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Background & aims: Deep vein thrombosis, a common complication after

laparoscopic surgery, can negatively affect patients’ limb motor function and

even seriously threaten their lives. Therefore, it is crucial to accurately identify

patients at high risk of lower extremity deep vein thrombosis. Thus, the aim of

this study was to develop a model to predict the occurrence of deep vein

thrombosis in patients after laparoscopy.

Methods: We retrospectively analyzed the clinical data of patients who

underwent laparoscopic surgery at Wenzhou Central Hospital’s Hepatobiliary

Surgery Department. Patients with postoperative deep vein thrombosis

composed the observation group, while others composed the control group.

Eleven key features were identified through group comparisons and used for

model development. Twenty machine learning algorithms were evaluated, and

the top five algorithms were used to build the final model by stacking.

Results: A total of 335 patients underwent laparoscopic abdominal surgery.

Patients with deep vein thrombosis (9.9%) differed significantly in age, history

of tumor, hemoglobin, red blood cell counts, preoperative blood pressure,

duration of the surgery, activated partial thromboplastin time, D-dimer, total

protein, albumin, and calcium. According to our model, the most important

features influencing the predictions were tumor history, age, time to surgery,

and D-dimer level. We employed two interpretability methods: decomposition

interpretation and Shapley additive explanation. Decomposition analysis

revealed that the three study characteristics with the strongest predictive

effect for deep vein thrombosis occurrence after laparoscopy were, in

descending order, the time of surgery, patient age, and tumor history.

Conversely, for ruling out deep vein thrombosis, the most important features

were tumor history, hemoglobin level, and age. Shapley additive explanation

revealed that tumor history, age, and time of surgery were the most important

factors for predicting and ruling out deep vein thrombosis following

laparoscopy. We additionally selected 114 patients for external validation, and

the results showed that the ROC of validation set for the LASDVT model was

0.9293 and the AUPRC was 0.6497. The effect of the LASDVT model was

statistically different (delong test, p= 0.0047) and superior to the Caprini score.
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Conclusion: We present a model for predicting deep vein thrombosis in

laparoscopic surgery patients. This model outperformed the Caprini score in

predicting the incidence of deep vein thrombosis.

KEYWORDS

artificial intelligence, nursing diagnosis, postoperative care, clinical supervision,

laparoscopic surgery, deep vein thrombosis

Introduction

As the global population ages at an accelerated pace, the elderly

are increasingly becoming major consumers of healthcare services.

This demographic shift presents both challenges and opportunities

for the advancement of medical technology, particularly in the field

of minimally invasive surgery. Traditional abdominal surgeries

typically involve large incisions, leading to significant

postoperative pain and prolonged recovery times for patients.

However, with the continuous evolution of medical technology,

especially the maturation of laparoscopic techniques, minimally

invasive surgery has gradually supplanted traditional open

surgery, establishing itself as the predominant approach in

abdominal surgery. Minimally invasive surgical techniques have

steadily supplanted past open surgical interventions for the

treatment of benign and malignant diseases in abdominal surgery

(1–5). Minimally invasive techniques offer significant clinical

benefits to most patients. These benefits include a faster return to

normal function, a shorter hospital stay, and a reduced risk of

complications. As medical technology advances, minimally

invasive surgical techniques are continually being refined.

Alongside traditional laparoscopy, innovative approaches like

single-port laparoscopic surgery and natural orifice transluminal

endoscopic surgery (NOTES) are emerging. These newer

methods further minimize surgical trauma and enhance patient

safety. Conversely, open surgery carries the drawbacks of

increased invasiveness, leading to higher blood loss, more

postoperative pain, extended hospital stays, and larger incisions.

Consequently, minimally invasive surgery has become the

preferred approach in contemporary abdominal surgery (6, 7).

Nurses play a crucial role in minimally invasive procedures, from

preoperative education and postoperative care to managing

nutrition and pain relief (8). Although minimally invasive

techniques are the gold standard in many surgical fields, the

complications of laparoscopic surgery are just as serious (9).

Examples include injury to adjacent organs, intraoperative and

postoperative bleeding, gastrointestinal fistulae, incisions and

abdominal infections, postoperative abdominal or abdominal wall

implantation of tumors and postoperative deep vein thrombosis

of the lower extremities. Given the crucial role that clinicians and

nurses play in identifying patient complications, ongoing

development of clinical techniques is essential to enhance their

ability to swiftly recognize complications associated with

minimally invasive surgery.

Deep vein thrombosis (DVT), a common complication after

laparoscopic surgery, usually occurs within one week after

surgery. DVT can significantly impair patients’ limb motor

function, leading to a decreased quality of life. Furthermore,

detachment of a venous thrombus can trigger acute pulmonary

embolism, a life-threatening condition for patients (10–12).

Studies have demonstrated that minimally invasive surgery may

have a lower overall risk of venous thromboembolism (VTE)

compared to open surgery (13–15). However, some research

suggests a higher incidence of postoperative deep vein

thrombosis (DVT) specifically after laparoscopic procedures.

