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Objective: This systematic literature review of the integration of artificial
intelligence (AI) applications in surgical practice through hand and instrument
tracking provides an overview of recent advancements and analyzes current
literature on the intersection of surgery with AI. Distinct AI algorithms and
specific applications in surgical practice are also examined.
Methods: An advanced search using medical subject heading terms was
conducted in Medline (via PubMed), SCOPUS, and Embase databases for
articles published in English. A strict selection process was performed,
adhering to PRISMA guidelines.
Results: A total of 225 articles were retrieved. After screening, 77 met inclusion
criteria and were included in the review. Use of AI algorithms in surgical practice
was uncommon during 2013–2017 but has gained significant popularity since
2018. Deep learning algorithms (n= 62) are increasingly preferred over
traditional machine learning algorithms (n= 15). These technologies are used
in surgical fields such as general surgery (n= 19), neurosurgery (n= 10), and
ophthalmology (n= 9). The most common functional sensors and systems
used were prerecorded videos (n= 29), cameras (n= 21), and image datasets
(n= 7). The most common applications included laparoscopic (n= 13),
robotic-assisted (n= 13), basic (n= 12), and endoscopic (n= 8) surgical skills
training, as well as surgical simulation training (n= 8).
Conclusion: AI technologies can be tailored to address distinct needs in surgical
education and patient care. The use of AI in hand and instrument tracking
improves surgical outcomes by optimizing surgical skills training. It is essential
to acknowledge the current technical and social limitations of AI and work
toward filling those gaps in future studies.
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1 Introduction

The current paradigm shift in medicine involves technological

advancements aimed at optimizing patient care tasks through

research and collaboration. Artificial intelligence (AI) and

machine learning (ML) algorithms are applicable in precision

medicine, allowing integrative and personalized approaches to

solve complex medical problems (1).

AI applications in surgical practice, mainly associated with

hand tracking, have evolved significantly over time. Integrating

AI technologies into surgical practice began attracting attention

in the early 2010s; however, the use of AI algorithms for hand

and instrument tracking is a more recent advancement (2).

These technologies have been explored across various surgical

specialties, including ophthalmology; plastic, reconstructive

and aesthetic surgery; endocrine surgery; cardiac surgery;

and general surgery (3–9). The main goals of using AI

algorithms in surgical practice include enhancing surgical safety,

decreasing the duration of time-consuming procedures,

improving minimally invasive techniques, and facilitating the

training of junior surgeons and students through surgical

simulation education (10–12).

In recent years, ML technologies have also been used for

disease detection and prevention, radiological interpretations, and

improving surgical precision (13–16). The focus of this study was

on the role of AI and ML in analyzing surgical precision. ML is

often directed toward generating hand-tracking and motion-

tracking solutions for the best possible postsurgical outcomes. AI

and ML technologies can assess and improve human

performance beyond conventional standards, particularly in

surgical tasks.

A systematic review of the current literature on AI applications

in surgical practice, with a particular focus on hand and instrument

tracking, was conducted. AI technologies and their applications in

various surgical procedures were explored. It also examined the

numerous types of sensors employed in these processes. Finally,

the analysis addressed the various AI algorithms, their

application in distinct surgical areas via different types of

sensors, and the use of AI for hand and instrument tracking in

surgical practice, including the associated challenges and

future directions.
2 Materials and methods

2.1 Search strategy

Systematic searches of the Medline (via PubMed), SCOPUS,

and Embase databases were conducted in July 2024 without time

restrictions, using the following keywords: [(Surgical motion) OR

(Hand tracking) OR (instrument tracking) OR (surgical gesture)
Abbreviations

AI, artificial intelligence; CNN, convolutional neural network; EMG, electromyog
machine learning; SECTR, spectrally encoded coherence tomography and reflectom
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OR (instrument detection) OR (tool movement) OR (instrument

movement) OR (MoCap Motion Capture) OR (Motion Capture,

MoCap) OR (Biomechanical Movement Capture) OR (Movement

Capture, Biomechanical) OR (Optical Motion Capture)

OR (Motion Capture, Optical) OR (Magnetic Motion Capture)

OR (Motion Capture, Magnetic)] AND [(Machine Learning)

OR (Learning, Machine) OR (Transfer Learning) OR

(Learning, Transfer) OR (Deep Learning) OR (Learning,

Deep) OR (Hierarchical Learning) OR (Learning, Hierarchical)

OR (Intelligence, Artificial) OR (Computer Reasoning)

OR (Reasoning, Computer) OR [AI (Artificial Intelligence)] OR

(Machine Intelligence) OR (Intelligence, Machine)

OR (Computational Intelligence) OR (Intelligence, Computational)

OR (Computer Vision Systems) OR (Computer Vision System)

OR (System, Computer Vision) OR (Systems, Computer Vision)

OR (Vision System, Computer) OR (Vision Systems, Computer)

OR [Knowledge Acquisition (Computer)] OR [Acquisition,

Knowledge (Computer)] OR [Knowledge Representation

(Computer)] OR [Knowledge Representations (Computer)] OR

[Representation, Knowledge (Computer)] AND [(Surgery) OR

(Surgical Procedures) OR (Procedures, Surgical) OR (Procedure,

Surgical) OR (Surgical Procedure) OR (Operative Procedures)

OR (Operative Procedure) OR (Procedure, Operative) OR

(Procedures, Operative) OR (Operative Surgical Procedure) OR

(Procedure, Operative Surgical) OR (Procedures, Operative

Surgical) OR (Surgical Procedure, Operative) OR (Operative

Procedures) OR (Operations) OR (Invasive Procedures) OR

(Operative Therapy) OR (Preoperative Procedures) OR

(Intraoperative Procedures) OR (Peroperative Procedures) OR

(Perioperative Procedures)]. These medical subject heading terms

were linked with Boolean operators “AND” and “OR” to

maximize comprehensiveness.
2.2 Eligibility criteria

Our inclusion criteria focused on original research articles that

used AI methods in surgical practice, specifically through the

application of various sensors for hand or instrument tracking

during surgical procedures. Articles were excluded if they lacked

any of the 3 key components: AI systems, application in surgical

procedures, or tracking of hands or instruments (Table 1).

