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Compare three deep learning-
based artificial intelligence
models for classification of
calcified lumbar disc herniation:
a multicenter diagnostic study
Zhiming Liu1, Hao Zhang1, Min Zhang2, Changpeng Qu1, Lei Li1,
Yihao Sun1 and Xuexiao Ma1*
1Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong,
China, 2Department of Neonatology, The Second Affiliated Hospital and Yuying Children’s Hospital of
Wenzhou Medical University, Wenzhou, Zhejiang, China
Objective: To develop and validate an artificial intelligence diagnostic model for
identifying calcified lumbar disc herniation based on lateral lumbar magnetic
resonance imaging(MRI).
Methods: During the period from January 2019 to March 2024, patients meeting
the inclusion criteria were collected. All patients had undergone both lumbar
spine MRI and computed tomography(CT) examinations, with regions of
interest (ROI) clearly marked on the lumbar sagittal MRI images. The
participants were then divided into separate sets for training, testing, and
external validation. Ultimately, we developed a deep learning model using the
ResNet-34 algorithm model and evaluated its diagnostic efficacy.
Results: A total of 1,224 eligible patients were included in this study, consisting of
610 males and 614 females, with an average age of 53.34 ± 10.61 years. Notably,
the test datasets displayed an impressive classification accuracy rate of 91.67%,
whereas the external validation datasets achieved a classification accuracy rate
of 88.76%. Among the test datasets, the ResNet34 model outperformed other
models, yielding the highest area under the curve (AUC) of 0.96 (95% CI: 0.93,
0.99). Additionally, the ResNet34 model also exhibited superior performance
in the external validation datasets, exhibiting an AUC of 0.88 (95% CI: 0.80, 0.93).
Conclusion: In this study, we established a deep learning model with excellent
performance in identifying calcified intervertebral discs, thereby offering a
valuable and efficient diagnostic tool for clinical surgeons.
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1 Introduction

Calcified lumbar disc herniation (CLDH) is a specific subtype of lumbar disc

herniation. This condition exhibits a relatively low prevalence rate and its underlying

causes remain uncertain (1, 2). Long-term lumbar disc herniation exceeding six months

can result in the calcification of the protruded nucleus pulposus (3). Consequently, the

calcified nucleus pulposus tissue forms extensive adhesions with the dura mater and

nerve roots, thereby posing a risk of these tissue tearing (4). Consequently, a significant

number of CLDH patients present with pronounced neurological manifestations,

encompassing symptoms such as lumbar and leg numbness, pain, and lower limb
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weakness. Despite attempts at conservative management involving

pharmacological, physical, and restorative interventions, the

observed effectiveness is often minimal, prompting surgical

intervention (5).

Conventional management of CLDH often involves open

surgical procedures (6). Nevertheless, advancements in spinal

endoscopy equipment and ultrasonic osteotomy techniques have

introduced the possibility of utilizing spinal endoscopic surgery for

CLDH treatment. Precise determination of intervertebral disc

calcification plays a vital role in devising effective treatment

strategies. Presently, diagnosis primarily relies on CT values

[ranging from 120.1 to 383.7 HU (7)] and histopathological

examination involving the identification of calcification foci

through microscopic analysis. However, the use of CT scanning

poses potential risks of radiation-induced harm to individuals,

including pregnant women (8–10), teenagers and children (11–13),

and patients with thyroid diseases (14–16). Therefore, the presence

of calcification in intervertebral discs significantly affects the use of

surgical instruments, the management of intraoperative risks, the

duration of surgery, the postoperative recovery, the management

of postoperative pain, and the occurrence of postoperative

complications. Consequently, the development of a precise, rapid,

and non-invasive tool for identifying calcified intervertebral discs

is of paramount significance.

In recent years, significant progress has been made in image

recognition technology, thanks to the revival of large-scale

annotated datasets (i.e., ImageNet) (17) and deep convolutional

neural networks (CNNs) (18). ImageNet is a large-scale visual

database that contains millions of annotated images, and the

CNN models trained on this database are the cornerstone for

significantly improving medical image classification problems (19).

