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Predicting the 90-day prognosis
of stereotactic brain hemorrhage
patients by multiple machine
learning using radiomic features
combined with clinical features
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Hongmou Chen1, Xianlei Yan1,2* and Quan Liu1*
1Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China, 2Department of
Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 3Department of
Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China, 4Department of Vascular Surgery, Fuwai
Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University,
Kunming, Yunnan, China
Hypertensive Intracerebral Hemorrhage (HICH) is one of the most common
types of cerebral hemorrhage with a high mortality and disability rate.
Currently, preoperative non-contrast computed tomography (NCCT)
scanning-guided stereotactic hematoma removal has achieved good results in
treating HICH, but some patients still have poor prognoses. This study
collected relevant clinical and radiomic data by retrospectively collecting and
analyzing 432 patients who underwent stereotactic hematoma removal for
HICH from January 2017 to December 2020 at the Liuzhou Workers Hospital.
The prognosis of patients after 90 days was judged by the modified Rankin
Scale (mRS) scale and divided into the good prognosis group (mRS≤ 3) and
the poor prognosis group (mRS > 3). The 268 patients were randomly divided
into training and test sets in the ratio of 8:2, with 214 patients in the training
set and 54 patients in the test set. The least absolute shrinkage and selection
operator (Lasso) was used to screen radiomics features. They were combining
clinical features and radiomic features to build a joint prediction model of the
nomogram. The AUCs of the clinical model for predicting different prognoses
of patients undergoing stereotactic HICH were 0.957 and 0.922 in the training
and test sets, respectively, while the AUCs of the radiomics model were 0.932
and 0.770, respectively, and the AUCs of the combined prediction model for
building a nomogram were 0.987 and 0.932, respectively. Compared with a
single clinical or radiological model, the nomogram constructed by fusing
clinical variables and radiomic features could better identify the prognosis of
HICH patients undergoing stereotactic hematoma removal after 90 days.
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Abbreviations

HICH, hypertensive intracerebral hemorrhage; mRS, modified rankin scale; Lasso, the least absolute
shrinkage and selection operator; ML, machine learning; GCS, glasgow coma scalel; GLCM, gray level
cooccurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; GLDM,
gray level gray level dependence matrix; NGTDM, neighbouring gray tone difference matrix; LR, logistic
regression; SVM, support vector machine; KNN, k-nearest neighbor; LightGBM, light gradient boosting
machine; MLP, multilayer perceptron; ROC, receiver operating characteristic curve; AUC, area under the
curve; DCA, decision curve analysis.
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1 Introduction

Hypertensive intracerebral hemorrhage (HICH) is a type of

spontaneous non-traumatic cerebral hemorrhagic disease and is

the most common cerebrovascular disease in middle-aged and

elderly people. It is caused by rupture and bleeding of small

cerebral arteries caused by long-term cerebral atherosclerosis and

hypertensive lesions (1, 2). After the onset of the disease, patients

usually present with limb dysfunction, hemiparesis, and even

death in severe cases. Theoretically, early surgery is a reasonable

treatment method to both directly address the occupying effect

of the hematoma and to remove the hematoma and the various

chemical damage factors released by the metabolism and action

of the hematoma (3). With the continuous development of

minimally invasive technology, timely acceptance of minimally

invasive intracranial hematoma removal can effectively control

the further development of the disease and reduce the mortality

and disability rate to a certain extent (4). Therefore, minimally

invasive surgical treatment in early HICH patients may help the

prognosis of neurological function recovery.

With the continuous progress of clinical treatment, more and

more ways of hematoma removal have been developed. Based on

traditional craniotomy hematoma removal, minimally invasive

craniotomy with small windows, stereotactic hematoma removal,

endoscopic hematoma removal, robot-assisted hematoma

removal, and other treatment methods have been carried out

successively (5–8). Computed Tomography (CT) guided

stereotactic hematoma removal was one of the main protocols

for clinical treatment of hypertensive cerebral hemorrhage, and

has partially replaced craniotomy for patients with cerebral

hemorrhage with a hematoma volume of 20–40 ml, accompanied

by neurological deficits and a mild degree of impaired

consciousness (9). It also had the advantages of less surgical

trauma, more complete hematoma removal, and faster

postoperative recovery of patients, and is now widely used in

clinical practice (9–11). Previous studies have found that early

performance of stereotactic hematoma removal is more beneficial

for patients’ prognosis and recovery (12). Although the majority

of patients undergoing stereotactic hematoma removal have

achieved good outcomes, a proportion of patients with HICH

still have a poor prognosis or even die after comprehensive

treatment. Therefore, there is an urgent need to investigate the

factors associated with poor prognosis in patients with HICH

undergoing stereotactic hematoma removal, which is of great

clinical value to improve the prognostic function of patients.

Machine Learning (ML) is increasingly causing a wide range of

applications in disease diagnosis and differential diagnosis, efficacy

assessment, and prognosis determination due to its wide

application and increasing popularity of computational power.

ML is an artificial intelligence method for learning patterns and

rules from given information (13). Recent studies have applied

ML to severity and outcome prediction models for neurological

diseases, such as ischemic stroke (13), aneurysmal subarachnoid

hemorrhage (14), and traumatic brain injury (15). However, ML

approaches in the field of ICH have mainly focused on timely

diagnosis and automated volume quantification (16, 17), and
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algorithms to predict clinical outcomes are lacking. Recently,

Wang et al. pioneered the development of ML-based outcome

prediction models by combining initial clinical presentation,

laboratory data, and imaging presentations, which were limited

to brain hemorrhage volume and location, intraventricular

hemorrhage, ventricular compression, and midline structural

displacement (18). Further integration of disease imaging features

may have additional prognostic value (14). Previous studies have

demonstrated that specific CT markers and histogram-based

analysis of brain hemorrhage heterogeneity are associated with

poorer clinical outcomes (19–21). However, most of the current

studies have performed radiomic features feature analysis or

clinical feature analysis alone to construct machine learning

models. Therefore, the modeling of clinical features combined

with imaging histological features may be a new modeling

approach to help predict the prognosis of patients undergoing

stereotactic HICH.

In this study, we hypothesized that clinical features combined

with imaging histological features of hematoma may help predict

the functional prognosis of patients with stereotactic hypertensive

cerebral hemorrhage at 90 days. We compared and analyzed the

clinical model constructed by multiple machine learning classifiers,

the radiomic features model, and the combined Nomogram model

combining the two types of features. To validate and generalize

our hypothesis, we develop and validate an NCCT-based clinical-

radiomic features nomogram to identify patients with poor

prognosis in patients undergoing stereotactic HICH.
2 Materials and methods

2.1 General clinical information

This study was conducted after review and approval by the

Ethics Committee of Liuzhou Workers’ Hospital (KY2023155),

and written informed consent from patients has been waived. A

total of 432 patients with HICH who underwent CT-guided

stereotactic hematoma removal at our hospital from January

2017 to December 2020 were retrospectively collected for clinical

and imaging data.