Regardless of the surgical approach (open or minimally invasive),

VTE remains a potential complication. Importantly, the

occurrence of VTE in any patient, irrespective of the surgical

method, can have serious adverse consequences, significantly

impacting their life and quality of survival. Therefore, accurately

identifying patients at risk for lower extremity deep vein

thrombosis (LEDVT) is crucial (16, 17). Currently, the diagnosis

and prediction of lower extremity deep vein thrombosis

(LEDVT) primarily rely on scoring systems such as the Caprini

and Padua scores, along with laboratory tests and

ultrasonography (18). These scoring systems were originally

published in the 1990s and early 2000s and were found to be

valuable for predicting the occurrence of LEDVT after open

surgery. However, their ability to accurately predict outcomes in

laparoscopic surgery remains unclear (19, 20). There are some

deficiencies in Caprini scores. For example, the Caprini score’s

classification of risk classes is based on data from Western

populations and may not be applicable to other populations,

especially those at high risk for VTE, such as oncology patients

and orthopedic patients. Moreover, the risk factor assignment of

the Caprini score is based on the relative contribution of

different factors to the risk of VTE, but there may be interactions

or synergistic effects between these factors, and the Caprini score

does not consider the combined effects of these factors (21).

In summary, the diagnosis and prediction of DVT, a common

complication after laparoscopic surgery, relies on the Caprini score

and Padua score, as well as laboratory tests and ultrasonography,
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but each of these methods has its own drawbacks. This study aimed

to identify independent risk factors for laparoscopic abdominal

surgery patients who develop LEDVT. By doing so, we hope to

develop a more accurate and efficient prediction model to aid

clinicians and nurses in accelerating patient recovery.

Materials and methods

Institutional review board approval

This retrospective study was approved by the Institutional

Review Board of Wenzhou Central Hospital

(202402192124000497228).

Ethical compliance with human study

This study was conducted in compliance with the ethical

standards of the responsible institution on human subjects as

well as with the Helsinki Declaration.

Study design and cohort

This research was guided by the Declaration of Helsinki. The

clinical charts and related data of patients who underwent

laparoscopic surgery from January 3, 2023, to December 19,

2023, in our hepatobiliary surgery department were collected and

reviewed. Patients who met the following criteria were included

in this study: (1) underwent laparoscopic surgery; (2) complete

clinical data; (3) no preoperative use of hormonal drugs; (4)

Patients who did not undergo secondary surgery. Patients who

met any of the following criteria were excluded: (1) incomplete

clinical data; (2) severe preoperative underlying disease or

intolerance to general anesthesia; (3) underwent surgery via open

surgery or other nonlaparoscopic surgery; (4) were perinatal

women. A total of 335 patients were included in the study.

Among these patients, 33 developed LEDVT postoperatively and

composed the observation group. The remaining 302 patients

who did not develop LEDVT after laparoscopy composed the

control group. We additionally selected 114 patients who

underwent laparoscopic surgery at our hospital from December

2023 to August 2024 for external validation, with the same

inclusion criteria as above.

Data collection and variables

The clinical records and data of the patients were collected. The

diagnostic criteria for LEDVT are that the vascular ultrasound

must show hypoechoicity, loss of blood flow signal in the lumen

of the vessel, and no change after applying pressure to the vessel

with the probe. The study variables included age, gender, tumor

history, height, weight, preoperative blood pressure, duration of

surgery, prothrombin percentage activity, hemoglobin, red blood

cell count, prothrombin time (PT), fibrinogen, thrombin time

(TT), activated partial thromboplastin time (APTT), D-dimer,

white blood cell count, absolute neutrophil count, absolute

lymphocyte count, mean corpuscular hemoglobin, platelet count,

total protein, albumin, globulin, total bilirubin, direct bilirubin,

indirect bilirubin, glucose, urea, calcium, and C-reactive

protein (CRP).

Statistical analysis

The data were analyzed using R (version 4.2.2, https://www.r-

project.org/). Categorical variables were compared with the chi-

squared test. Student’s t test was used to compare continuous

variables between two groups when the data were normally

distributed and had homogeneous variance. The data are

presented as the median (P25, P75), and the nonparametric rank

sum test was used when the measurement data did not have a

normal distribution or homogeneity of variance. We constructed

a laparoscopic abdominal surgery deep vein thrombosis

(LASDVT) model. The construction of the machine learning

(ML) model is based on the mlr3 package, benchmarking of

extracted meaningful features using 20 algorithms, and evaluation

by ML evaluation metrics such as the ACC, AUROC, AUPRC,

classification error (CE), F1 score, false discovery rate (FDR),

false negative rate (FNR), false positive rate (FPR), precision, true

positive rate (TPR), and true negative rate (TNR) using 5-fold

cross-validation with 200 repetitions. The five algorithms with

the best overall evaluation were selected to construct the final

model using the starking approach. We divided the dataset into

training and test sets at a ratio of 7:3. The class imbalance in the

training set consisted of 26 cases (10.7%), while the test set had 7

cases (11.6%) of class imbalance. The LASDVT model is trained

on the training set, and the performance of the model is

validated on the test set. The LASDVT model interpretation was

performed using the DALEX R package (Figure 1). A p-value of

<0.05 was considered to indicate statistical significance.

Feature importance analysis

We use two interpretable methods to determine the

importance of features in machine learning models: global and

local interpretation.

For global interpretation, we use the Predictor class of the iml

package to construct the prediction interpreter object. The feature

importance calculation is based on the cross-entropy loss function

(cross-entropy loss), which quantifies the contribution of each

feature to the predictive power of the model by performing

100 repetitive samples through the replacement eigenvalue

method. Specifically, by perturbing the values of each feature

and observing the changes in model performance, a feature

importance score is calculated, with higher scores indicating

that the feature has a greater impact on model prediction.