Deep learning, a branch of machine learning, has made

significant breakthroughs in recent years, particularly in image,

language, and speech understanding. Unlike traditional machine

learning methods, deep learning can automatically learn data

features without the need for manual feature extraction. Deep

learning models can handle various types of data and continue

to improve with increasing data volume (20).

Deep learning is a type of machine learning method that uses

neural network structures similar to those found in the human

brain to learn complex patterns in data. CNN is a specific type

of deep learning that is particularly suitable for processing data

with grid-like structures, such as images (2D grids) and videos

(3D grids) (21, 22).

Deep learning has demonstrated remarkable progress in the

diagnosis of thyroid cancer (23), esophageal cancer, gastric

cancer (24), and skin cancer (25), rivaling the expertise of

experienced radiologists (26, 27). Deep learning, with its ability

to analyze complex data, has made significant strides in

genomics, offering solutions for predicting genetic risks (28, 29),

identifying pathogenic mutations (30, 31), and utilizing

biomarkers for early disease diagnosis and monitoring (32–34).

Among the fundamental models extensively employed in

CNNs, the Residual Network (ResNet) has exhibited

commendable performance in both object detection and image

classification tasks (35).
Frontiers in Surgery 02
The primary aim of this research is to employ deep learning

techniques to develop an artificial intelligence-based model that

utilizes lumbar spine sagittal MRI images for the precise

identification and diagnosis of calcified intervertebral discs,

thereby providing assistance to medical practitioners. The

performance evaluation of the model will involve utilizing

internal test datasets and external validation datasets, where

lumbar spine CT scans and intervertebral disc pathology results

will serve as the benchmark criteria. The ultimate objective of

this study is to furnish clinicians with a rapid and accurate

auxiliary diagnostic tool, thereby improving the diagnostic

accuracy of calcified intervertebral discs and offering substantial

support for disease treatment and patient recovery.
2 Materials and methods

2.1 Datasets

This study is a retrospective analysis conducted with the

approval of the Ethics Committee of our hospital and the

informed consent of the patients. The study cohort consisted of

1,224 individuals diagnosed with lumbar disc herniation at our

hospital (n = 613), Qingdao Municipal Hospital (n = 376), and

the Second Affiliated Hospital of Wenzhou Medical University

(n = 235) from January 2019 to March 2024. All enrolled patients

underwent routine lumbar MRI and CT scans.

The inclusion criteria were as follows: (1) Diagnosed patients

with lumbar disc herniation (including calcified and non-

calcified). (2) Lumbar intervertebral disc herniation at the L1-S1

segment, with symptoms lasting at least 3 months, ineffective

after conservative treatment or recurrent episodes, and other

criteria that meet the indications for surgery. (3) The MRI and

CT scans for all patients’ lumbar regions are performed within a

4-week interval. Additionally, patients with calcified lumbar disc

herniation must also meet the following criteria: (1) The range of

CT value of calcified intervertebral discs in patients with lumbar

disc herniation was measured to be between 120.1 and 383.7

Hounsfield units (HU) (7). (2) Histopathological analysis of the

excised intervertebral disc tissues confirmed the presence of

granular or patchy calcifications when observed under a

microscope. Patients who meet all the above three criteria at the

same time are finally included in the study.

The exclusion criteria were as follows: (1) Presence of primary

or secondary bone tumors, lumbar spine infections, lumbar spine

tuberculosis, and other related conditions. (2) History of previous

lumbar spine surgeries. (3) suffering from lumbar scoliosis or

severe deformity. (4) Poor image quality or low signal-to-noise

ratio. The selection process for patients meeting the inclusion

criteria is presented in Figure 1.

In order to verify the accuracy of the deep learning model in

clinical practice, 611 patients with age-, sex- and body mass

index (BMI)-matched were collected. We employed Propensity

Score Matching (PSM) to match 611 patients from the external

validation set with 613 patients from the training set,

constructing a logistic regression model to predict whether a
frontiersin.org
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FIGURE 1

Workflow diagram for developing and evaluating deep learning models for intervertebral disc calcification classification.
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patient belongs to the training or the external validation set. Using

this model, we calculated the probability of each patient belonging

to the external validation set, which is the propensity score. The

propensity score was then used to match patients in the training

dataset with those in the external validation dataset.
2.2 Radiological examination