Additionally, review articles, editorials, errata, retracted articles,

and studies without accessible full texts or those not available in

English were excluded.
2.3 Study selection

Our search terms and articles were filtered by title or abstract.

Only articles written in the English language were screened.

Duplications were excluded. Three independent reviewers
raphy; IMU, inertial measurement unit; LSTM, long short-term memory; ML,
etry; 3D, 3-dimensional; 4D, 4-dimensional.
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TABLE 1 Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria
Original research articles Review articles, editorials,

errata, retracted papers

Articles applying AI systems to surgical practice
through hand or instrument tracking.

Full text unavailable

Non-English language

Not hand or instrument
tracking

Not applying to surgical
practice

Articles that did not involve any of the 3 components (AI systems, application in surgical

procedures, or tracking of hands or instruments) were excluded.

Yangi et al. 10.3389/fsurg.2025.1528362
(A.S.G., J.H., K.Y.) screened the articles using the Rayaan platform

(17). A strict selection process was performed, adhering to the

Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA) guidelines (18).

A manual search was also conducted to explore any additional

relevant articles, and the reference lists of all included articles were

examined by 2 independent reviewers (J.H. and A.S.G.), as

recommended by systematic review manuals (19). After the

screening, disagreements were discussed, and all reviewers

(T.J.O., A.S.G., J.H., K.Y., P.P., A.G.R.) reached a consensus to

include 77 articles in the study.
3 Results

Initially, 225 articles were retrieved. Thirty-five duplicated

papers, 21 review articles and editorials, and 5 articles for which

the full text was unavailable were excluded. Of the 164 remaining

articles, 102 did not meet the inclusion criteria and were excluded.

A reference-checking method was performed, and 10 additional

articles were found that were within the scope of the study and

included. A manual search method was also conducted, and 5

articles were found to be relevant and included in the study. Thus,

after screening, a total of 77 articles were found to be eligible for

the study and were included (Table 2) (2–12, 20–84). The

selection process is documented in Figure 1 (85).

According to our study’s findings, applying AI algorithms in

hand and instrument tracking was an exciting but relatively

little-studied topic between 2013 and 2017, whereas interest in

this area has increased significantly since 2018, with a marked

increase in research activity in the 2020s (Figure 2).

Various ML algorithms were used in these studies. For clarity,

these algorithms can be categorized into deep learning and

traditional ML (non–deep learning) algorithms (Figure 3). This

review indicates that deep learning algorithms are significantly

more popular than traditional ML algorithms. Specifically, 62

articles employed deep learning, whereas only 15 studies used

traditional ML algorithms (Figure 2).

Examining the different functional sensors used in ML

applications within surgical practice reveals a lack of uniformity,

with a wide range of sensors being used. However, image

datasets (n = 7), videos (n = 29), and camera recordings (n = 21)
Frontiers in Surgery 03
are among the main systems used to collect information or train

the algorithms (Table 2). ML algorithms are most extensively

studied in general surgery (n = 19), neurosurgery (n = 10), and

ophthalmology (n = 9), but their applications are used in a broad

spectrum of surgical specialties (Table 2; Figure 4).

ML algorithms have been used in a variety of surgical tasks,

including assessment of basic surgical skills, such as suturing and

knot tying (n = 12); basic laparoscopic (n = 13) and endoscopic

training (n = 8); robotic-assisted surgical training (n = 13); and

surgical simulation training (n = 8) (Table 2). According to our

findings, the primary use of the technologies is for

educational purposes.
4 Discussion

4.1 AI and ML

With the advent of AI, the aim was to design a system that

could operate intelligently and would be able to understand

human language, perform mechanical tasks, solve complex

computer-based problems, and return a human-like answer.

Another skill humans possess is the ability to learn from our

environment, as in language acquisition. When children are

exposed to language and start to recognize patterns, they learn

the rules of the language. They practice, evaluate their progress,

receive feedback, and make adjustments. ML is a subset of AI

that allows an AI system to accomplish a similar feat (Figure 3).

The capacity of the system to learn is based on 3 factors: the

data consumed, quantification of how incorrect the current

behavior is compared to the ideal or model behavior, and a

feedback mechanism to help guide and produce better future

behavior (86). ML technology can predict stock market trends

and serve as the foundation for self-driving cars, and its potential

applications in medicine are equally, if not more, transformative.

ML has been demonstrated to be effective in disease prediction

(13), disease detection (14), radiologic interpretation (15), and

enhancement of surgical precision (16), the last of which is the

focus of this article.

One of the most important aspects of an ML system is its

algorithms. The algorithm is effectively the rule book that

determines how the data will be used. A single algorithm could

have hundreds or even thousands of “rules” or parameters

defining its decision-making. Some examples of the algorithms

that are used in surgical applications include the following:

• Convolutional neural networks (CNNs) (87)

• Support vector machines (88)

• Random forests (89)

• K-nearest neighbors (90)

• Recurrent neural networks and long short-term memory

(LSTM) networks (91)

• Clustering algorithms (92)

These algorithms can be used in distinct learning paradigms,

including supervised learning (93), unsupervised learning (86),

and reinforcement learning (94). These 3 paradigms are
frontiersin.org
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TABLE 2 Summary of studies focused on applying artificial intelligence algorithms to surgical practice through hand and instrument tracking.