The model-independence of PFI makes it suitable for stacked

integration models, avoiding algorithmic idiosyncratic biases
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based on the number of tree model splits, etc.; at the same

time, combining it with univariate analysis mitigates the

underestimation of importance of multi-covariate features.

In terms of local interpretation, to assess the importance of

local features, we used the iBreakDown package and Shapley

Additive Explanations (SHAP) within the mlr3 framework. The

feature contributions of one randomly selected patient without

lower limb thrombosis and one with lower limb thrombosis were

quantified using the break_down function, while SHAP values

were calculated to assess marginal feature impact.

This dual approach ensured reliable and interpretable insight

into the model decision-making process.

Results

Participant characteristics and univariate
analysis

The clinical characteristics of the 335 patients are summarized

in Table 1. Figure 2 illustrates the surgical indications, types of

surgery, and their respective percentages among 335 patients who

underwent laparoscopic procedures. This cohort encompassed a

diverse spectrum of surgical indications, encompassing most

common laparoscopic procedures. Hepatobiliary and pancreatic

surgeries were most frequent, with patients presenting with

gallstones and cholecystitis comprising the largest proportion

(60.299%) (Figure 2A). Concurrently, laparoscopic

cholecystectomy emerged as the most prevalent surgical

intervention within this study population, accounting for

69.254% of all procedures (Figure 2B). Univariate analysis

revealed no statistically significant differences between the two

groups in terms of gender, prothrombin percentage activity, body

weight, height, PT, fibrinogen, TT, white blood cell count,

absolute neutrophil count, absolute lymphocyte count, mean

corpuscular hemoglobin, platelet count, globulin, total bilirubin,

direct bilirubin, indirect bilirubin, glucose, urea, or C-reactive

protein (P > 0.05; Table 2). However, age, tumor history,

hemoglobin, red blood cell count, preoperative blood pressure,

duration of surgery, APTT, D-dimer, total protein, albumin, and

calcium were found to be significantly different between the two

groups (P < 0.05; Table 2). The mean age of patients who

developed LEDVT after laparoscopy was significantly higher

compared to those who did not develop LEDVT after surgery

(70.788 ± 10.939 vs. 56.563 ± 14.828, P < 0.05). Furthermore, the

surgical duration was significantly longer in the group that

subsequently developed LEDVT compared to the group that did

not experience LEDVT postoperatively. [175 (120,287) vs. 60

(50.25, 98.75), P < 0.05]. The proportion of patients with a

history of tumors was much higher in the group that developed

LEDVT than in the group that did not develop LEDVT

(P < 0.05; Table 2). To build our ML model, we considered only

features that showed statistically significant differences (p < 0.05)

between the groups being compared.

Construction of the ML model

Our construction for the ML model is based on the mlr3

package for R and uses 20 algorithms (including recursive

FIGURE 1

The workflow of our study. SVM, support vector machine; LMT, locally mapped trees; BART, Bayesian additive regression trees; KKNN, kernel K-nearest

neighbors.
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partitioning and regression trees (RPART), random forest,

AdaBoost. M1, C5.0 Decision Tree Algorithm, Instance-Based k-

NN (IBK), XGBoost, Quadratic Discriminant Analysis (QDA),

Naive Bayes, Logistic Regression, GLMNET, JRIP, (LMT),

Bayesian Additive Regression Trees (BART), Kernel K-Nearest

Neighbors (KKNN), Support Vector Machine (SVM), Light

Gradient Boosting Machine (LightGBM), One Rule (OneR),

Partial Least Squares Locally Mapped Trees Regression (PART),

Extremely Randomized Trees (EARTH), Gradient Boosting

Machine (GBM) to benchmark the meaningful features extracted

above. To evaluate model performance, we employed a

comprehensive suite of ML metrics, including the ACC, AUROC,

AUPRC, CE, F1 score, FDR, FNR, FPR, TPR, and TNR (Table 3).

Our evaluation metrics, including ACC, AUPRC, and AUROC,

indicate that algorithms such as BART, GLMNET, KKNN, LMT,

logistic regression, and SVM achieve higher accuracy. Conversely,

naive Bayes and QDA performed less favorably in terms of

accuracy (Figures 3A–C). Algorithms such as BART, GLMNET,

KKNN, LMT, logistic regression, and SVM demonstrated high

accuracy (low classification error rate) when evaluated using the

CE metric (Figure 3D). From an initial evaluation of 20

algorithms, we narrowed the selection to the five with the

strongest overall performance: BART, GLMNET, KKNN, LMT,

and SVM. We then employed the stacking method to create the

final model. The final stacked model had a value of 0.6154 for

sensitivity and a value of 0.9917 for specificity. The model had

good predictive value for the occurrence of deep vein thrombosis

in patients after laparoscopy, with an AUROC of 0.9476, which

was better than that of the Caprini score (p = 0.0421; Figure 4).

Meanwhile, we additionally selected 114 patients for external

validation, and the results showed that the ROC of validation set

for the LASDVT model was 0.9293 and the AUPRC was 0.6497.

The effect of the LASDVT model was statistically different (delong

test, p = 0.0047; Figure 5) and superior to the Caprini score. Our

results show that our model shows good generalization ability and

robustness both in internal and external data.