Lumbar spine MRI images were obtained from all patients

using a 3.0 T magnetic resonance system, while lumbar spine CT

images were acquired using a 128-slice spiral CT scanner.
2.3 Image Reading and annotation

Two radiology professors with over 10 years of work experience

participated in the identification of ROI. They used 3D Slicer

(version 5.6.0) to identify the calcified intervertebral disc

segments in the mid-sagittal CT images of the patients’ lumbar

spine. The presence of intervertebral disc calcification in these
Frontiers in Surgery 03
segments was determined by a comprehensive assessment that

combined the identification results of the radiology professors

and the pathological results. Following this, the two radiology

professors outlined a rectangular area as the ROI on the mid-

sagittal MRI images of the lumbar spine for the corresponding

segments of patients with intervertebral disc calcification. This

area was centered on the intervertebral disc and extended 0.8–1.2

centimeters above and below. Any discrepancies were resolved

through consensus-based discussions. Subsequently, the manually

selected images were converted to PNG format with dimensions

of 224*224 pixels in order to facilitate subsequent deep learning

analysis (Figure 2).

For the non-calcification control group, the specific method for

determining the ROI is as follows: In this study, a total of 422

patients were diagnosed with intervertebral disc calcification,

with the number and proportion of each segment as follows: L1-

2 (n = 8, 1.90%), L2-3 (n = 7, 1.66%), L3-4 (n = 10, 2.37%), L4-5

(n = 175, 41.47%), L5-S1 (n = 222, 52.60%). Therefore, based on

the proportion of each segment in the calcification group, the

number and proportion of each segment in the 802 non-

calcification patients are as follows: L1-2 (n = 15, 1.87%), L2-3
frontiersin.org
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FIGURE 2

The overall framework of deep learning. To begin with, the protruding intervertebral discs should be accurately delineated on the lateral lumbar MRI
images, and the images should be converted to PNG format. Next, the intervertebral disc images need to be resized to 224*224 pixels to prepare them
for input into the deep learning model. Subsequently, a classification model for lumbar intervertebral disc calcification will be established based on
ResNet-34, DenseNet-121, and Mobilevit_s algorithms. The performance of the model will be evaluated using external validation datasets and the
ROC curve. Ultimately, this deep learning model can serve as an assisting tool in the identification of lumbar inervertebral disc calcification.
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(n = 13, 1.62%), L3-4 (n = 19, 2.37%), L4-5 (n = 333, 41.52%), L5-S1

(n = 422, 52.62%). The ROI determination method for the non-

calcification group refers to the ROI determination method used

for calcification, where on the mid-sagittal MRI image, a

rectangular area is drawn with the intervertebral disc at the

center, extending 0.8–1.2 cm above and below the disc.

The MR acquisition sequence in this study has a resolution of

0.2 millimeters, an Echo Time (TE) of 20 milliseconds, a Repetition

Time (TR) of 1,000 milliseconds, and a Field of View (FOV) of 200

millimeters. The CT acquisition sequence in this study employs a

tube voltage of 120 kilovolts (kVp), a milliampere-seconds (mAs)

value of 200, a slice thickness of 5 millimeters, a field of view

(FOV) of 500 millimeters, and a pitch of 1.0.
2.4 Model training

The patients within the development datasets were randomly

allocated into training and validation sets at a ratio of 8:2. The

training set was utilized to construct the deep learning model for

calcified lumbar intervertebral discs, whereas the validation set

served to assess the model’s performance. The number of

patients in each dataset is presented in Table 1.
TABLE 1 Patient characteristics.

Characteristics Number Development set
Number of patients 1,224 493

Sex

Male 610 253

Female 614 240

Age 53.34 ± 10.61 53.43 ± 9.88

Calcification or not
Calcification 422 154

Non-calcification 802 339

Frontiers in Surgery 04
For this study, we utilized the ResNet-34 architecture model.