Inclusion criteria: ① Glasgow Coma Scale (GCS) ≥8 on

admission, clear history of previous hypertension, and head CT

confirmed as patients with cerebral hemorrhage with bleeding

sites in the thalamus, internal capsule, lobes, and cerebellum; ②

preoperative notification of the condition, different surgical

approaches and related risks, and patients voluntarily agreed to

undergo stereotactic surgery; ③ age >18 years; ④ preoperative

③ age >18 years old; ④ preoperative imaging and clinical data

were not missing.

Exclusion criteria: (i) cerebral hemorrhage caused by cerebral

arteriovenous malformation, tumor, or intracranial aneurysm

rupture (n = 75); (ii) cerebral hemorrhage caused by hematologic

disorders and coagulation dysfunction (n = 16); (iii) cerebral

hemorrhage caused by craniocerebral trauma (n = 35); (iv)

patients with incomplete clinical and imaging data (n = 38). After

the above screening and exclusion, a total of 268 patients with
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https://doi.org/10.3389/fsurg.2024.1344263
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Li et al. 10.3389/fsurg.2024.1344263
HICH who underwent stereotactic hematoma removal were

retrospectively analyzed. mRS score scale was used for telephone

or outpatient follow-up of patients to assess their functional

prognosis 90 days after discharge from the hospital.

The mRS score scale refers to Previous studies of patients with

cerebral hemorrhage with an mRS score of 0–3 were considered a

good prognosis group and an mRS score of 4–6 was considered a

poor prognosis group (Supplementary Table S1). Patients were

randomly divided into a training set (n = 214) and a test set (n =

54) according to an 8:2 ratio. GCS score at admission, age, gender,

systolic blood pressure at admission, diastolic blood pressure at

admission, blood routine, coagulation function, electrolytes, blood

lipids, maximum transverse diameter of the hematoma, volume of

the hematoma, site of the hematoma, whether the hematoma was

located in the dominant brain, whether it had broken into a

ventricle or not, and mRS score at the 90-day post-discharge

follow-up were collected from the enrolled patients.
2.2 Radiological image acquisition and
region of interest outlining

The analysis flow of this study was shown in Figure 1. All

patients were scanned preoperatively using a spiral CT machine

(GE Revolution Apex 128-row CT) and a standard scanning

protocol (tube voltage 120 kV, tube current 400 mA, matrix size
FIGURE 1

Design roadmap. Steps through feature extraction, machine learning screen
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512 × 512, frame rotation time 0.5 s, field of view 25 cm, layer

thickness 5 mm.

The region of interest (ROI) of the intracranial hematoma was

manually outlined on the preoperative CT images using the open

source tool ITK-SNAP (version 3.8) software on a level-by-level

basis, as follows: (1) Two deputy chief physicians of the

Department of Imaging Medicine jointly reviewed the films to

determine the boundaries and location of the patient’s

hematoma. In case of disagreement, one of the chief radiologists

will determine the final boundary: (2) One deputy chief

physician (with 10 years of experience) will manually outline the

ROI along the edge layer by layer (Figure 2A).
2.3 Radiomics feature extraction

The radiomics features can be divided into three categories,

including shape-based features, first-order features, and texture

features. Shape features describe the three-dimensional shape

characteristics of the tumor, such as volume, surface area, and

maximum diameter in two and three dimensions. First-order

features describe the first-order statistical distribution of voxel

intensities within the tumor, which was calculated based on the

global gray histogram, including the mean, median, minimum,

and maximum values. Texture features describe the second-order

and higher-order spatial distributions of voxels. The texture
ing, and model construction, respectively.
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FIGURE 2

Hematoma region outlining, feature extraction, and screening. (A) Outlining interest using the open source tool ITK-SNAP software. (B) Imaging
histology feature screening using LASSO regression models. (C) Comparison of correlations of clinical characteristics. (D) Number and proportion
of imaging features. (E) Screening of Imaging Histological Features. (E) Histogram of imaging histology scores based on selected features.
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features include gray level cooccurrence matrix (GLCM), gray

level run length matrix (GLRLM), gray level size zone matrix

(GLSZM), gray level dependence matrix (GLDM), and

neighboring gray tone difference matrix (NGTDM), etc. The

pyradiomics version 3.0 was used to extract the image histology

features. The pyradiomics documentation (https://pyradiomics.

readthedocs.io/en/latest) provided the definitions and formulas

for all image histology features.
2.4 Feature screening process

The Mann–Whitney U statistical test was first performed on all

radiomic features, and radiomic features with the p value <0.05 were

retained. Pairs with Spearman’s correlation coefficient greater than

0.9 were identified as highly correlated, and one of the radiomic

features with a correlation greater than 0.9 was randomly retained.

Finally, the least absolute shrinkage and selection operator (Lasso)

model was used on the training set for radiomic features feature

screening. A 10-fold cross-validation was used based on the

adjustment weight λ, where the final value of λ yielded the

minimum (mean square error) MSE value, λ = 0.0222 (Figure 2B).

Subsequently, the radiomics features score for each patient was

obtained by a linear combination of the retained features, weighted

by their model coefficients, with the following equation

(Supplementary Table S2):

Rad-score ¼ 0:3121951219512192 þþ0:030477 � A� 0:021783
� B � 0:036378 � C � 0:017005 � D � 0:031289 � E � 0:011007
� F þ 0:022391 � G � 0:043688 � H � 0:031867 � I þ 0:012716

� J þ 0:063574 � K þ 0:051280 � L � 0:042588 � M þ
0:021230 � n þ 0:006540 � o þ 0:004479 � p þ 0:028441

� q þ 0:019110 � r � 0:002032 � S
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2.5 Machine learning algorithms for
radiomics model and clinical model
construction and validation

The filtered image histology features were input to five ML

classifiers for model building, such as Logistic Regression (LR),

Support Vector Machine (SVM), k-nearest Neighbor (KNN),

Light Gradient Boosting Machine (LightGBM), and Multilayer

Perceptron (MLP) were used to build the model. A 5-fold cross-

validation was used to optimize the model parameters to reduce

model overfitting. Model performance was evaluated using

accuracy, sensitivity and specificity, positive prediction rate,

negative prediction rate, and receiver operating characteristic

curve (ROC) curve and the area under the curve (AUC).

The model construction for clinical features was consistent

with the radiomics features modeling process. The included

clinical features were analyzed univariately and the clinical

variables with statistically significant differences were selected

and used to construct the clinical feature models.

Different ML classifiers were compared in the clinical and

radiomics models for AUC, respectively. The algorithm

LightGBM performed better in the radiomic features and clinical

models and did not show the overfitting that often occurs in tree

models. Therefore, the radiomic features model and the clinical

model using this classifier were compared with the clinical-

radiomics model for model performance.
2.6 Construction and validation of clinical-
radiomics nomograms

To evaluate the prognosis of patients with stereotactic HICH by

combining clinical features with radiomics features, a clinical-
frontiersin.org
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radiomic nomogram model was constructed. The diagnostic

efficacy of the nomogram was also examined in the test set, and

ROC curves were plotted to evaluate the diagnostic efficacy of

the nomogram. The calibration curves were plotted to evaluate

the consistency between the prediction and the actual

observation of the prognosis of hypertensive stereotactic patients.