TABLE 1 Baseline information for 335 patients.

Characteristics Parameter (n = 335)

Age (years) 57.964 ± 15.088

Gender

Male 167 (49.85%)

Female 168 (50.15%)

Tumor history

Yes 36 (10.75%)

No 299 (89.25%)

Prothrombin percentage activity(%) 103.675 ± 14.244

Hemoglobin(g/L) 130.099 ± 18.275

Red blood cell count(1012/L) 4.371 ± 0.618

Body weight(kg) 62 (57,70)

Height(cm) 162 (156,170)

Preoperative blood pressure(mmHg) 127 (115,140.5)

Duration of surgery(min) 67 (53.5,120)

Prothrombin time(s) 11.2 (10.7,12)

Fibrinogen(g/L) 3.29 (2.89,3.96)

Thrombin time(s) 15 (14.3,15.8)

Activated partial thromboplastin time(s) 30.4 (28.6,32.5)

D-dimer(µg/L) 143 (137,301.5)

White blood cell count(109/L) 6.2 (5.1,7.9)

Absolute neutrophil count(109/L) 3.6 (2.9,5.25)

Absolute lymphocyte count(109/L) 1.7 (1.3,2.1)

mean corpuscular hemoglobin (pg) 29.9 (28.9,30.9)

Platelet count(109/L) 219 (181.5,258.5)

Total protein(g/L) 67.4 (63,71.9)

Albumin(g/L) 39.6 (36.4,43.5)

Globulin(g/L) 27.9 (25.5,30.1)

Total bilirubin(µmol/L) 13.7 (10.8,19.9)

Direct bilirubin(µmol/L) 2.7 (2.1,4.15)

Indirect bilirubin(µmol/L) 10.9 (8.5,15.4)

Glucose(mmol/L) 5.4 (4.8,6.2)

Urea(mmol/L) 5 (4.2,6)

Calcium(mmol/L) 2.27 (2.17,2.33)

C-reactive protein(mg/L) 3 (1.3,15.4)

DVT

Yes 33(9.9%)

No 302(90.1%)

FIGURE 2

Indications and types of surgery and their percentage in 335 patients who underwent laparoscopic surgery. (A) Indications for surgery and their

percentage in 335 patients undergoing laparoscopic surgery. (B) Type of surgery and its percentage in 335 patients who underwent

laparoscopic surgery.
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Interpretation of the model

Global interpretation
This refers to understanding the overall behavior of the model

and its predictions across the entire dataset. According to our

model, the most important features influencing the predictions,

ranked by their importance, were tumor history, age, time to

surgery, D-dimer level, and hemoglobin level (Figure 6).

Local interpretation
Refers to understanding the contribution of individual features

to the model’s predictions for a specific instance (sample). We

randomly selected two patients (one who developed DVT after

laparoscopy and the other who did not develop DVT after

laparoscopy). We applied two common localized interpretation

methods—decomposition interpretation and Shapley additive

explanation (SHAP)—to each of the two patients’ data. The

results are as follows:

The breakdown plot (Figures 7A,B) deconstructs the model’s

predictions by visualizing the influence of each variable and its

relative contribution. It achieves this by assigning an importance

score to each variable, with the sum of these scores closely

approximating the overall prediction. The breakdown charts

visualize the contribution of each variable to the prediction. In

this study, we investigated the relationships between various

factors, including age, tumor history, hemoglobin, red blood cell

count, preoperative blood pressure, duration of surgery, APTT,

D-dimer, total protein, albumin, and calcium, and the likelihood

of developing DVT after laparoscopy. We employed

decomposition analysis to interpret these relationships, and the

results are presented in a clear and informative breakdown chart.

In patients who developed deep vein thrombosis after

laparoscopy, study variables such as tumor history, age, red

blood cell count, blood pressure, D-dimer, hemoglobin, APTT,

duration of surgery, albumin, and total protein were predictive of

the development of deep vein thrombosis after laparoscopy. The

three strongest predictors were time to surgery, patient age, and

tumor history. In this patient who did not develop DVT after

laparoscopy, the 3 study variables that had a better predictive

effect for excluding the development of DVT after laparoscopy

were tumor history, hemoglobin, and age.

SHAP leverages Shapley values, a game theory concept, to

quantify the individual contribution of each feature to a model’s

predictions. We applied Shapley’s method of additive

interpretation to study variables such as age, tumor history,

hemoglobin, red blood cell count, preoperative blood pressure,

duration of surgery, APTT, D-dimer, total protein, albumin, and

calcium that can predict the likelihood of DVT in patients after

laparoscopy and drew the following conclusions (Figures 7C,D).

We found that three study variables, namely, tumor history, age,

and duration of surgery, were effective in predicting and

excluding the occurrence of deep vein thrombosis

after laparoscopy.

Discussion

Artificial Intelligence (AI) is rapidly transforming healthcare,

revolutionizing traditional practices. AI applications in medicine

not only enhance diagnostic accuracy but also significantly

improve healthcare efficiency and provide a superior patient

experience. Chronic complications of DVT include post

thrombotic syndrome (25%-38%) and venous ulceration (9.8%).