The input images were adjusted to a resolution of 224*224 pixels

and normalized using Mean = [0.485, 0.456, 0.406] and STD =

[0.229, 0.224, 0.225]. We conducted hyperparameter tuning on

the optimizer, learning rate, initial weights, image size, and

batch size. For the optimizer, we evaluated Stochastic Gradient

Descent (SGD) and Adam. For initial weights, we assessed the

impact of normal distribution initial weights and selected the

best weights from the training epochs (epochs = 150); for the

learning rate, the search range for SGD was 0.0001, and default

parameters were used for the Adam optimizer; for image size,

the search range was 128, 256, and 512 pixels; for batch size,

the search range was 2–32. The best performing model was

ResNet-34, with the optimal optimizer being Adam (learning

rate of 0.0001), using initial weights, and a batch size of

6. Furthermore, to enhance model accuracy, prevent overfitting,

and improve training efficiency, we utilized a pre-trained

ResNet-34 model on ImageNet as the foundation and fine-

tuned it based on this. This strategy can reduce the amount of

training data and accelerate the training process. Initializing the

weights of the convolutional layers with a normal distribution

can help the model escape local optima and improve its

generalization capability.
Test set External validation set p value
120 611

P = 0.59 (>0.05)

60 297

60 314

50.38 ± 10.16 51.61 ± 10.76 P = 0.74 (>0.05)

40 228

80 383
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Horizontal flipping is employed to augment and amplify

original images, minimizing overfitting. This normalization

ensures smooth convergence during training, boosting model

stability and efficacy.
2.5 Validation of the model

The test datasets served to validate the model’s performance.

Additionally, external validation datasets from Qingdao

Municipal Hospital, and the Second Affiliated Hospital of

Wenzhou Medical University (all meeting the same inclusion

and exclusion criteria as the training set) was used to assess the

robustness of the model. Additionally, the DenseNet-121 and

Mobilevit_s models, as well as the human recognition results for

images, are compared with the ResNet-34 architecture model to

determine the best model. For the manual identification process,

the other two radiology experts analyzed the ROI on the

previously obtained MRI images to determine whether the

segment was calcified, and they were not aware of the CT images

or pathological results beforehand.
2.6 Statistical analysis

Data analysis and model evaluation were performed using

Python (version 3.7.0). The performance of the model was

evaluated using ROC curves, AUC, confusion matrices, accuracy,

sensitivity, specificity, precision, F1 scores, positive predictive

values (PPVs), and negative predictive values (NPVs). The AUC

values were calculated using the trapezoidal rule, and the optimal

threshold was determined using the maximum Youden index

method. The confusion matrices were calculated based on the

true positives, false positives, true negatives, and false negatives.

Continuous variables were presented as means ± standard

deviations and were tested for normality using the Shapiro-Wilk

test. Statistical significance was determined using the independent

samples t-test for continuous variables and the chi-squared

test for categorical variables. P < 0.05 was considered

statistically significant.
TABLE 2 The performance of deep learning on different datasets and differe

Data set and model AUC Accuracy (%) Sensitivity (%) Spe

Testing set
ResNet34 0.96 91.67 90.00

DenseNet121 0.87 80.00 57.50

Mobilevit_s 0.82 80.83 55.00

Human identification 0.65 70.87 60.98

External validation set
ResNet34 0.88 88.76 87.36

DenseNet121 0.66 63.23 36.07

Mobilevit_s 0.70 66.54 29.34

Human identification 0.41 75.83 40.66

AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value.
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3 Results

3.1 Population characteristics

A total of 1,224 patients were enrolled in this study, comprising

610 males and 614 females, with an average age of 53.34 ± 10.61

years. Out of the 1,224 patients, 802 had non-calcified

intervertebral discs, whereas 422 exhibited calcified intervertebral

discs (Table 1).
3.2 Establishment of deep learning model

After 87 training iterations, no further improvement in the

accuracy of calcified intervertebral disc prediction was observed,

indicating the completion of the training process.
3.3 Deep learning model performance on
the different datasets

The ResNet-34 model showed the best performance in the

binary classification of distinguishing whether the intervertebral

disc is calcified, with an AUC of 0.96 (95% CI: 0.93, 0.99). The

DenseNet-121 model achieved an AUC of 0.87 (95% CI: 0.81,

0.93), while the Mobilevit_s model yielded an AUC of 0.82 (95%

CI: 0.75, 0.90). The AUC for human recognition is 0.652 (95%

confidence interval: 0.587, 0.733).