Decision Curve Analysis (DCA) was plotted to evaluate the

clinical benefit of the prediction model.
2.7 Statistical analysis

Statistical analysis was performed using R software (4.1.2).

Normally distributed measures were expressed as mean ± standard

deviation (x̅ ± s), while differences in the characteristics of clinical

variables between the poor prognosis group and the good

prognosis group were compared using the independent samples T-

test or the Mann–Whitney U test. Categorical variables were

expressed as frequencies or percentages, and differences between

the two groups were analyzed using the Chi-square test or Fisher

exact test. Differences in AUC between models were tested using

the Delong test. The Spearman correlation coefficient was used to

calculate the correlation between clinical characteristics. Bilateral p

< 0.05 was considered statistically.
3 Results

3.1 Clinical characteristics analysis of
stereotactic hypertensive patients

Table 1 showed that a total of 268 patients with stereotactic HICH

were included, with 200 males and 68 females. The cases were

randomly divided into a training set and a test set in the ratio of

8:2, with 214 cases in the training set (mRS≤ 3, n = 76; mRS > 3, n

= 138) and 54 cases in the test set (mRS≤ 3, n = 18; mRS > 3,

n = 36). In the training set, by comparing the factors of clinical

variables between the good prognosis group and the poor prognosis

group, we found that the preoperative GCS score was (12.89 ± 1.86)

in the good prognosis group, and (10.45 ± 2.81) in the poor

prognosis group, and the difference was statistically significant (p <

0.001). The hematoma volume was (23.09 ± 8.87) ml in the good

prognosis group and (32.18 ± 12.56) ml in the poor prognosis

group, with a statistically significant difference (p < 0.001). The

maximum transverse diameter of the hematoma was (5.24 ± 1.01)

mm in the good prognosis group and (4.79 ± 1.01) mm in the poor

prognosis group, with a statistically significant difference (p <

0.001). We also found that whether the hematoma was located in

the basal ganglia region and the location of the hematoma in the

cerebral hemisphere made a difference in the prognosis of the

patients (p < 0.001). The remaining clinically relevant information

such as age, systolic blood pressure at admission, diastolic blood

pressure at admission, coagulation-related tests, glucose, CRP,

hemoglobin, platelets, electrolytes, and lipids, and whether the

hematoma broke into the ventricle did not show significant

differences between the two populations (p > 0.05). In the same test
Frontiers in Surgery 05
set, the same results were obtained, as shown in Table 1. In our

study, correlation analysis revealed that whether the hematoma was

located in the basal ganglia region, the amount of hematoma, and

the location of the hematoma in the cerebral hemisphere correlated

with the prognosis of patients with hypertensive cerebral

hemorrhage who underwent stereotaxia (r > 0.3) (Figure 2C).
3.2 Screening for clinical and radiomic
features

A total of 1,834 radiomic features, including shape features,

first order histogram features, and texture features (Figure 2D).

There were 360 First Order features, 14 Shape features, 440

GLCM features, 320 GLSZM features, 320 GLRLM features, 100

NGTDM features, and 280 GLDM features. The violin plots

showed all features and corresponding p-values, and we filtered

out features with p < 0.05 for the next analysis (Figure 2E).

Moreover, we showed the weights of imaging features (Figure 2F).
3.3 Performance and validation of clinical
and radiomics models

In the test set, the AUC values of machine learning LR, SVM,

KNN, LightGBM, and MLP for radiomics models were 0.708,

0.723, 0.664, 0.770, and 0.657, respectively (Figure 3A). The AUC

values of machine learning LR, SVM, KNN, LightGBM, and

MLP for the clinical model were 0.853, 0.858, 0.718, 0.922, and

0.849 (Figure 3B).

In the training set, the AUC values for radiomic features

modeling using different ML classifiers such as LR, SVM, KNN,

LightGBM, and MLP were 0.905, 0.823, 0.851, 0.957 and 0.809,

respectively (Table 2). The accuracy, AUC, sensitivity, specificity,

positive prediction rate, and negative prediction rate for radiomic

features modeling in the training set using the LightGBM

algorithm were 0.907, 0.957, 0.969, 0.879, 0.785, and 0.984,

respectively (Table 2). The prediction rate and negative prediction

rate in the training set using the LightGBM algorithm were 0.907,

0.957, 0.969, 0.879, 0.785, and 0.984, respectively (Table 2). The

accuracy, sensitivity, specificity, positive prediction rate, and

negative prediction rate of the model for radiomic features in the

test set using the LightGBM algorithm were 0.902, 0.922, 1.000,

0.853, 0.773, and 1.000 (Table 2).

The clinical models were constructed using multiple machine-

learning classifiers (Table 3). The AUC values for LR, SVM, KNN,

LightGBM, and MLP in the training set were 0.766, 0.863, 0.727,

0.878, and 0.805, respectively. The AUC values in the test set were

0.824, 0.706, 0.647, 0.745, and 0.824, respectively. The accuracy,

AUC, sensitivity, specificity, positive prediction rate, and negative

prediction rate using the LightGBM model in the training set were

0.878, 0.932, 0.875, 0.879, 0.767, and 0.939, respectively. The

accuracy, sensitivity, specificity, positive prediction rate, and

negative prediction rate of the modeled radiomic features models

in the test set using the LightGBM algorithm were 0.745, 0.770,

0.647, 0.794, 0.611, and 0.818, respectively.
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TABLE 1 Comparison of baseline information between prognostic and poor prognostic groups in different data sets.

Variables Training set (n = 214) P Test set (n = 54) P

Poor prognosis
group (n = 138)

Good prognosis
group (n = 76)

Poor prognosis
group (n = 36)

Good prognosis
group (n = 18)

Admission GCS score 10.45 ± 2.81 12.89 ± 1.86 <0.001 10.08 ± 2.97 13.22 ± 1.70 <0.001

Age (years) 56.72 ± 11.64 53.99 ± 10.91 0.094 58.94 ± 13.44 57.94 ± 14.56 0.803

Gender 0.205 0.078

Female 34 (0.25) 13 (0.17) 17 (0.47) 4 (0.22)

Male 104 (0.75) 63 (0.83) 19 (0.53) 14 (0.78)

Systolic blood pressure (mmHg) 176.66 ± 34.17 171.88 ± 27.31 0.296 183.72 ± 33.86 171.67 ± 30.14 0.207

Diastolic blood pressure (mmHg) 107.00 ± 21.25 103.08 ± 18.02 0.175 110.47 ± 23.04 105.72 ± 21.70 0.470