Study (year) Machine
learning
method

Sensor or system used Surgical
field

Procedure

AbuSneineh and Seales
(2013) (20)

Traditional machine
learning

ECG monitor, eye trackers, cameras Nonspecific
surgery

Minimally invasive surgery; pegboard ring transfer
task

Ryu et al. (2013) (2) Traditional machine
learning

Endoscopic vision-based tracking General surgery Laparoscopic surgery

Cavallo et al. (2014) (21) Traditional machine
learning

Optical movement detector, sensor
instrument data logger module

General surgery Laparoscopic procedures

Partridge et al. (2014) (22) Traditional machine
learning

Simulator camera and colored bands placed
around the distal instrument shafts

General surgery Surgical simulation training (threading string through
hoops)

Dayak and Cevik (2015) (12) Traditional machine
learning

Logitech HD C525 webcam Nonspecific
surgery

Minimally invasive surgery; surgical simulation
training

Sahu et al. (2016) (23) Traditional machine
learning

Laparoscopic images General surgery Robotized laparoscopic minimally invasive surgery

Chen et al. (2017) (24) Deep learning Line segment detector Nonspecific
surgery

Robotic minimally invasive surgery

Mishra et al. (2017) (25) Deep learning Retinal microscopy instrument tracking
dataset

Ophthalmology Retinal microsurgery

Zisimopoulos et al. (2017) (26) Deep learning Video data and simulation Ophthalmology Cataract surgery

Du et al. (2018) (27) Deep learning Endoscopic and microscopic datasets Nonspecific
surgery

Articulated endoscopic surgical instrument tracking

Kil et al. (2018) (28) Deep learning Cameras Nonspecific
surgery

Assessment of suturing skill

Richey et al. (2018) (29) Traditional machine
learning

Bumblebee XB3 and Grasshopper stereo
camera system; Polaris Vicra

General surgery Lumpectomy

Wang and Fey (2018) (30) Deep learning da Vinci surgical system Nonspecific
surgery

Minimally invasive surgery; robotic surgery, suturing,
needle passing, and knot tying

Wesierski and Jezierska
(2018) (31)

Traditional machine
learning

Cameras; videos Nonspecific
surgery

Minimally invasive surgery; detection and pose
estimation during robotic surgery

Zhang et al. (2018) (32) Deep learning Video recordings Urology Prostatectomy

Azari et al. (2019) (33) Traditional machine
learning

GZ-E300 JVC camcorders Nonspecific
surgery

Simple interrupted and runner subcuticular suturing

Du et al. (2019) (34) Traditional machine
learning

Videos General surgery Minimally invasive surgery

El-Haddad et al. (2019) (35) Deep learning Volumetric OCT data Ophthalmology Ophthalmic surgery

Kowalewski et al. (2019) (36) Traditional machine
learning

Myo armband; NDI Polaris camera General surgery Laparoscopic suturing and knot-tying tasks

Funke et al. (2019) (37) Deep learning Virtual camera programmed to mimic Intel
RealSense D435

Nonspecific
surgery

Minimally invasive surgery; suturing on da Vinci
machine

Qiu et al. (2019) (38) Deep learning m2cai16-tool based dataset Nonspecific
surgery

Minimally invasive robot-assisted surgery

Tang et al. (2019) (39) Deep learning Custom 1,060 nm swept-source OCT
engine to perform SPECT imaging

Ophthalmology Intraoperative optical coherence tomography

Winkler-Schwartz et al.
(2019) (40)

Traditional machine
learning

High-fidelity neurosurgical simulator Neurosurgery Tumor resection in virtual reality

Zhao et al. (2019) (41) Deep learning Videos General surgery Robot-assisted minimally invasive surgery

Zia et al. (2019) (42) Deep learning Videos Urology Robotic-assisted radical prostatectomies

Khalid et al. (2020) (43) Deep learning Videos Nonspecific
surgery

Knot tying; suturing; needle passing

Lee et al. (2020) (7) Deep learning Video recordings General surgery Thyroidectomy; robotic surgery

Leong-Hoi et al. (2020) (44) Deep learning Depth camera General surgery Laparoscopic mini-invasive surgery

Morita et al. (2020) (45) Deep learning High-resolution video recordings Ophthalmology Cataract surgery

Sivarasa and Jerew (2020)
(46)

Deep learning Videos Nonspecific
surgery

Endoscopic procedures

Tang et al. (2020) (47) Deep learning OCT and SER images Ophthalmology Intraoperative OCT

Yu et al. (2020) (48) Deep learning Video dataset Nonspecific
surgery

da Vinci surgical system doing 6 different surgical
tasks

Zhang et al. (2020) (4) Deep learning Preselected video footage from YouTube General surgery Laparoscopic surgery; breast, GI, and head and neck
surgery

Zhang and Gao (2020) (49) Deep learning Laparoscopic camera General surgery Laparoscopic surgery

Cheng et al. (2021) (50) Deep learning Magnetic endoscope Thoracic surgery Video-assisted thoracoscopy surgery

Deng et al. (2021) (51) Deep learning Image dataset Otolaryngology Identification of electrocautery surgical instruments
from 20 open-neck procedures

(Continued)
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TABLE 2 Continued

Study (year) Machine
learning
method

Sensor or system used Surgical
field

Procedure

Garcia Nespolo et al. (2021)
(52)

Deep learning Video recordings Ophthalmology Cataract surgery

Hein et al. (2021) (53) Deep learning RGB frames Neurosurgery Spine surgery

Sani et al. (2021) (5) Deep learning Inertial measurement units, strain gauges,
Polaris Spectra optical motion capture

Cardiac surgery Mock heart microsurgery procedure

Agarwal et al. (2022) (54) Deep learning Videos Nonspecific
surgery

Suturing task

De Backer et al. (2022) (55) Deep learning Annotated video frames from robotic
surgeries

Urology Robot-assisted partial nephrectomy and robot-assisted
minimally invasive esophagectomy

Despinoy et al. (2016) (56) Deep learning Videos Nonspecific
surgery

Surgical hand gesture recognition

Doughty and Ghugre (2022)
(57)

Deep learning Low-latency video Nonspecific
surgery

Surgery involving rigid surgical drill

Ebina et al. (2022) (58) Traditional machine
learning

Motion capture system General surgery Automatic assessment of laparoscopic surgery skills

Ebina et al. (2022) (59) Traditional machine
learning

Motion capture system Urology Tissue dissection task and parenchymal suturing task

Gazis et al. (2022) (60) Deep learning Video dataset General surgery Laparoscopy; 2 basic laparoscopic tasks (peg transfer
and knot tying)