Similar to the testing datasets, the ResNet-34 model also

exhibited the highest performance in the external validation

datasets, with an AUC of 0.88 (95% CI: 0.80, 0.93). The

DenseNet-121 model obtained an AUC of 0.66 (95% CI: 0.57,

0.69), whereas the Mobilevit_s model achieved an AUC of 0.70

(95% CI: 0.66, 0.79) The AUC of human recognition is 0.41

(95% CI: 0.35, 0.58). (Table 2 and Figure 3).
4 Discussion

In this research, we have successfully devised a deep learning

model capable of effectively discriminating intervertebral disc
nt models.

cificity (%) Precision (%) F1 score (%) PPV (%) NPV (%)

92.50 85.71 87.80 85.71 94.87

91.25 76.67 67.71 76.67 81.11

93.75 81.48 65.67 81.48 80.65

85.86 78.31 56.93 75.31 66.74

86.74 79.76 80.79 79.77 89.88

74.63 54.68 44.42 54.28 64.62

60.74 65.46 38.82 60.61 65.64

68.92 63.53 52.67 62.36 73.27
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FIGURE 3

The performance of deep learning models was assessed using
internal and external datasets. ROC (A) and normalized confusion
matrix (B) of the ResNet-34 model in the internal test data set.
ROC (C) and normalized confusion matrix (D) of the DenseNet-121
model in the internal test data set. ROC (E) and normalized
confusion matrix (F) of the Mobilevit_S model in the internal test
data set. ROC (G) and normalized confusion matrix (H) of the
ResNet-34 model in the external validation data set. ROC (I) and
normalized confusion matrix (J) of the DenseNet-121 model in the
external validation data set. ROC (K) and normalized confusion
matrix (L) of the Mobilevit_S model in the external validation data
set. Class1 = calcification datasets; Class0 = Non-calcification
datasets.
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calcification. Our model exhibits commendable accuracy and

specificity when tested on both internal and external datasets. Its

implementation renders formidable assistance to surgeons in

precisely diagnosing cases of calcified intervertebral discs and

devising appropriate surgical strategies.

Recently, many experts and scholars have attempted to utilize

the rapidly developing and widely used artificial intelligence (AI)

methods to detect Lumbar disc herniation. Hou et al. have

developed a deep learning framework to establish a classifier for

diagnosing LDH, which is trained using semi-supervised learning

approaches (36). Sustersic et al. have proposed a deep learning

model based on convolutional neural networks (CNNs) for the

automatic detection and classification of LDH through MRI

images (37). Tsai et al. have used the YOLOv3 algorithm to

achieve automatic detection of LDH by enhancing and feature-

processing MRI images (38). Similar to these articles, this paper

also adopts the ResNet architecture and CNN model, and the

performance evaluation of the model employs the confusion

matrix, accuracy, sensitivity, and ROC curve.

It is undeniable that MRI is less sensitive than CT in

determining whether a disc is calcified, because MRI has lower

contrast for calcified tissue, while CT scanning can directly

display the calcified areas. Despite this, MRI has unique

advantages in assessing the disc and its surrounding soft tissues:

unlike CT, MRI does not use ionizing radiation, posing a smaller

long-term health risk to patients; MRI can provide imaging in

any plane, including sagittal, coronal, and axial views, which

helps in a more comprehensive assessment of spinal structure;

MRI provides better soft tissue contrast, aiding in the

differentiation of structures such as the disc, vertebrae, ligaments,

muscles, and nerves. The use of this model in conjunction with

CT allows doctors to fully understand the patient’s condition,

thus enabling the creation of more precise and personalized

surgical plans.

Alomari et al. conducted a clinical trial demonstrating the

favorable effectiveness of T2-weighted lumbar spine sagittal MRI

images in evaluating lumbar disc herniation (39). Consequently,

we employed T2-weighted lumbar spine sagittal MRI images to

construct our deep learning model, aiming to attain enhanced

contrast and clearer anatomical features. Previous research has

established deep learning models for diagnosing lumbar disc

herniation, with their selected ROI encompassing the

intervertebral disc as well as the adjacent superior and inferior

vertebrae (40). Similarly, in this study, we adopted a similar

approach, defining the ROI as the intervertebral disc’s central

portion along with a 0.8–1.2 cm segment of the surrounding

superior and inferior vertebrae.