PT (s) 10.65 ± 0.95 10.66 ± 0.80 0.958 10.50 ± 0.71 10.49 ± 0.83 0.959

INR 0.92 ± 0.09 0.92 ± 0.07 0.999 0.91 ± 0.06 0.91 ± 0.07 0.944

APTT (s) 23.01 ± 4.41 22.26 ± 3.89 0.218 22.29 ± 3.62 22.60 ± 2.91 0.757

TT (s) 17.59 ± 1.14 17.45 ± 1.36 0.401 17.99 ± 2.82 18.06 ± 1.47 0.923

FIB (g/L) 3.33 ± 1.31 4.10 ± 6.86 0.200 2.90 ± 0.87 2.79 ± 1.19 0.693

DD (mg/L) 1.87 ± 5.18 0.81 ± 1.34 0.082 3.72 ± 9.24 1.22 ± 1.66 0.263

Blood glucose (mmol/L) 7.83 ± 2.93 7.77 ± 3.24 0.888 8.22 ± 2.68 6.97 ± 1.30 0.067

CRP (mg/L) 16.69 ± 44.41 9.63 ± 14.87 0.181 10.28 ± 22.45 8.50 ± 14.48 0.761

Hemoglobin (g/L) 137.64 ± 19.87 140.13 ± 16.73 0.356 135.07 ± 17.91 139.94 ± 16.69 0.340

Blood platelets (109/L) 240.94 ± 77.47 237.83 ± 56.87 0.759 237.39 ± 94.38 256.78 ± 102.54 0.492

TC (mmol/L) 4.59 ± 1.08 4.48 ± 0.89 0.440 4.67 ± 1.05 4.42 ± 0.82 0.378

TG (mmol/L) 1.50 ± 1.08 3.18 ± 16.50 0.233 1.38 ± 0.99 1.73 ± 2.36 0.448

HDL-C(mmol/L) 1.29 ± 0.38 3.31 ± 16.48 0.150 1.41 ± 0.39 1.48 ± 0.40 0.505

LDL-C (mmol/L) 2.90 ± 1.01 2.68 ± 0.90 0.114 2.87 ± 0.87 2.55 ± 0.79 0.185

HCY (mmol/L) 14.99 ± 9.85 13.84 ± 7.66 0.377 16.07 ± 6.66 15.63 ± 10.73 0.853

Discharge GCS score 11.66 ± 3.62 14.72 ± 0.78 <0.001 9.67 ± 5.13 14.83 ± 0.38 <0.001

mRS score after 90 days 4.49 ± 0.64 2.28 ± 0.84 <0.001 4.78 ± 0.93 2.11 ± 0.90 <0.001

Maximum cross-sectional diameter of
hematoma (mm)

5.24 ± 1.01 4.79 ± 1.01 0.002 5.65 ± 1.19 4.89 ± 1.05 0.025

Hematoma volume (ml) 32.18 ± 12.56 23.09 ± 8.87 <0.001 36.54 ± 12.74 23.88 ± 10.23 <0.001

Hematoma location <0.001 0.001

Basal ganglia area 112 (0.81) 30 (0.39) 26 (0.72) 5 (0.28)

Non-basal ganglia area 26 (0.19) 46 (0.61) 10 (0.28) 13 (0.72)

Hematoma located in the cerebral
hemisphere

<0.001 0.446

Right side 39 (0.28) 52 (0.68) 14 (0.39) 9 (0.50)

Left side 99 (0.72) 24 (0.32) 22 (0.61) 9 (0.50)

Whether the hematoma has broken
into the ventricles of the brain

0.132 0.084

No 65 (0.47) 44 (0.58) 13 (0.36) 11 (0.61)

Yes 73 (0.53) 32(0.42) 23(0.64) 7(0.39)

p <0.01 was considered statistically significant.
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3.4 Predictive model effectiveness
evaluation

Next, the prediction effects of the radiomic features model, the

clinical model, and the clinical-radiomic nomogram model were

compared for patients. In the training set, the AUC of the clinical-

radiomic nomogram model was 0.987 (95% CI: 0.976–0.988),

which was better than that of the clinical model only 0.957

(0.933–0.981) and the radiomic features model 0.932 (0.894–0.970)

(Figure 3C). Also in the test set, the AUC values were 0.932 (95%

CI: 0.864–1.000) for the combined nomogram model, 0.922 (95%

CI: 0.845–0.999) for the clinical model, and 0.770 (95% CI: 0.633–

0.907) for the radiomic features model (Figure 3D).

In the training set, the accuracy, sensitivity, specificity, positive

prediction rate, and negative prediction rate of the clinical-
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radiomic nomogram model were 0.938, 0.969, 0.925, 0.849, and

0.986, respectively (Table 4). In the test set, the accuracy,

sensitivity, specificity, positive prediction rate, and negative

prediction rate of the clinical-radiomic nomogram model were

0.906, 0.947, 0.882, 0.818, and 0.968, respectively. All of them

were better than the separately modeled radiomic features model

and clinical model.

In addition, we compared the differences in AUC between the

prediction models by Delong’s test. In the training set, the

combined nomogram model was better than the clinical model

and the imaging model in differentiating the prognosis of patients

who performed stereotactic hyper encephalic hemorrhage, with a

statistically significant difference (p = 0.011 and 0.003). In the

validation set, the combined nomogram model was superior to the

imaging model, with a statistically significant difference (p = 0.015).
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FIGURE 3

Model testing and validation. (A,B) ROC analysis of different machine learning models for imaging features (A) and clinical features (B) in the test set. (C,D)
ROC curves for the training (C) and testing cohorts (D) for the imaging histology model, clinical model, and clinical-imaging histology nomogram.
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There was good agreement between the training and testing

cohorts for the calibration curve prediction and observation line

stereotactic prognostic model for patients with hypertensive

cerebral hemorrhage, respectively (Figures 4A,B). In this study,

we also evaluated each model by DCA, and the decision curve

analysis of the combined clinical features, radiomic features, and

nomogram model (Figures 4C,D). The preoperative prediction of

prognosis in patients with stereotactic hypertensive cerebral

hemorrhage applying the combined nomogram model proved to

be of better clinical benefit. Finally, a visual Norman diagram

model was performed (Figure 4E).
4 Discussion

Hypertensive cerebral hemorrhage was a highly prevalent

cardio-cerebrovascular disease. It was characterized by acute

onset, high risk, high disability, and high morbidity and

mortality rates (22). There were more controversies about the
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surgical treatment modalities for hypertensive cerebral

hemorrhage, such as open cranial hematoma removal, small bone

window hematoma removal, endoscopic hematoma removal, and

CT-guided stereotactic intracranial hematoma removal. In

general, the choice of treatment was mainly based on the

patient’s age, underlying disease, and characteristics of the

hemorrhage. However, the principle of treatment was mainly to

reduce intracranial pressure, remove the hematoma, and improve

patient prognosis (23, 24). Most studies have studied the

rebleeding or prognosis of patients with cerebral hemorrhage and

have not separately looked at the prognosis of patients who

underwent stereotactic hypertensive cerebral hemorrhage.