Pulmonary embolism (6%-32%), a more acute complication, can

be fatal in 5%-10% of patients. Less common complications

include chronic thromboembolic pulmonary hypertension,

sudden death, and limb loss (22). Early and accurate prediction

of DVT is critical because it can significantly impact patients’

TABLE 2 An intergroup comparison of 335 patients.

Parameter DVT
(n = 33)

without DVT
(n= 302)

p-value

Age 70.788 ± 10.939 56.563 ± 14.828 1.73e-08

Gender

Male 14 (42.42%) 153 (50.66%) 0.4744

Female 19 (57.58%) 149 (49.34%)

Tumor history

YES 17 (51.51%) 19 (6.29%) 1.739e-14

NO 16 (48.48%) 283 (93.71%)

Prothrombin percentage

activity(%)

99.121 ± 15.562 104.172 ± 14.031 8.20e-02

Hemoglobin(g/L) 117.303 ± 21.09 131.497 ± 17.418 6.42e-04

Red blood cell count

(1012/L)

3.84 ± 0.602 4.429 ± 0.593 4.23e-06

Body weight(kg) 60 (57,67) 62 (58,70) 5.88e-01

Height(cm) 158 (155,168) 162 (157,170) 1.31e-01

Preoperative blood

pressure(mmHg)

138 (115,149) 125.5 (115,139.75) 1.94e-02

Duration of surgery(min) 175 (120,287) 60 (50.25,98.75) 1.19e-08

Prothrombin time(s) 11.2 (10.9,12.4) 11.2 (10.7,11.9) 3.20e-01

Fibrinogen(g/L) 3.2 (2.88,4) 3.3 (2.89,3.95) 9.86e-01

Thrombin time(s) 15.2 (14.2,15.9) 15 (14.3,15.7) 5.80e-01

Activated partial

thromboplastin time(s)

28.9 (27.3,30.3) 30.6 (28.7,32.9) 1.70e-03

D-dimer(μg/L) 326 (183,1944) 137 (137,262.75) 9.91e-06

White blood cell count

(109/L)

6.2 (5,8.1) 6.3 (5.1,7.9) 8.47e-01

Absolute neutrophil

count(109/L)

3.9 (3,5.9) 3.6 (2.9,5.2) 3.70e-01

Absolute lymphocyte

count(109/L)

1.5 (1,1.9) 1.7 (1.3,2.1) 8.42e-02

mean corpuscular

hemoglobin (pg)

30.3 (29.4,31.4) 29.9 (28.9,30.9) 1.82e-01

Platelet count(109/L) 203 (164,241) 220 (183,260.5) 2.42e-01

Total protein(g/L) 63.7 (60.7,66.5) 68.1 (63.475,72.575) 2.26e-05

Albumin(g/L) 36.4 (32.6,39.5) 40.1 (37.025,43.775) 2.70e-06

Globulin(g/L) 28.5 (24.6,29.6) 27.85 (25.625,30.1) 3.91e-01

Total bilirubin(µmol/L) 12.9 (8.7,19.8) 13.7 (10.9,19.9) 4.74e-01

Direct bilirubin(μmol/L) 3.1 (2.1,4.2) 2.7 (2,4.1) 5.94e-01

Indirect bilirubin(μmol/

L)

10 (7.3,16) 10.9 (8.5,15.325) 4.30e-01

Glucose(mmol/L) 5.6 (4.9,6.6) 5.3 (4.8,6.2) 1.54e-01

Urea(mmol/L) 5.1 (4.3,6.6) 5 (4.2,5.9) 5.38e-01

Calcium(mmol/L) 2.17 (2.11,2.29) 2.27 (2.183,2.34) 1.85e-03

C-reactive protein(mg/L) 6(1.9,22.7) 2.8(1.3,13.875) 1.56e-01

DVT, deep venous thrombosis.
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TABLE 3 Benchmarking of 20 algorithms.

Learner ACC AUROC AUPRC CE F1 Score FDR FNR FPR Precision Recall TNR

RPART 0.888 ± 0.039 0.665 ± 0.114 0.288 ± 0.145 0.112 ± 0.039 0.33 ± 0.176 0.56 ± 0.275 0.708 ± 0.193 0.047 ± 0.037 0.44 ± 0.275 0.292 ± 0.193 0.953 ± 0.037

Random forest 0.913 ± 0.031 0.909 ± 0.048 0.551 ± 0.184 0.087 ± 0.031 0.356 ± 0.173 0.307 ± 0.302 0.764 ± 0.17 0.012 ± 0.014 0.693 ± 0.302 0.236 ± 0.17 0.988 ± 0.014

AdaBoost.M1 0.901 ± 0.033 0.877 ± 0.061 0.478 ± 0.183 0.099 ± 0.033 0.384 ± 0.179 0.474 ± 0.27 0.663 ± 0.205 0.036 ± 0.027 0.526 ± 0.27 0.337 ± 0.205 0.964 ± 0.027

C5.0 decision tree Algorithm 0.91 ± 0.037 0.692 ± 0.128 0.418 ± 0.186 0.09 ± 0.037 0.434 ± 0.188 0.378 ± 0.301 0.632 ± 0.194 0.031 ± 0.031 0.622 ± 0.301 0.368 ± 0.194 0.969 ± 0.031

IBK 0.902 ± 0.03 0.709 ± 0.097 0.338 ± 0.148 0.098 ± 0.03 0.466 ± 0.166 0.49 ± 0.209 0.531 ± 0.195 0.05 ± 0.027 0.51 ± 0.209 0.469 ± 0.195 0.95 ± 0.027