Huang et al. (2022) (61) Deep learning Images; intelligent flexible endoscope
system

Nonspecific
surgery

Minimally invasive surgery

Kil et al. (2022) (62) Deep learning Cameras (Firefly MV USB 2.0, Point Grey
Research Inc., British Columbia, Canada)
and InertiaCube4 sensor

Nonspecific
surgery

Assessment of open surgery suturing skill

Müller et al. (2022) (63) Deep learning Intel RealSense D435i RGB camera General surgery Telestration for laparoscopic surgery

Pangal et al. (2022) (64) Traditional machine
learning

Intraoperative video recordings Neurosurgery Vascular injury control during endonasal surgery

Soleymani et al. (2022) (65) Deep learning JIGSAWS dataset; a dual sparse coding
algorithm

Nonspecific
surgery

Interpreting surgical trajectories

Tang et al. (2022) (3) Deep learning SECTR system; OCT Ophthalmology Ophthalmic microsurgery

Yamazaki et al. (2022) (66) Deep learning Video dataset General surgery Laparoscopic infrapyloric lymphadenectomy and
suprapancreatic lymphadenectomy during
laparoscopic gastrectomy for gastric cancer

Yibulayimu et al. (2022) (67) Traditional machine
learning

Six-dimensional force sensor embedded in
liposuction handle; OptiTrack camera

Plastic surgery Liposuction

Baldi et al. (2023) (6) Deep learning Zeiss Lumera microscope Ophthalmology Vitreoretinal surgery

Balu et al. (2023) (68) Deep learning Videos Neurosurgery Detection of surgical instruments in endoscopic
endonasal carotid artery laceration repair in a
perfused cadaveric simulator

Burton et al. (2023) (69) Deep learning RGB camera Nonspecific
surgery

Six-degree-of-freedom pose estimation of a
representative surgical instrument in RGB scenes

De Backer et al. (2023) (70) Deep learning Endoscopic video data Urology Robot-assisted partial nephrectomy and kidney
transplant

Gonzalez-Romo et al. (2023)
(11)

Deep learning Zeiss Pentero microscope; GoPro camera Neurosurgery Microvascular anastomosis simulation

Kiyasseh et al. (2023) (71) Deep learning Videos Nonspecific
surgery

Gesture recognition and skill assessment in robotic-
assisted surgery

Kögl et al. (2023) (8) Deep learning Single monocular RGB camera Neurosurgery Burr hole placement

Lin et al. (2023) (72) Deep learning Cameras General surgery Robot-assisted laparoscopic surgery

Louis et al. (2023) (73) Deep learning Video dataset Nonspecific
surgery

Hand-pose estimation

Luijten et al. (2023) (74) Deep learning Structured-light 3D scanners Oral surgery Oral and maxillofacial surgery

Ran et al. (2023) (75) Deep learning Image dataset Orthopedic
surgery

Surgical instrument detection

Yang et al. (2023) (76) Deep learning Videos General surgery Peritoneal closure

Yuan et al. (2023) (9) Deep learning High-resolution microscope camera Otolaryngology Mastoidectomy and cochlear implant

Zheng and Liu (2023) (77) Deep learning YOLOv7 Nonspecific
surgery

Minimally invasive surgery

Badilla-Solórzano et al.
(2024) (78)

Deep learning Annotated image dataset Oral surgery Wisdom teeth extraction surgery

Balu et al. (2024) (79) Deep learning Videos Neurosurgery Minimally invasive spine surgery; CSF leak; durotomy
repair

(Continued)
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TABLE 2 Continued

Study (year) Machine
learning
method

Sensor or system used Surgical
field

Procedure

Jurosch et al. (2024) (80) Deep learning Laparoscopic surgical videos recorded via
2D cameras

General surgery Surgical instrument location detection

Kil et al. (2024) (81) Deep learning Cameras Nonspecific
surgery

Assessment of open surgery suturing skill

Kim et al. (2024) (82) Deep learning Image dataset Neurosurgery Estimation of accurate localization of spinal fixation
instruments

Raymond et al. (2024) (83) Deep learning Surgical microscope Otolaryngology Mastoidectomy

Simoens et al. (2024) (10) Deep learning Endoscopic camera Urology Robotic surgery, exercise training

Sugiyama et al. (2024) (84) Deep learning Videos Neurosurgery Microvascular anastomosis training

Viviers et al. (2024) (85) Deep learning External optical camera Neurosurgery Spine surgery

ECG, electrocardiogram; GI, gastrointestinal; HD, high definition; JIGSAWS, Johns Hopkins University–Intuitive Surgical Inc. Gesture and Skill Assessment Working Set; OCT, optic coherence

tomography; RGB, red-green-blue; SECTR, spectrally encoded coherence tomography and reflectometry; SER, spectrally encoded reflectometry; SPECT, single-photon emission

computed tomography.

FIGURE 1

Flow diagram documenting the study selection process. Used with permission from Barrow Neurological Institute, Phoenix, Arizona.

Yangi et al. 10.3389/fsurg.2025.1528362
the primary learning paradigms of ML, whereas deep learning

is a distinct concept suitable for handling complex data

structures (95).

4.1.1 Supervised learning
Supervised learning is a methodology that trains AI by using a

dataset that is already labeled. This would be the equivalent of

giving a child a stack of images in which some are apples and

others are bananas. If the images are labeled, the child can learn

which label is associated with the apple and which with the

banana. When a new image appears without a label, they can

accurately label it.

Supervised learning deals with 2 problems: classification and

regression. Regression problems involve predicting a continuous

output with a value that can exist at any point within a range;

an example would be predicting Medical College Admission
Frontiers in Surgery 06
Test scores based on hours studied. The classification

problems ask the system to indicate a categorical output, such

as benign or malignant (93). These systems are essential for

problems that require accurate predictions and the ability to

generalize new data. This learning can recognize and track

instruments, hand movements, and anatomical landmarks in a

surgical application.