Minimally invasive borehole drainage was often used in clinical

treatment, and the hematoma can be removed without craniotomy,

which can reduce the trauma suffered by the body and facilitate the

postoperative recovery of the patient. However, there are still some

patients with poor prognosis after surgery. Therefore, it is crucial to

explore the factors influencing the poor prognosis of patients with

hypertensive cerebral hemorrhage after minimally invasive
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TABLE 2 Prediction performance of imaging features by different machine learning algorithms in the training and validation sets.

Machine learning
methods

Queue Accuracy AUC 95% CI Sensitivity Specificity Positive prediction rate Negative prediction rate

LR Training set 0.790 0.905 0.864–0.945 0.938 0.723 0.606 0.962

Test set 0.843 0.853 0.725–0.980 0.882 0.824 0.714 0.933

SVM Training set 0.702 0.823 0.766–0.879 0.906 0.610 0.513 0.935

Test set 0.784 0.858 0.758–0.958 0.941 0.706 0.615 0.960

KNN Training set 0.761 0.851 0.802–0.900 0.891 0.702 0.576 0.934

Test set 0.686 0.718 0.572–0.863 0.647 0.750 0.524 0.800

LightGBM Training set 0.907 0.957 0.932–0.981 0.969 0.879 0.785 0.984

Test set 0.902 0.922 0.845–0.999 1.000 0.853 0.773 1.000

MLP Training set 0.717 0.809 0.750–0.868 0.859 0.652 0.529 0.911

Test set 0.784 0.849 0.720–0.978 0.941 0.706 0.615 0.960

TABLE 3 Prediction performance of imaging features by different machine learning algorithms in the training and validation sets.

Machine learning
methods

Queue Accuracy AUC 95% CI Sensitivity Specificity Positive prediction rate Negative prediction rate

LR Training set 0.766 0.838 0.782–0.893 0.844 0.730 0.587 0.912

Test set 0.824 0.708 0.525–0.889 0.471 1.000 1.000 0.791

SVM Training set 0.863 0.929 0.893–0.964 0.906 0.844 0.725 0.952

Test set 0.706 0.723 0.566–0.880 0.765 0.676 0.542 0.852

KNN Training set 0.727 0.863 0.812–0.913 0.859 0.667 0.539 0.913

Test set 0.647 0.664 0.494–0.833 0.706 0.656 0.480 0.808

LightGBM Training set 0.878 0.932 0.894–0.969 0.875 0.879 0.767 0.939

Test set 0.745 0.770 0.633–0.906 0.647 0.794 0.611 0.818

MLP Training set 0.805 0.882 0.832–0.930 0.844 0.787 0.643 0.917

Test set 0.824 0.657 0.457–0.857 0.471 1.000 1.000 0.791
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borehole drainage and to intervene effectively in a timely manner

to improve the prognosis of patients with hypertensive cerebral

hemorrhage (12). In this study, GCS score at admission,

maximum transverse diameter of hematoma, hematoma volume,

and hematoma location were considered important risk

predictors of poor prognosis at 90 days. The GCS scale is a

common tool for early neurological examination and its score is

positively correlated with neurological function. A study

confirmed that early clinically important neurological changes

were associated with long-term prognosis in patients with ICH,

which is consistent with our findings (25). In clinical studies, it

has been shown that early surgical treatment would be an

effective treatment for hemorrhagic stroke in some cases (26).

However, the surgical criteria and the time of surgical

intervention strictly adhered to are usually determined by the

GCS score and the change in the amount of intracranial bleeding

in ICH (27). Similarly, several studies have demonstrated that

preoperative hematoma volume is an influential factor in poor
TABLE 4 Prediction performance of the three models in the training and vali

Models Queue Accuracy AUC 95% CI Sensitivity
Clinical Training set 0.907 0.957 0.932–0.981 0.969

Test set 0.902 0.922 0.845–0.999 1.000

Radiomics Training set 0.878 0.932 0.894–0.969 0.875

Test set 0.745 0.770 0.633–0.906 0.647

Nomogram Training set 0.938 0.987 0.976–0.997 0.969

Test set 0.906 0.932 0.864–0.999 0.947
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prognosis after borehole drainage in patients with hypertensive

cerebral hemorrhage (28).

We built a clinical model to identify patients with line

stereotactic HICH with a poor prognosis at 90 days based on

these predictors, and the model built on clinical factors achieved

suboptimal identification performance with an AUC of 0.957 in

the training set and 0.922 in the test set. Although this result

suggests that clinical models can also be used to identify patients

with HCIH with a poor prognosis, clinical patients with HICH

in which predicting poor prognosis based on information about

clinical factors alone is not sufficient, Jawed et al. showed that an

imaging feature model based on machine learning algorithms

constructed for non-enhanced CT scans could analyze the

prognosis of ICH patients (29). Meanwhile there was a study by

Chao Ma et al. that effectively predicted hematoma expansion by

imaging histological features in patients with hypertensive intra-

parenchymal hematoma, while imaging histological score

provided rapid and quantitative risk assessment for ICH patients
dation sets.

Specificity Positive prediction rate Negative prediction rate
0.879 0.785 0.984

0.853 0.773 1.000

0.879 0.767 0.939

0.794 0.611 0.818

0.925 0.849 0.986

0.882 0.818 0.968

frontiersin.org

https://doi.org/10.3389/fsurg.2024.1344263
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 4

Constructing a clinical-imaging norman model. (A,B) Calibration curve for training (A) and test set (B). (C,D) Analysis of decision curves for different
models in the training (C) and test sets (D). (E) The nomogram of the clinical features and imaging histological features to build a joint prediction model.
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with a high discrimination ability to discriminate between

hematoma expansion and non-expansion in the training data set

with an AUC of 0.89 (95% CI: 0.82–0.96) and an accuracy of

0.85 (30). Studies have shown that imaging features can also

predict the prognosis of HICH patients (31). A study by Zhou
Frontiers in Surgery 09
et al. developed and validated a clinical nomogram based on CT

radiomic features for predicting the short-term prognosis of deep

cerebral hemorrhage with AUC values of 0.80, 0.79, and 0.70 in

the training set, test set, and validation set, respectively (31).

Therefore, CT imaging features of HICH are also an important
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factor involved in the assessment of the functional prognosis of

patients (32–34).

Traditional imaging signatures predict the prognostic function of

HICH by relying on features such as irregular morphology and

inhomogeneous density of the hematoma (black hole sign, swirl

sign), but this qualitative feature was usually subjective to human

judgment (35, 36). Radiomic features analysis required only a

relatively simple delineation of the region of interest and computer-

assisted techniques to achieve the assessment of hematoma

heterogeneity, thus reducing the physician’s empirical requirements

for the identification of imaging signs. After radiomic features

analysis, we selected 23 of 1,834 imaging radiomic features after

screening for association with the 90-day functional outcome of

HICH. These 23 radiomic features were derived from shape

features, first-order histogram features, and second-order histogram

or texture features such as GLCM, GLRLM, GLSZM, and NGTDM

describing the heterogeneity, shape, and volume of the hematoma.