XGBoost 0.883 ± 0.039 0.743 ± 0.102 0.359 ± 0.169 0.117 ± 0.039 0.324 ± 0.171 0.588 ± 0.255 0.697 ± 0.184 0.054 ± 0.037 0.412 ± 0.255 0.303 ± 0.184 0.946 ± 0.037

QDA 0.758 ± 0.077 0.833 ± 0.098 0.449 ± 0.178 0.242 ± 0.077 0.381 ± 0.121 0.728 ± 0.118 0.24 ± 0.199 0.24 ± 0.092 0.272 ± 0.118 0.76 ± 0.199 0.76 ± 0.092

Naive Bayes 0.696 ± 0.098 0.889 ± 0.074 0.535 ± 0.2 0.304 ± 0.098 0.373 ± 0.124 0.754 ± 0.104 0.112 ± 0.134 0.325 ± 0.11 0.246 ± 0.104 0.888 ± 0.134 0.675 ± 0.11

Logistic regression 0.917 ± 0.033 0.885 ± 0.075 0.508 ± 0.19 0.083 ± 0.033 0.508 ± 0.178 0.376 ± 0.238 0.532 ± 0.204 0.033 ± 0.026 0.624 ± 0.238 0.468 ± 0.204 0.967 ± 0.026

GLMNET 0.927 ± 0.029 0.908 ± 0.061 0.589 ± 0.192 0.073 ± 0.029 0.509 ± 0.175 0.222 ± 0.23 0.594 ± 0.191 0.014 ± 0.016 0.778 ± 0.23 0.406 ± 0.191 0.986 ± 0.016

JRIP 0.892 ± 0.039 0.63 ± 0.094 0.268 ± 0.148 0.108 ± 0.039 0.349 ± 0.174 0.518 ± 0.288 0.697 ± 0.194 0.044 ± 0.037 0.482 ± 0.288 0.303 ± 0.194 0.956 ± 0.037

LMT 0.925 ± 0.03 0.899 ± 0.066 0.573 ± 0.191 0.075 ± 0.03 0.504 ± 0.177 0.26 ± 0.241 0.592 ± 0.194 0.018 ± 0.019 0.74 ± 0.241 0.408 ± 0.194 0.982 ± 0.019

BART 0.922 ± 0.03 0.91 ± 0.06 0.603 ± 0.185 0.078 ± 0.03 0.431 ± 0.173 0.172 ± 0.24 0.707 ± 0.179 0.008 ± 0.01 0.828 ± 0.24 0.293 ± 0.179 0.992 ± 0.01

KKNN 0.92 ± 0.029 0.88 ± 0.078 0.6 ± 0.18 0.08 ± 0.029 0.504 ± 0.173 0.348 ± 0.241 0.559 ± 0.188 0.027 ± 0.021 0.652 ± 0.241 0.441 ± 0.188 0.973 ± 0.021

SVM 0.933 ± 0.027 0.899 ± 0.06 0.611 ± 0.184 0.067 ± 0.027 0.54 ± 0.174 0.164 ± 0.216 0.583 ± 0.192 0.01 ± 0.014 0.836 ± 0.216 0.417 ± 0.192 0.99 ± 0.014

LightGBM 0.906 ± 0.032 0.884 ± 0.058 0.495 ± 0.177 0.094 ± 0.032 0.39 ± 0.182 0.433 ± 0.278 0.675 ± 0.19 0.029 ± 0.024 0.567 ± 0.278 0.325 ± 0.19 0.971 ± 0.024

One rule 0.879 ± 0.032 0.544 ± 0.068 0.145 ± 0.073 0.121 ± 0.032 0.157 ± 0.15 0.776 ± 0.226 0.874 ± 0.146 0.038 ± 0.026 0.224 ± 0.226 0.126 ± 0.146 0.962 ± 0.026

PART 0.909 ± 0.037 0.712 ± 0.131 0.371 ± 0.178 0.091 ± 0.037 0.435 ± 0.187 0.386 ± 0.295 0.628 ± 0.194 0.032 ± 0.032 0.614 ± 0.295 0.372 ± 0.194 0.968 ± 0.032

EARTH 0.898 ± 0.034 0.842 ± 0.093 0.454 ± 0.169 0.102 ± 0.034 0.407 ± 0.175 0.506 ± 0.236 0.615 ± 0.201 0.044 ± 0.028 0.494 ± 0.236 0.385 ± 0.201 0.956 ± 0.028

GBM 0.907 ± 0.033 0.891 ± 0.058 0.494 ± 0.177 0.093 ± 0.033 0.396 ± 0.181 0.434 ± 0.276 0.667 ± 0.192 0.029 ± 0.023 0.566 ± 0.276 0.333 ± 0.192 0.971 ± 0.023

RPART, recursive partitioning and regression trees, IBK, instance-based k-NN; QDA, quadratic discriminant analysis; LMT, locally mapped trees; BART, Bayesian additive regression trees; KKNN, kernel K-nearest neighbors; SVM, support vector machine; LightGBM,

light gradient boosting machine; OneR, one rule; PART, partial least squares regression; EARTH, extremely randomized trees; GBM, gradient boosting machine. ACC, accuracy; AUROC, area under the receiver operating characteristic curve; AUPRC, area under the

precision-recall curve; CE, classification error; FDR, false discovery rate; FNR, false negative rate; FPR, false positive rate; TNR, true negative rate.
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quality of life and even pose a life-threatening risk. Currently,

the diagnosis and prediction of LEDVT primarily rely on

scoring systems such as the Caprini and Padua scores, along

with laboratory tests and ultrasonography (18). However,

their predictive effectiveness in laparoscopic surgery remains

uncertain (19, 20).