4.1.1.1 Application in using surgeon hand motions to
predict surgical maneuvers
Azari et al. (33) asked 37 clinicians, ranging from medical students

to retirees, to perform simple and running subcuticular suturing.

The hand movements were recorded during the suturing tasks,

and 3 ML techniques were applied: decision trees, random

forests, and hidden Markov models. These techniques were used

to classify surgical maneuvers every 2 s (60 frames) of video. The
frontiersin.org
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FIGURE 2

Bar chart illustrating the yearly distribution of publications exploring the application of machine learning (ML) and artificial intelligence algorithms in
surgical practice through hand and instrument tracking. Since 2018, there has been a shift in the preferred types of ML algorithms used in these
studies, with deep learning techniques gaining prominence over traditional machine learning methods. Although applications of these
technologies to surgical practice through hand and instrument tracking were relatively sparse between 2013 and 2017, research interest in these
technologies has increased substantially since 2018. Used with permission from Barrow Neurological Institute, Phoenix, Arizona.

Yangi et al. 10.3389/fsurg.2025.1528362
random forest predictions correctly classified 74% of all video

segments, whereas the hidden Markov model improved this to

79%. The results highlight the potential of ML for predicting

surgical maneuvers using video data. This approach is promising

for improving surgical training and objective assessment by

providing a more efficient way to review surgical videos.
4.1.2 Unsupervised learning
Supervised learning requires data to be prelabeled, whereas

unsupervised learning does not rely on any predefined labels for

the data. Instead, it identifies intrinsic patterns within the data

provided to the program. There are 2 different types of

unsupervised learning: clustering and dimensionality reduction.

Clustering involves the use of algorithms such as k-means and

hierarchical clustering to group things together. Dimensionality

reduction involves principal component analysis and

T-distributed stochastic neighbor embedding, which are used to

reduce the complexity of the data (86).

4.1.2.1 Application in vision-based tracking of surgical
instruments
Ryu et al. (2) demonstrated that they could identify the movement

of surgical instruments and detect anomalies in their movements

using an unsupervised learning method with k-means clustering.

By combining this technique with a supervised CNN, they

developed a collision warning system that enhanced surgical
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safety by reducing the risk of tissue perforation and

instrument collisions.

4.1.3 Reinforcement learning
Reinforcement learning is a type of ML that resembles

unsupervised learning in that it does not use prelabeled samples

for training. However, it interacts continuously with the

environment, which provides feedback, and through this

mechanism, it can produce a desired behavior (86). This type of

learning focuses on optimization through trial and error, which

makes it suitable for dynamic and complex environments like

surgery. There is high potential for its use, with possibilities

ranging from skill acquisition for surgical robots to real-time

decision support and personalized surgical assistance.

4.1.4 Deep learning
Deep learning is another subset of ML that relies on artificial

neural networks with multiple layers. This form of ML excels at

learning from large amounts of data, which makes it suitable for

applications like healthcare, visual recognition, text analytics, and

cybersecurity (96). Within deep learning, there are techniques

that can be classified as supervised learning. These include CNNs

and recurrent neural networks. CNNs are helpful for image

recognition and analysis, whereas recurrent neural networks are

suitable for sequential data like time series or natural

language processing.
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FIGURE 3

Categorization of artificial intelligence and machine learning. Artificial intelligence algorithms can be categorized into 2 groups: machine learning and
non-machine learning. ML algorithms can be further categorized in 3 main groups: deep learning, reinforcement learning, and traditional machine
learning. Furthermore, all these groups can be further divided into various subgroups. CNN, convolutional neural network; GAN, generative
adversarial network; GNN, graph neural network; MLP, multilayer perceptron; RNN, recurrent neural network. Used with permission from Barrow
Neurological Institute, Phoenix, Arizona.
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4.1.4.1 Application in estimation of the 6-degree-of-
freedom poses of surgical instruments
CNNs were used by Burton et al. (69) to estimate the 6-degree-of-

freedom poses of surgical instruments. The CNN was trained on a

large dataset of simulated and real-world images. In simulated

scenes, CNN achieved mean in-place translation errors of 13 mm

and mean long-axis orientation errors of 5°. These errors

increased to 29 mm and 8° in the real-world scenes. This

demonstrated that the CNN can effectively estimate the 6-degree-

of-freedom poses of surgical instruments in real-time, offering an

alternative to marker-based tracking methods.

4.1.4.2 Application in hand tracking for surgical
telestration
A study by Müller et al. (63) aimed to develop a real-time system

that could track hand movements to use in surgical telestration,

potentially aiding in surgical training via the augmented reality

visualization of surgeons’ hands. A total of 14,000 annotated

images were used as the dataset, and the model architecture

included bounding box detection, skeleton tracking, and hand

segmentation. The system achieved a mean detection accuracy of
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98% and a Dice similarity coefficient for hand segmentation of

0.95, indicating high segmentation accuracy. Deep learning

proved effective for developing real-time hand-tracking systems.
4.1.4.3 Application in neuronavigation
Kögl et al. (8) used this ML methodology to develop a tool-free

neuronavigation system using a deep learning model, a single

red-green-blue (RGB) camera, and a laptop. This system

achieved a high level of accuracy with a target registration error

of 1.3 cm and provided real-time guidance for craniotomy

planning and execution.
4.1.4.4 Application in hand gesture recognition
Karrenbach et al. (97) created a dynamic hand gesture recognition

system using electromyography (EMG) signals and a deep learning

methodology known as bidirectional LSTM. This system works by

classifying hand gestures and reached an accuracy of 79.5%

through a recalibration training scheme. This study highlighted

the potential of this type of ML to improve the accuracy and

reliability of hand gesture recognition systems.
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FIGURE 4

Bar chart showing the surgical fields in which machine learning (ML)
algorithms are most commonly applied through hand and
instrument tracking methods. As illustrated in the chart, the use of
ML algorithms in hand and instrument tracking methods is most
widespread in general surgery, neurosurgery, and ophthalmology.
However, research has also begun in various surgical fields,
including oral surgery, orthopedics, plastic surgery, otolaryngology,
urology, cardiac surgery, and thoracic surgery. The nonspecific
surgery group includes studies focused on surgical simulation
training, hand pose estimation, suturing, knot tying, and basic
laparoscopic and endoscopic training, which do not belong to any
particular surgical field. Used with permission from Barrow
Neurological Institute, Phoenix, Arizona.
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4.1.4.5 Application in instrument tracking for ophthalmic
surgical maneuvers
Tang et al. (39) initially developed a deep learning–based

adaptively sampled spectrally encoded coherence tomography

and reflectometry (SECTR) program for intraoperative optical

coherence tomography for real-time imaging during ophthalmic

surgical maneuvers. A deep learning model with a CNN was

used to track surgical instrument positions and sample

instrument tips. The study presented a novel real-time automated

tracking of surgical instruments using deep learning.