Changes in hematoma shape and density may indicate multifocal

hemorrhage and ongoing active bleeding in different stages (37).

Previous studies have identified hematoma volume, shape, and

heterogeneity as risk factors associated with the prognosis of

patients with ICH (38–40). Various machine learning classifiers

were also constructed in order to improve the prediction of the

prognosis of patients undergoing stereotactic HICH. Our results

show that non-linear machine learning models based on tree

models such as LightGBM perform better compared to linear

models. It is demonstrated that traditional modeling approaches use

linear machine learning models such as LR and SVM, while in the

real world, these features often have high order nonlinearity. In

addition, radiomic features models can be used to quantitatively

reflect the characteristics of the hematoma itself to assess the risk of

poor prognosis in patients with ICH. Imagingomics assessment of

HICH patients has been shown to have good performance. The

machine learning model built with radiomic features had an AUC

of 0.932 in the training cohort and 0.770 in the test cohort. also, by

further model comparison analysis, the joint model by nomogram

had better discriminative performance than the radiomic features

model (p < 0.05, DeLong test). The AUC of the combined

nomogram model was 0.987 in the training set and 0.932 in the

test set, demonstrating that the multimodal data construction of

radiomic features combined with clinical features was superior to

the single-modality model for determining the prognosis of

stereotactic cerebral hemorrhage hypertensive patients.

We also performed a comparative analysis of the efficacy of the

different models. In the training cohort, this nomogram was

significantly better than the clinical model in identifying the 90-day

poor functional prognosis of patients with row stereotactic HICH (p

= 0.011, DeLong test). In addition, the combined nomogram model

achieved good performance in identifying patient prognosis in both

the training set (AUC= 0.987) and the test set (AUC= 0.932). This

result suggests that the use of clinical variables combined with

imaging feature composition may become a promising approach to

help improve precision medicine. In addition, the combined

nomogram model can visually estimate the 90-day functional

prognosis of stereotactic HICH patients and individualize the

prognosis of patients for risk assessment. Finally, the calibration
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curves from the training and test cohorts show good agreement

between the different models for the training and test cohorts. Also,

the nomogram shows good agreement with the actual clinical

outcome and the estimated 90-day functional outcome. In addition,

this nomogram yields more net gain in predicting 90-day functional

outcomes over almost most of the threshold probability range

compared to the clinical model, and it can be used as a potentially

reliable and reproducible tool to guide clinical practice.
5 Conclusion

In this retrospective study, three models were constructed to

predict the prognosis of patients with HIHC with stereotactic

cerebral hemorrhage, including a radiomic features model, a

clinical model, and a combined nomogram model, and the

performance of each model was investigated and compared to

identify patients with good prognostic function with stereotactic

cerebral hemorrhage at 90 days. Our study found that the

combined clinical and imaging models had the best diagnostic

performance for assessing the prognosis of patients admitted with

stereotactic cerebral hemorrhage without relying on extensive

experience in identifying imaging signs, making them suitable for

use by inexperienced first-line clinicians.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Ethics Committee

of Liuzhou Workers’ Hospital (KY2023155). The studies were

conducted in accordance with the local legislation and institutional

requirements. Written informed consent for participation was not

required from the participants or the participants’ legal guardians/

next of kin because the source of data for retrospective studies is

usually the electronic medical records, imaging, or other medical

records of a hospital or healthcare organization. These data already

exist in the healthcare organization’s database and do not require

additional data collection or intervention. We have obtained

permission from the medical institution and approval from the

Ethics Review Board, and strictly adhered to ethical principles and

laws and regulations protecting individual privacy.
Author contributions

JL: Conceptualization, Investigation, Writing – original draft,

Writing – review & editing. CL: Conceptualization, Data

curation, Writing – original draft. JD: Formal Analysis,

Methodology, Writing – original draft. YZ: Formal Analysis,

Methodology, Project administration, Writing – original draft.
frontiersin.org

https://doi.org/10.3389/fsurg.2024.1344263
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Li et al. 10.3389/fsurg.2024.1344263
HC: Methodology, Project administration, Writing – original draft,

Funding acquisition. XY: Conceptualization, Data curation, Formal

Analysis, Writing – original draft, Writing – review & editing. QL:

Investigation, Resources, Supervision, Writing – original draft,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article.

This study was supported by the self-funded scientific

research project of Guangxi Zhuang Autonomous Region Health

Commission Grant No. Z-B20231406, Liuzhou City’s Top Ten

Hundred Talents Project, and Liuzhou Science and Technology

Project, Grant No. 2021CBCO126, 2022SB018, and 2021CBC0123.
Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial
Frontiers in Surgery 11
relationships that could be construed as a potential conflict

of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fsurg.2024.

1344263/full#supplementary-material
References
1. Martini SR, Flaherty ML, Brown WM, Haverbusch M, Comeau ME, Sauerbeck
LR, et al. Risk factors for intracerebral hemorrhage differ according to hemorrhage
location. Neurology. (2012) 79:2275–82. doi: 10.1212/WNL.0b013e318276896f

2. Meretoja A, Strbian D, Putaala J, Curtze S, Haapaniemi E, Mustanoja S, et al.
SMASH-U: a proposal for etiologic classification of intracerebral hemorrhage.
Stroke. (2012) 43:2592–7. doi: 10.1161/STROKEAHA.112.661603

3. Yu Z, Tao C, Xiao A, Wu C, Fu M, Dong W, et al. Chinese multidisciplinary
guideline for management of hypertensive intracerebral hemorrhage. Chin Med J
(Engl). (2022) 135:2269–71. doi: 10.1097/CM9.0000000000001976

4. Liu J, Cheng J, Zhou H, Deng C, Wang Z. Efficacy of minimally invasive surgery
for the treatment of hypertensive intracerebral hemorrhage: a protocol of randomized
controlled trial. Medicine (Baltimore). (2021) 100:e24213. doi: 10.1097/MD.
0000000000024213

5. Lindskrog SV, Prip F, Lamy P, Taber A, Groeneveld CS, Birkenkamp-Demtröder
K, et al. An integrated multi-omics analysis identifies prognostic molecular subtypes of
non-muscle-invasive bladder cancer. Nat Commun. (2021) 12:2301. doi: 10.1038/
s41467-021-22465-w

6. Luan L, Li M, Sui H, Li G, Pan W. Efficacies of minimally invasive puncture and
small bone window craniotomy for hypertensive intracerebral hemorrhage, evaluation
of motor-evoked potentials and comparison of postoperative rehemorrhage between
the two methods. Exp Ther Med. (2019) 17:1256–61. doi: 10.3892/etm.2018.7094

7. Wu S, Wang H, Wang J, Hu F, Jiang W, Lei T, et al. Effect of robot-assisted
neuroendoscopic hematoma evacuation combined intracranial pressure monitoring
for the treatment of hypertensive intracerebral hemorrhage. Front Neurol. (2021)
12:722924. doi: 10.3389/fneur.2021.722924