Artificial Intelligence (AI) encompasses a variety of

technologies that share the common goal of computationally

simulating human intelligence. Machine Learning (ML) is a

branch of AI that focuses on making predictions by using

mathematical algorithms to identify patterns in data (23). ML is

a rapidly growing field in medicine, with significant research

efforts focused on applying its capabilities to address medical

challenges (24). ML in medicine can lead to more accurate

diagnostic algorithms and personalized patient care (25, 26).

Stacked ensemble methods are a type of ML approach that

combines multiple classifier models in a hierarchical structure

(27, 28). In ML, stacking can be employed as an ensemble

method to address both model errors and dataset biases (29).

Stacked integrated learning (SEL) is an algorithmic structure that

consists of multiple levels of ML algorithms (27, 30). This type

of ML produces more reliable models (29).

The model had good predictive value for the occurrence of

DVT in patients after laparoscopy, with an AUROC of 0.9476.

The model had good composite performance. This model

outperformed the Caprini score in predicting the incidence of

deep vein thrombosis. The model we constructed demonstrates a

higher probability of accurately predicting or excluding the risk

of postoperative VTE in patients undergoing abdominal surgery,

thus offering a potential improvement over existing VTE

prediction tools. Lee Hwangbo (29) et al. developed a mortality

prediction model for acute ischemic stroke patients who did not

receive reperfusion therapy; this model used a stacked integrated

learning model with an AUROC of 0.783 for 6-month mortality

FIGURE 3

Performance comparison of 20 machine learning algorithms using various metrics. (A-D). The results of evaluation methods such as accuracy, AUPRC,

AUROC, and classification error. QDA, quadratic discriminant analysis; EARTH, extremely randomized trees; RPART, recursive partitioning and

regression trees; GBM, gradient boosting machine; IBK, instance-based k-NN; LightGBM, light gradient boosting machine; PART, partial least

squares regression; BART, Bayesian additive regression trees; AUPRC, area under the precision-recall curve; AUROC, area under the receiver

operating characteristic curve.
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FIGURE 4

Performance demonstration of the LASDVT model. (A) The results of the comparison of the ROC curves for both the Caprini score and the LASDVT

model. (B) Scoring results of the LASDVT model under several evaluation metrics. LASDVT, laparoscopic abdominal surgery deep vein thrombosis

model; AUROC, area under the receiver operating characteristic curve; TNR, true negative rate; FNR, false negative rate; AUPRC, area under the

precision-recall curve; ACC, accuracy; AUROC, area under the receiver operating characteristic curve.

FIGURE 5

Performance demonstration of the LASDVT model. (A) The results of the comparison of the ROC curves for both the Caprini score and the LASDVT

model. (B) the AUPRC of validation set for the LASDVT model. AUPRC, area under the precision-recall curve; ROC, area under the receiver operating

characteristic curve.
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prediction, which is a better supplement to the clinical methods for

predicting mortality in acute ischemic stroke patients. The ML

models developed by Tao Yu (31) et al. accurately predict post

thrombotic syndrome (PTS). This approach demonstrates strong

predictive ability and generalizability, potentially allowing

clinicians to better select patients for endovascular surgery. Hua

Liu (32) et al. built and externally validated a novel ML model to

predict venous thromboembolism (VTE) in hospitalized young

and middle-aged patients. Five algorithms (logistic regression,

decision tree, feed-forward neural network, support vector

machine, and random forest) were employed to train and refine

the model. The support vector machine model performed the

best, with 95% CI AUC values of 0.806∼0.944, a sensitivity of

59%, a specificity of 99%, and an accuracy of 87%. The risk of

venous thromboembolism can be accurately predicted using a

support vector machine model with a clinical dataset of young

and middle-aged hospitalized patients. Our model leverages a

stacking approach, screening the top 5 basic models from 20

candidates for integration. This integrated model can effectively

predict the risk of DVT after laparoscopic surgery for abdominal

surgery and can serve as a good guide to the clinic. Our study

revealed that patients who developed DVT after laparoscopic

surgery were older, on average, than those who remained DVT-

free postoperatively. This age difference may be attributed to

factors such as increased vascular intima roughness, intimal

damage, procoagulant production, and a greater incidence of

comorbidities such as cardiovascular disease and tumors in older

individuals (33). In addition, patients with malignant tumors

often exhibit low fibrinolytic capacity and hyperfibrinogenemia.

Tumors may secrete both procoagulant substances, which

promote platelet aggregation and release, and inhibitors of

fibrinolytic activity, leading to a hypercoagulable state in the

body. Certain chemotherapeutic drugs can cause deficiencies in

protein C, protein S, and antithrombin, increasing the risk of

blood clots (deep vein thrombosis or DVT). Additionally,

compression of blood vessels by tumors, prolonged bed rest, and

other factors can also promote DVT formation (34). Our

findings also revealed that a higher percentage of patients in the

postoperative DVT group than in the group without

postoperative DVT had a history of tumors. Patients who

developed postoperative DVT had higher preoperative blood

pressure readings compared to those who did not develop DVT.

