
(A) and on the spinal level (B).

TABLE 2 Distribution of the endplate lesion types in the spinal levels
(indicated as the number of cases and corresponding percentage in the
considered level).

Normal, n
(%)

Wavy/
irregular, n

(%)

Notched, n
(%)

Schmorl’s
node, n (%)

L1L2 105 (30) 97 (28) 109 (31) 40 (11)

L2L3 123 (34) 79 (22) 126 (35) 30 (8)

L3L4 137 (40) 79 (23) 83 (24) 43 (13)

L4L5 127 (44) 106 (37) 28 (10) 28 (10)

L5S1 75 (34) 124 (56) 16 (7) 4 (2)

FIGURE 6

Results of the classification model (ground truth type vs. predicted
type). Each point represents one single validation sample. Number of
samples and corresponding percentage in the considered ground
truth type are reported as well.

Bassani et al. 10.3389/fsurg.2023.1172313
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samples, 275 were correctly classified by the model. The accuracy

rates for the specific lesion type were found as follows: 91% for

normal type (104 in 114 samples), 82% for wavy/irregular (80 in

97), 93% for notched (67 in 72), and 83% for Schmorl’s node

(24 in 29). The model performance metrics, calculated using

bootstrap resampling, showed average values of 96% for AUC,

88% for accuracy, 87% for precision, recall, and F1-score, and

96% for specificity (Table 3).
4. Discussion

The presence of endplate lesions in the lumbosacral spine was

found in 35% of the subjects included in the study (580 out of 1,647

cases, Figure 2), which is consistent with the prevalence observed in

a previous study (37%) using a similar methodology in a dataset of

Caucasian subjects from the same institute but with a narrower time

period (5). However, studies involving Chinese populations and

random selection of subjects, including both back pain patients and

healthy volunteers, have reported higher prevalence rates of

approximately 60% (7, 12, 36). These variations in prevalence could

be attributed to differences in assessment methodologies, subject

inclusion criteria, and the presence of other spinal pathologies.

Unfortunately, other studies assessing Caucasian populations did

not provide the prevalence inside subjects but only in terms of

evaluated discs, thus preventing a direct and consistent comparison

with the prevalence findings of the current study (9, 37).

The final dataset obtained after applying exclusion criteria for

intervertebral spaces (Figure 3) showed a similar distribution of

lesion types across age ranges and spinal levels (Figure 5 and

Tables 1, 2). However, there was a tendency for higher lesion

prevalence with increasing age, which is in line with previous

studies (3, 11). Schmorl’s node was the least prevalent type (145

out of 1,559 discs), while wavy/irregular and notched types were

similarly represented (485 and 362, respectively). In this regard,

the sample weighting correction procedure used in training the

deep learning model helped mitigate the effects of imbalance

among the lesion types by adjusting their proportional contribution.

The validation of the model demonstrated a strong overall

accuracy rate (88%, Figure 6), with similarly high percentages of

correct predictions for each lesion type (ranging from 82% to

93%). The model performance metrics, including accuracy,

precision, recall, specificity, and F1-score, ranged from 87% to

96% (Table 3), indicating the model’s reliability and potential

utility for research and clinical purposes. Specifically, the

implementation of the model could facilitate the efficient

processing of large image datasets in descriptive studies reducing

the workload for operators, and potentially be integrated into

existing systems for automatic detection of pathological

conditions characterized by endplate lesions such as spinal

osteochondrosis. In this regard, the potential integration with

existing systems such as “SpineNet” (23, 25–28) is a valuable

consideration. “SpineNet” is indeed currently capable of

automatically recognizing the presence of endplate lesions,

although as a binary outcome (presence or absence). In contrast,

the present model developed in the study focuses on classifying
frontiersin.org
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TABLE 3 Model performance metrics (% values), indicated as mean and 95% confidence interval.

AUC Accuracy Precision Recall Specificity F1-score
Model performance 96 (94–98) 88 (84–91) 87 (82–91) 87 (83–91) 96 (94–97) 87 (82–91)

Bassani et al. 10.3389/fsurg.2023.1172313
the specific types of endplate lesions. By integrating the two

approaches, it would be possible to enhance the capabilities of

the system and provide more comprehensive information.

The present study has the following limitations. The number of

images in the dataset is moderate for a deep learning approach, and

the imbalance among the lesion types, particularly for Schmorl’s

node, poses a challenge. Although the trained model

demonstrated high accuracy levels for each lesion type, larger

and more balanced datasets, along with cross-validation analyses,

would be beneficial for further model refinement. Another

limitation is the arrangement of the training and validation sets,

which were randomly selected at the image level rather than the

subject level. The final dataset was indeed characterized by 1,559

images from 580 subjects, implying a variable number of spinal

levels from each single subject. Such an approach was required to

guarantee the fundamental aspect of preserving in each subset

the original distribution of the four lesion types. This could

result in data from the same individual being present in both

subsets, although this should not significantly affect the results.

Lastly, with regard to the evaluated subjects, no clinical data or

relevant information regarding comorbidities or specific reasons

for undergoing MRI scans could be retrieved from the

retrospective search because they were not stored in the PACS.

Although this information would be useful in characterizing the

evaluated population and understanding the context of the

observed endplate lesions, its absence does not directly impact

the classification of lesion types by the developed model.

In conclusion, although further validation and refinement are

necessary, the deep learning model demonstrated promising

performance levels for the automatic detection and classification

of endplate lesions. The model has potential applications in both

research and clinical settings, but larger datasets and external

validation (exploiting data from other populations, study groups,

and scanning devices) are needed to establish its robustness and

generalizability.
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