8. Xiong R, Li F, Chen X. Robot-assisted neurosurgery versus conventional
treatment for intracerebral hemorrhage: a systematic review and meta-analysis.
J Clin Neurosci. (2020) 82:252–9. doi: 10.1016/j.jocn.2020.10.045

9. Du Y, Gao Y, Liu HX, Zheng LL, Tan ZJ, Guo H, et al. Long-term outcome of
stereotactic aspiration, endoscopic evacuation, and open craniotomy for the
treatment of spontaneous basal ganglia hemorrhage: a propensity score study of 703
cases. Ann Transl Med. (2021) 9:1289. doi: 10.21037/atm-21-1612

10. Kellner CP, Chartrain AG, Nistal DA, Scaggiante J, Hom D, Ghatan S, et al. The
stereotactic intracerebral hemorrhage underwater blood aspiration (SCUBA)
technique for minimally invasive endoscopic intracerebral hemorrhage evacuation.
J Neurointerv Surg. (2018) 10:771–6. doi: 10.1136/neurintsurg-2017-013719

11. Zhou H, Zhang Y, Liu L, Han X, Tao Y, Tang Y, et al. A prospective controlled
study: minimally invasive stereotactic puncture therapy versus conventional
craniotomy in the treatment of acute intracerebral hemorrhage. BMC Neurol.
(2011) 11:76. doi: 10.1186/1471-2377-11-76
12. Akhigbe T, Okafor U, Sattar T, Rawluk D, Fahey T. Stereotactic-guided
evacuation of spontaneous supratentorial intracerebral hemorrhage: systematic
review and meta-analysis. World Neurosurg. (2015) 84:451–60. doi: 10.1016/j.wneu.
2015.03.051

13. Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning-based
model for prediction of outcomes in acute stroke. Stroke. (2019) 50:1263–5. doi: 10.
1161/STROKEAHA.118.024293

14. Rubbert C, Patil KR, Beseoglu K, Mathys C, May R, Kaschner MG, et al.
Prediction of outcome after aneurysmal subarachnoid hemorrhage using data from
patient admission. Eur Radiol. (2018) 28:4949–58. doi: 10.1007/s00330-018-5505-0

15. Rau CS, Kuo PJ, Chien PC, Huang CY, Hsieh HY, Hsieh CH. Mortality
prediction in patients with isolated moderate and severe traumatic brain injury
using machine learning models. PLoS One. (2018) 13:e0207192. doi: 10.1371/
journal.pone.0207192

16. Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, Suever JD, Geise BD, Patel
AA, et al. Advanced machine learning in action: identification of intracranial
hemorrhage on computed tomography scans of the head with clinical workflow
integration. NPJ Digit Med. (2018) 1:9. doi: 10.1038/s41746-017-0015-z

17. Scherer M, Cordes J, Younsi A, Sahin YA, Götz M, Möhlenbruch M, et al.
Development and validation of an automatic segmentation algorithm for
quantification of intracerebral hemorrhage. Stroke. (2016) 47:2776–82. doi: 10.1161/
STROKEAHA.116.013779

18. Wang HL, Hsu WY, Lee MH, Weng HH, Chang SW, Yang JT, et al. Automatic
machine-learning-based outcome prediction in patients with primary intracerebral
hemorrhage. Front Neurol. (2019) 10:910. doi: 10.3389/fneur.2019.00910

19. Morotti A, Boulouis G, Dowlatshahi D, Li Q, Barras CD, Delcourt C, et al.
Standards for detecting, interpreting, and reporting noncontrast computed
tomographic markers of intracerebral hemorrhage expansion. Ann Neurol. (2019)
86:480–92. doi: 10.1002/ana.25563

20. Barras CD, Tress BM, Christensen S, Collins M, Desmond PM, Skolnick BE,
et al. Quantitative CT densitometry for predicting intracerebral hemorrhage growth.
AJNR Am J Neuroradiol. (2013) 34:1139–44. doi: 10.3174/ajnr.A3375

21. Soun JE, Montes D, Yu F, Morotti A, Qureshi AI, Barnaure I, et al. Spot sign in
secondary intraventricular hemorrhage predicts early neurological decline. Clin
Neuroradiol. (2020) 30:761–8. doi: 10.1007/s00062-019-00857-2

22. Zhang X, Zhou S, Zhang Q, Fu X, Wu Y, Liu J, et al. Stereotactic aspiration for
hypertensive intracerebral hemorrhage in a Chinese population: a retrospective cohort
study. Stroke Vasc Neurol. (2019) 4:14–21. doi: 10.1136/svn-2018-000200

23. Zhang YB, Zheng SF, Yao PS, Chen GR, Li GH, Li SC, et al. Lower ionized
calcium predicts hematoma expansion and poor outcome in patients with
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fsurg.2024.1344263/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fsurg.2024.1344263/full#supplementary-material
https://doi.org/10.1212/WNL.0b013e318276896f
https://doi.org/10.1161/STROKEAHA.112.661603
https://doi.org/10.1097/CM9.0000000000001976
https://doi.org/10.1097/MD.0000000000024213
https://doi.org/10.1097/MD.0000000000024213
https://doi.org/10.1038/s41467-021-22465-w
https://doi.org/10.1038/s41467-021-22465-w
https://doi.org/10.3892/etm.2018.7094
https://doi.org/10.3389/fneur.2021.722924
https://doi.org/10.1016/j.jocn.2020.10.045
https://doi.org/10.21037/atm-21-1612
https://doi.org/10.1136/neurintsurg-2017-013719
https://doi.org/10.1186/1471-2377-11-76
https://doi.org/10.1016/j.wneu.2015.03.051
https://doi.org/10.1016/j.wneu.2015.03.051
https://doi.org/10.1161/STROKEAHA.118.024293
https://doi.org/10.1161/STROKEAHA.118.024293
https://doi.org/10.1007/s00330-018-5505-0
https://doi.org/10.1371/journal.pone.0207192
https://doi.org/10.1371/journal.pone.0207192
https://doi.org/10.1038/s41746-017-0015-z
https://doi.org/10.1161/STROKEAHA.116.013779
https://doi.org/10.1161/STROKEAHA.116.013779
https://doi.org/10.3389/fneur.2019.00910
https://doi.org/10.1002/ana.25563
https://doi.org/10.3174/ajnr.A3375
https://doi.org/10.1007/s00062-019-00857-2
https://doi.org/10.1136/svn-2018-000200
https://doi.org/10.3389/fsurg.2024.1344263
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Li et al. 10.3389/fsurg.2024.1344263
hypertensive intracerebral hemorrhage. World Neurosurg. (2018) 118:e500–4. doi: 10.
1016/j.wneu.2018.06.223

24. Wen AY, Wu BT, Xu XB, Liu SQ. Clinical study on the early application and
ideal dosage of urokinase after surgery for hypertensive intracerebral hemorrhage.
Eur Rev Med Pharmacol Sci. (2018) 22:4663–8. doi: 10.1016/j.jstrokecerebrovasdis.
2015.04.045