Tang et al. (3) used a similarmethod to track surgical instruments,

and the results demonstrated a resolution-limited tracking accuracy

with a mean pixel error statistically significantly lower than the

resolution limit of 2.95 pixels. This finding was also true for speed,

depth, and orientation variations. This technology combines

multimodal imaging with deep learning and shows high accuracy

and speed. It shows promise for improving surgical outcomes by

enhancing surgical visualization. Furthermore, tracking surgical

instruments can help achieve greater precision during procedures,

reduce errors, and make surgical interventions more effective.

4.1.4.6 Application in automating hand tracking using
computer vision
Zhang et al. (4) also developed a method to automate the

detection and tracking of surgeon hand movements using
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computer vision and a CNN. Data were collected from

publicly available YouTube videos annotated with spatial

bound boxes. The results showed an average mean precision of

70.4%, and 75.4% with fine-tuning of the dataset. The findings

highlight the potential of computer vision for effective hand

tracking. It provided a foundation for developing automated

systems for surgical skill assessment, leading to improved

surgical outcomes and training.

4.1.4.7 Application in video-based surgical skill assessment
using three-dimensional (3D) CNNs
Funke et al. (37) investigated a method for automatic, objective

assessment of surgical skills using only video data. Their study,

which used a 3D CNN and a temporal segment network trained

on a kinetics dataset, demonstrated significant performance

improvements. The approach achieved high classification

accuracies for surgical skill assessment, with accuracy ranging

from 95.1% to 100%. The findings reaffirm the reliability of

the deep learning approach in evaluating surgical skills,

paving the way for advancements in surgical training

and outcomes.

4.1.4.8 Application in instrument segmentation with
TernausNet during temporal bone surgery
Yuan et al. (9) used an ML application known as TernausNet, a

deep learning method, to achieve accurate segmentation of

surgical instruments during temporal bone surgery. Video

footage of 15 cochlear implant surgeries was collected, with a

total of 744 annotated images. Results were measured as F1 dice

scores, a single metric that combines precision and recall,

evaluating the accuracy of a model. Binary segmentation achieved

an F1 dice score of 95% during training and 87% during

validation, and multiclass segmentation achieved an F1 score of

62% during training and 61% during validation. Intersection over

union for binary segmentation was 91% during training and 77%

during validation. Overall, the findings confirm the accuracy and

practicality of ML-based segmentation.
4.2 Types of sensors used in surgical motion
and hand tracking

Technological advancements have enabled the development of

hand-tracking tools to effectively analyze the motion of surgical

instruments and hands, which can be used to train surgical

residents and enhance their technique and motion efficiency.

Several sensor systems for tracking surgical motions have been

proposed and used, including optical, inertial, electromagnetic,

ultrasonic, and hybrid systems that combine different tracking

systems (Table 2). Here, we summarize the different types of

sensors, their functions, and their applications in tracking

surgical hand motions.

4.2.1 Vision-based methods
Early techniques for tracking surgical instruments typically

relied on vision-based methods. One example is a 2014 study
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FIGURE 5

Vision-based method for surgical-instrument tracking. Loukas et al. (98) have proposed an adaptive color update for the endoscopic instrument-
tracking process. This figure depicts the mean color values, including hue, saturation, and lightness, in relation to the instrument’s movement
away from the endoscope’s camera. The marker’s color significantly changes as the instrument moves in the training box. Used with permission
from Loukas C, Lahanas V, Georgiou E. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical
simulation training. Int J Med Robot. 2013;9(4):e34-51.
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by Partridge et al. (22), where colored bands on surgical

instruments were used for motion tracking via computer

vision processing. Similarly, a 2013 study by Loukas et al. (98)

combined vision-based tracking using colored tips with the

Hough-Kalman approach. Adaptive markers, capable of

dynamically changing colors as the surgical instrument moved

within the training box, were used (Figure 5) (98). More

recently, computer vision processing has also been used to

recognize surgical instruments to prevent surgical objects from

being left behind during operations (99). Since then, newer

and more precise methods of tracking instruments and hand

motions have been proposed.
4.2.2 Optical sensors
Optical sensors, such as the Polaris Vega and Stryker NAV3i

systems, use infrared light and navigation markers to precisely

track surgical motions. A fixed reference tool near the surgical

field aids in localizing movements within the surgical volume, as

the optical tracker detects infrared light reflected from the

markers to determine the coordinates of the labeled instrument

(100). Challenges like visual occlusion have been addressed by

implementing multicamera modules, enabling instrument

tracking from multiple angles (100).
Frontiers in Surgery 10
4.2.3 Simple video recordings
Simple video recordings of surgeries can also be used to

effectively analyze and monitor the movement of surgical

instruments and hands during operations. For example, motion-

tracking systems can assign coordinates to instruments in

selected videos, depicting the same surgical procedure with

varying depth, surgical side, magnification, and resolution

(10, 83). These datasets can be stored in various formats and

analyzed using CNNs to enable precise motion tracking.