ResNet-34 (Residual Network-34) is a deep learning model that

performs particularly well in image recognition and classification,

containing 33 convolutional layers and 1 fully connected layer. A

key feature of this network architecture is residual learning,

which enables the network to learn the difference between input

and output through skip connections, allowing it to be effectively

trained even with a deep network. When using ResNet-34, it is

typically pre-trained and then fine-tuned for specific tasks such

as object classification, target detection, or semantic
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segmentation.The deep learning model established using ResNet-

34 also demonstrated good image recognition performance,

capable of distinguishing calcified and non-calcified discs

effectively (41–43).

DenseNet-121 is a dense connection network with 121

convolutional layers, each of which is connected to all the

previous layers. Due to the dense connections between layers,

DenseNet can more efficiently utilize computational resources,

reduce the number of parameters, and improve training speed. In

addition, DenseNet can also enhance the accuracy of the model,

especially in image recognition tasks (44).

MobileViT_s is a lightweight visual transformation model

for mobile devices, serving as a variant of the MobileViT

model. MobileViT is a model that combines the advantages of

convolutional neural networks (CNNs) with the architecture of

Transformers. It reduces the number of model parameters and

computational complexity by employing depth-wise

separable convolutions and mobile windowing mechanisms,

while still maintaining the performance benefits of

Transformers. Furthermore, the model reduces the size and

computational demands, enabling efficient operation on

mobile devices (45).

Many studies have demonstrated the effectiveness of deep

learning algorithms in the diagnosis of various medical diseases,

including breast cancer (46–48), brain tumors (49–51), etc. The

results of these studies indicate that deep learning algorithms are

promising tools for future medical diagnosis. However, deep

learning algorithms also face some challenges in medical image

analysis. Firstly, medical image data are typically high-

dimensional and complex, requiring substantial computational

resources and storage space. Secondly, the annotation process of

medical image data often necessitates expertise and technology,

consuming a significant amount of time and manpower.

Therefore, how to optimize algorithms and improve annotation

efficiency is an important research direction in the application of

deep learning to medical image analysis. To address these issues,

researchers have proposed several methods. For example, transfer

learning techniques can be employed to initialize new models

with already trained models, thus reducing the amount of data

that needs to be annotated (52–54). Additionally, the use of

multimodal learning techniques can combine different types of

medical image data to enhance the diagnostic performance of

models (55–57).

The future development in the field of this study can consider

integrating other imaging characteristics for multimodal feature

fusion. For instance, the inclusion of lumbar MRI coronal images

and x-ray data into the model can be explored to investigate the

correlations and complementarity between these different

examination modalities, aiming to enhance the performance and

accuracy of the model. Additionally, the application of weakly

supervised learning methods can be pursued, such as utilizing

unlabeled data for self-learning and techniques like transfer

learning, to reduce the manual annotation workload and enhance

the model’s generalization capability. Furthermore, the formation

and evolution of calcified intervertebral discs are temporal

processes, thus it is worth considering incorporating time-series
Frontiers in Surgery 07
information into the model. By analyzing the trends and

dynamic features of image sequences at different time points, a

better understanding of the developmental patterns of calcified

intervertebral discs can be gained, thereby improving the

predictive ability of the model.

This article inevitably has some shortcomings. First, the

number of included patients was limited, with only 1,224

cases. Second, the severity of the disease varied among the

enrolled patients, regardless of whether there was

intervertebral disc calcification or not, and the degree of

lumbar disc protrusion also differed. Third, there was only one

external validation datasets in this study, highlighting the

importance of additional external validation datasets to verify

the established model. The model may need further

optimization and adjustment for adaptation to various clinical

requirements in actual clinical applications.
5 Conclusion

We developed a CNN-based artificial intelligence model for

high-accuracy MRI analysis of intervertebral discs, trained on a

dataset of calcified and non-calcified scans. It offers surgeons a

fast, reliable diagnostic tool, aiding early prediction and

description of disc calcification for optimized treatment and

outcomes.
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