25. Maas MB, Berman MD, Guth JC, Liotta EM, Prabhakaran S, Naidech AM.
Neurochecks as a biomarker of the temporal profile and clinical impact of
neurologic changes after intracerebral hemorrhage. J Stroke Cerebrovasc Dis. (2015)
24:2026–31. doi: 10.1016/j.jstrokecerebrovasdis.2015.04.045

26. Ramanan M, Shankar A. Minimally invasive surgery for primary supratentorial
intracerebral hemorrhage. J Clin Neurosci. (2013) 20:1650–8. doi: 10.1016/j.jocn.2013.
03.022

27. Cho DY, Chen CC, Lee HC, Lee WY, Lin HL. Glasgow coma scale and
hematoma volume as criteria for treatment of putaminal and thalamic intracerebral
hemorrhage. Surg Neurol. (2008) 70:628–33. doi: 10.1016/j.surneu.2007.08.006

28. Kellner CP, Moore F, Arginteanu MS, Steinberger AA, Yao K, Scaggiante J, et al.
Minimally invasive evacuation of spontaneous cerebellar intracerebral hemorrhage.
World Neurosurg. (2019) 122:e1–9. doi: 10.1016/j.wneu.2018.07.145

29. Nawabi J, Kniep H, Elsayed S, Friedrich C, Sporns P, Rusche T, et al. Imaging-
based outcome prediction of acute intracerebral hemorrhage. Transl Stroke Res. (2021)
12:958–67. doi: 10.1007/s12975-021-00891-8

30. Ma C, Zhang Y, Niyazi T, Wei J, Guocai G, Liu J, et al. Radiomics for predicting
hematoma expansion in patients with hypertensive intraparenchymal hematomas. Eur
J Radiol. (2019) 115:10–5. doi: 10.1016/j.ejrad.2019.04.001

31. Zhou Z, Song Z, Chen Y, Cai J. A novel CT-based radiomics-clinical nomogram
for the prediction of short-term prognosis in deep intracerebral hemorrhage. World
Neurosurg. (2022) 157:e461–72. doi: 10.1016/j.wneu.2021.10.129

32. Rodriguez-Luna D, Pancorbo O, Coscojuela P, Lozano P, Rizzo F, Olivé-Gadea
M, et al. Derivation and validation of three intracerebral hemorrhage expansion scores
Frontiers in Surgery 12
using different CT modalities. Eur Radiol. (2023) 33:6045–53. doi: 10.1007/s00330-
023-09621-0

33. Hillal A, Ullberg T, Ramgren B, Wassélius J. Computed tomography in acute
intracerebral hemorrhage: neuroimaging predictors of hematoma expansion and
outcome. Insights Imaging. (2022) 13:180. doi: 10.1186/s13244-022-01309-1

34. Zhao X, Zhou B, Luo Y, Chen L, Zhu L, Chang S, et al. CT-based deep learning
model for predicting hospital discharge outcome in spontaneous intracerebral
hemorrhage. Eur Radiol. (2023). doi: 10.1007/s00330-023-10505-6. [Epub ahead of
print].

35. Wang W, Zhou N, Wang C. Early-stage estimated value of blend sign on the
prognosis of patients with intracerebral hemorrhage. Biomed Res Int. (2018)
2018:4509873. doi: 10.1155/2018/4509873

36. Li Q, Zhang G, Xiong X, Wang XC, Yang WS, Li KW, et al. Black hole sign:
novel imaging marker that predicts hematoma growth in patients with intracerebral
hemorrhage. Stroke. (2016) 47:1777–81. doi: 10.1161/STROKEAHA.116.013186

37. Boulouis G, Morotti A, Brouwers HB, Charidimou A, Jessel MJ, Auriel E, et al.
Association between hypodensities detected by computed tomography and hematoma
expansion in patients with intracerebral hemorrhage. JAMA Neurol. (2016) 73:961–8.
doi: 10.1001/jamaneurol.2016.1218

38. Boulouis G, Morotti A, Brouwers HB, Charidimou A, Jessel MJ, Auriel E, et al.
Noncontrast computed tomography hypodensities predict poor outcome in
intracerebral hemorrhage patients. Stroke. (2016) 47:2511–6. doi: 10.1161/
STROKEAHA.116.014425

39. Delcourt C, Zhang S, Arima H, Sato S, Al-Shahi Salman R, Wang X, et al.
Significance of hematoma shape and density in intracerebral hemorrhage: the
intensive blood pressure reduction in acute intracerebral hemorrhage trial study.
Stroke. (2016) 47:1227–32. doi: 10.1161/STROKEAHA.116.012921

40. Hussein HM, Tariq NA, Palesch YY, Qureshi AI. Reliability of hematoma
volume measurement at local sites in a multicenter acute intracerebral hemorrhage
clinical trial. Stroke. (2013) 44:237–9. doi: 10.1161/STROKEAHA.112.667220
frontiersin.org

https://doi.org/10.1016/j.wneu.2018.06.223
https://doi.org/10.1016/j.wneu.2018.06.223
https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.04.045
https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.04.045
https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.04.045
https://doi.org/10.1016/j.jocn.2013.03.022
https://doi.org/10.1016/j.jocn.2013.03.022
https://doi.org/10.1016/j.surneu.2007.08.006
https://doi.org/10.1016/j.wneu.2018.07.145
https://doi.org/10.1007/s12975-021-00891-8
https://doi.org/10.1016/j.ejrad.2019.04.001
https://doi.org/10.1016/j.wneu.2021.10.129
https://doi.org/10.1007/s00330-023-09621-0
https://doi.org/10.1007/s00330-023-09621-0
https://doi.org/10.1186/s13244-022-01309-1
https://doi.org/10.1007/s00330-023-10505-6
https://doi.org/10.1155/2018/4509873
https://doi.org/10.1161/STROKEAHA.116.013186
https://doi.org/10.1001/jamaneurol.2016.1218
https://doi.org/10.1161/STROKEAHA.116.014425
https://doi.org/10.1161/STROKEAHA.116.014425
https://doi.org/10.1161/STROKEAHA.116.012921
https://doi.org/10.1161/STROKEAHA.112.667220
https://doi.org/10.3389/fsurg.2024.1344263
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/

	Predicting the 90-day prognosis of stereotactic brain hemorrhage patients by multiple machine learning using radiomic features combined with clinical features
	Introduction
	Materials and methods
	General clinical information
	Radiological image acquisition and region of interest outlining
	Radiomics feature extraction
	Feature screening process
	Machine learning algorithms for radiomics model and clinical model construction and validation
	Construction and validation of clinical-radiomics nomograms
	Statistical analysis

	Results
	Clinical characteristics analysis of stereotactic hypertensive patients
	Screening for clinical and radiomic features
	Performance and validation of clinical and radiomics models
	Predictive model effectiveness evaluation

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