Previous studies have shown that high blood pressure leads to

faster blood flow and increased shear stress, which damages

venous endothelial cells and increases the likelihood of releasing

procoagulant factors; high blood pressure leads to increased

blood viscosity, red blood cell aggregation, and platelet activation,

which increase the risk of thrombosis. Patients who developed

postoperative DVT underwent significantly longer surgeries

compared to those who did not develop DVT. While

laparoscopic surgery offers a significant advantage over open

surgery in terms of reduced operative time, patients are still

required to remain in a supine or sitting position for extended

periods. This can lead to slower blood flow in the lower

FIGURE 6

A global interpretation of the LASDVT model. The five most important features in the LASDVT model were tumor history, age, time to surgery, D-dimer

level, and hemoglobin level. APTT: activated partial thromboplastin time.
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extremities, increasing the risk of blood stasis. Stasis, in turn,

promotes platelet aggregation and thrombosis. Additionally,

surgical trauma itself activates the coagulation cascade, further

contributing to a hypercoagulable state. Furthermore,

intraoperative vascular injury and prolonged use of carbon

dioxide pneumoperitoneum during laparoscopy have been

associated with an increased risk of DVT (35, 36). Our findings

align with our existing DVT diagnostic approach, as D-dimer

levels were significantly elevated in the postoperative DVT group

compared to the control group, while APTT was conversely

lower in the DVT group (37). Previous studies have rarely

reported that both total protein and albumin levels are lower in

patients who develop postoperative DVT compared to those who

do not. This finding might be partially explained by the link

between hypoalbuminemia and decreased colloid osmotic

pressure. This pressure drop leads to fluid movement from the

intravascular space to the extravascular space, causing tissue

edema. Consequently, it may contribute to blood flow stasis and

heighten the risk of DVT. Although our model outperforms the

widely used Caprini score in clinical practice, it still has several

limitations. First, this was a single-center study at Wenzhou

Central Hospital, limiting the generalizability of the findings to

other institutions. Future studies should involve multiple centers

for a more representative sample. Second, the sample size was

relatively small, which might impact certain statistical analyses

and the generalizability of the results. Third, the study focused

on several abdominal surgery-related diseases, limiting the

generalizability of the findings to other disease types. While this

focus provided a more targeted investigation, it is essential to

acknowledge this limitation in future applications. We collected

and reviewed clinical charts and related data of patients who

underwent laparoscopic surgery from January 3, 2023, to

December 19, 2023, in the hepatobiliary surgery department at

our hospital. This is only the case data of hepatobiliary surgery

in general surgery in our hospital, but it basically covers the

basic diseases in general abdominal surgery, and we have

performed external validation of the model. We will incorporate

more samples and even multicenter data to further improve our

model in order to translate the results to better serve research

and clinical work.

Fourth, the model relied solely on clinical data, including

laboratory tests and vital signs, neglecting other potentially

contributing factors, such as environmental and genetic elements.

Fifth, the marked disparity in sample sizes between the

FIGURE 7

A local interpretation of the LASDVT model. (A) Decompositional interpretation of factors that can predict the development of deep vein thrombosis in

patients after laparoscopy. (B) Decomposition interpretation of factors that can exclude the possibility of deep vein thrombosis in patients after

laparoscopy. (C) Shapley additive interpretation of factors that can predict the development of deep vein thrombosis in patients after laparoscopy.

(D) Shapley additive interpretation of factors that can rule out the possibility of deep vein thrombosis in patients after laparoscopy. APTT, activated

partial thromboplastin time. DVT, deep venous thrombosis.
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observation group (postoperative DVT, n = 33) and control group

(non-DVT, n = 302) indeed constitutes a critical methodological

consideration. While we implemented ensemble learning

techniques (e.g., stacked generalization) to enhance model

robustness, we fully acknowledge that the inherent class

imbalance may have introduced predictive bias toward the

majority class, potentially impacting sensitivity metrics for

DVT detection.

Notably, our external validation cohort (n = 114) demonstrated

preserved discriminative capacity (AUROC= 0.9293), suggesting

reasonable generalizability within the current sample constraints.

However, we concur that the limited representation of DVT-positive

cases and the absence of explicit balancing strategies (e.g., SMOTE,

class-weighted learning) represent study limitations. These factors

may affect model performance in clinical scenarios with higher

DVT prevalence. Future studies could further enhance the clinical

application value of the model by introducing more advanced

balancing techniques or expanding the multicenter sample size,

especially by increasing the proportion of DVT-positive cases.

Additionally, as a retrospective study, the selection of cases and

controls might introduce selection bias.

Conclusion

This study constructed an integrated ML model that utilizes

both preoperative and intraoperative data to predict the

occurrence of DVT in patients undergoing laparoscopic

abdominal surgery. Our model outperforms the Caprini score in

predicting DVT occurrence. Future validation in larger centers

and diverse populations can establish its broader application,

allowing healthcare professionals to more effectively identify

potential DVT cases and improve patient outcomes. Subsequent

translation of the results can be further enhanced by

interdisciplinary collaboration, such as with computer scientists,

to develop specialized software that optimizes clinical diagnosis

and treatment.
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