In a study by Raymond et al., mastoidectomy surgical videos

were used to track surgical instruments (83). The datasets were

stored in COCO JSON format, and Detectron, an open-source

Facebook AI research CNN, was employed to identify the

surgical instruments. Subsequently, the motions of these

instruments were tracked using the mastoidectomy instrument

tracking module (83).
4.2.4 Automated instrument tracking
Automated instrument tracking using SECTR has also been

proposed. This method was used in 2 studies by Tang et al.

(39, 47), in which the movements of the 25G ILM forceps, a

surgical instrument, were tracked by spectrally encoded

reflectometry. The forceps were tracked by training a CNN,
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FIGURE 6

Automated instrument-tracking using SECTR. Tang et al. (39) trained a CNN to track 25G ILM forceps, a surgical instrument, to allow 4D visualization
of the surgical motion during ophthalmologic surgeries. (A) Five-averaged SER image and representative OCT image demonstrating the tip of the
forceps (red box) in an ex vivo bovine eye. Movement of the instrument out of the OCT plane (blue dashed line) and adaptive sampling can be
seen on (B–D). CNN, convolutional neural network; OCT, optic coherence tomography; SECTR, spectrally encoded coherence tomography and
reflectometry; SER, spectrally encoded reflectometry; 4D, four-dimensional. Used with permission from Tang E, El-Haddad M, Malone JD, et al.
Automated instrument-tracking using deep-learning-based adaptively-sampled spectrally encoded coherence tomography and reflectometry
(SECTR). Investigative Ophthalmology & Visual Science. 2019;60(9):1276-1276.
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allowing 4-dimensional (4D) visualization of surgical motion

during ophthalmological surgeries (Figure 6) (39, 47).

4.2.5 Tool-free methods
Tool-free methods of tracking hand motion have been

explored. In a study conducted by Kögl et al., a single RGB

camera combined with ML-based hand pose estimation was used

to track hand motion (8). The model was trained using 21 hand

landmarks with both real and synthetic images. The Perspective-

n-Point problem was then solved, and 3D coordinates of the

hand landmarks were obtained. Although the study aimed to

facilitate tool-free neuronavigation by using a fingertip to select

anatomical landmarks, it faced challenges caused by a high level

of interference due to 3D landmark positions. To address this, 2

methods were implemented to filter out the noise.

Similarly, Gonzalez-Romo et al. (11) reported a sensor-free

hand-tracking method using a motion-detector program created

with the Python programming language (Python Software

Foundation, https://www.python.org/) and a machine learning

system developed by Google (Mediapipe) (https://ai.google.dev/

edge/mediapipe/solutions/guide). The aim was to analyze hand

movements during microanastomosis training. They also

demonstrated the effectiveness of ML in assessing hand

movement metrics without any physical sensors (Figure 7) (11).

4.2.6 Surgical instrument tracking and hand-eye
coordination

Systems like the one proposed by AbuSneineh and Seales (20)

measure hand motions along with heart rate and body movements,

including those of the arms, head, and eyes, using dedicated

cameras (20). Yang et al. explored hand-eye coordination,

hypothesizing that a gaze-contingent framework using binocular

eye-tracking could aid robotic surgeries (Figure 8) (101). The

results highlighted that enhanced surgical instrument manipulation

and hand-eye coordination could be achieved by analyzing

surgeons’ saccadic eye movements and ocular vergence (101).
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4.2.7 Inertial sensors
Inertial sensors track motion based on the principle of inertia,

which states that an object continues to move unless acted upon by

an external force. These wearable sensors include accelerometers

(tracking linear acceleration), gyroscopes (measuring angular

velocity), and magnetometers (detecting magnetic field changes)

(102). These different components are typically integrated into an

inertial measurement unit (IMU) when used to detect human

motion and posture to increase the accuracy of their measurements

(102). The application of inertial sensors has been shown to be

successful, with Sani et al. using a chain of 12 IMUs for surgical

hand tracking (Figure 9) (5). These wearable IMUs focus on

accurately tracking 4 main motions: joint angles of the digits and

wrist, global hand position and orientation, global instrument

position and orientation, and jaw angle of surgical instruments. The

goal was to increase the degree of freedom to allow for smoother

and more natural movements by the surgeon (5). Given that the

index, middle finger, and thumb are the significant contributors to

fine grasping and the use of the surgical instruments (in this case,

Castroviejo needle-holder and forceps), each finger was tracked by 3

separate IMUs. The wrist joint was tracked via 2 IMUs, a reference

point IMU on the forearm and one on the palm, with the rest of the

IMUs being placed strategically to capture the best movements of

the remaining joints of the hand.

The Polaris Spectra (Northern Digital Inc.) optical sensors

were used to precisely track global hand position and

orientation, with infrared markers attached directly to the

Castroviejo surgical instruments and the surgeon’s wrist (5).

A significant disadvantage of the IMU system, however, is the

accumulation of small errors in position estimation over time,

leading to a reduced accuracy of tracking. These sensors

typically drift over time and are sensitive to surrounding

magnetic interference. To mitigate this issue, this study

attempted to decrease drift by measuring relative angles

between IMUs; in addition, they recalibrated the recordings

every 5 min (5). IMU sensors have also been combined with
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FIGURE 7

Hand tracking using a machine learning system developed by Google (Mediapipe) (https://ai.google.dev/edge/mediapipe/solutions/guide). The neural
network automatically detects hands without requiring preliminary registration. The hand-tracking process starts with activating a palm detector,
followed by a landmark detector once the hands are located in the image. At the beginning of the hand-tracking session, the operator is asked to display
both hands to the camera to ensure swift activation of the model. The effectiveness of hand detection is validated by displaying real-time tracking data
during the simulation. This photograph was taken during microvascular anastomosis training at the Loyal and Edith Davis Neurosurgical Research
Laboratory, Barrow Neurological Institute, in Phoenix, Arizona. Used with permission from Barrow Neurological Institute, Phoenix, Arizona.

FIGURE 8

Gaze-contingent perceptual docking. Yang et al. (101) presented the general concept of perceptual docking for robotic control. The aim was to
investigate the potential use of perceptual docking for knowledge acquisition in robotic-assisted minimally invasive surgery. This figure represents
the different aspects of the gaze-contingent perceptual docking. (A) The viewpoint of the surgeon using this system. (B) The surgical field and
surgical instruments are shown intraoperatively. (C) External view of the surgeon and the system. (D) The binocular tracking of the eyes. (E and F)
The application of augmented reality to gaze-contingent eye tracking, showing (E) nonphotorealistic augmented reality rendering and (F) fused
with the original video. Used with permission from Yang G-Z, Mylonas GP, Kwok K-W, et al. Perceptual Docking for Robotic Control, in: T. Dohi,
I. Sakuma and H. Liao (Eds.), Medical Imaging and Augmented Reality, Berlin, Heidelberg: Springer Berlin Heidelberg. 2008;21–30.
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FIGURE 9

Inertial sensors. Sani et al. (5) have used inertial sensors for recording and mapping a surgeon’s hand’s gross and fine motions during cardiac
microsurgery. This figure is a pictographic representation of the 12-unit-IMU sensor device used in this study. Each sensor is attached to a specific
joint to allow precise measurement of position change. The DIP and PIP joints are represented by j1 and j2, respectively. The axes of the MCP joint
are represented by j3 and j4. DIP, distal interphalangeal joint; IMU, inertial measurement unit; MCP, metacarpophalangeal joint; PIP, proximal
interphalangeal joint. Used with permission from Sani MF, Ascione R, Dogramadzi S. Mapping Surgeon’s Hand/Finger Motion During Conventional
Microsurgery to Enhance Intuitive Surgical Robot Teleoperation. ArXiv. 2021;abs/2102.10585.
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optical tracking methods to overcome the line-of-site barrier

associated with optical tracking methods (103).

4.2.8 Multimodal sensor systems
Multimodal systems integrate different sensor types, such as

inertial and EMG technologies, to enhance tracking accuracy and

address the limitations of single-sensor modalities. Kowalewski

et al. published a study in which 28 participants, including 8

novices, 10 intermediates, and 10 experts, completed laparoscopic

suturing and knot tying while wearing the Myo armband, a

motion-sensing EMG technology combined with inertial sensors

that can interpret and track motion (36). The inertial sensors

within this technology can measure angular velocity, acceleration,

and arm orientation in addition to Euler orientation (36).

EMG electrodes, available as dry or wet types, have been used

to track hand motion (97). Dry electrodes are easy to use and attach

directly to the skin, whereas wet electrodes require gel or paste but

provide higher-quality electrical signals. These EMG electrodes

come in both a wireless and a wired form. In a proof-of-concept

study by Karrenbach et al. (97), hand gesture recognition using

EMG electrodes was demonstrated using the MiSDIREKt

(Multisession Single-subject Dynamic Interaction Recordings of

EMG and Kinematics) dataset. This EMG hardware consisted of

an armband with a wireless 8-channel surface EMG using dry
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electrodes made of carbon-black infused thermoplastic

polyurethane. It tracked various hand gestures, motions, and

dynamic interactions (97).

4.2.9 Electromagnetic sensors
Electromagnetic sensors measure the voltage change created by

object movement in space. In the case of hand-tracking models, a

coil is wrapped around a ring on a finger (104). This coil is fitted

with a printed circuit board that generates a current through the

coil, creating a magnetic field signal. This magnetic field signal is

then detected by sensors attached to a wristband, which

approximate the coil’s pose on the finger. However, this is not an

exact measurement; a calibration process is needed to help filter

out parameters such as noise, gain, and bias. These systems use

magnetic fields to track object movement without line-of-sight

limitations, but their accuracy can be affected by device

interference and surrounding magnetic noise (104). A study by

Bordin et al. utilizing an augmented reality helmet, HoloLens 2,

found promising results when applying this technology to hand

tracking (105). This study used an electromagnetic measuring

system to track hand motion (categorized as either no hand

motion, simple hand motion, or hand motion while using a 3D-

printed object) by wearing linked sensors on the index finger and

thumb while wearing the HoloLens 2 helmet (105).
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FIGURE 10

Surgical skill assessment and task recognition. Wang and Fey (30) presented an analytic framework with a parallel deep learning architecture, SATR-DL,
to evaluate trainee performance and to recognize surgical training activity in robotic-assisted surgery. They aimed to improve surgical skill assessment
and task recognition with deep neural networks. This figure illustrates a complete framework stated in this study, flowing from left to right. The far left
image shows the da Vinci Surgical System, with which a 4-second clip of the surgical motion is captured using da Vinci end effectors. These data are
then captured and converted to kinematic measurements, which are then analyzed by the SATR-DL deep architecture. Once analyzed, the
measurements are classified into task recognition and skill assessment. GRU, gated recurrent unit; RNN, recurrent neural network; SATR-DL, skill
assessment and task recognition with deep learning. Used with permission from Wang Z, Fey AM. SATR-DL: Improving Surgical Skill Assessment
And Task Recognition In Robot-Assisted Surgery With Deep Neural Networks, 2018 40th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC). 2018;1793–1796.
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4.2.10 da Vinci Surgical System
Hand motion has also been tracked using advanced systems

like the da Vinci Surgical System. Wang and Fey used an end-to-

end motion analysis framework with a multioutput deep learning

architecture (SATR-DL) to track surgical trainee motions as raw

kinematics during specific tasks (30). This method allowed for

the representation of both spatial and temporal dynamics of

hand motion during surgical tasks. Once the raw motion

kinematics had been recorded, they could be input into

SATR-DL to recognize the specific task and assess skill level

(Figure 10) (30).
4.3 Applications of ML and hand and
instrument tracking in surgery

ML and hand-tracking technologies are rapidly advancing and

can potentially improve a range of healthcare technologies in areas

such as preoperative planning, teaching modalities, intraoperative

assistance, postoperative analysis, and rehabilitation. This section

discusses recent and upcoming developments in ML and hand-

tracking technologies and the potential for beneficial disruption

in the surgical field. Some limitations of these technologies are

addressed, and the developments necessary to ensure their

widespread integration and use in the surgical field are discussed.
4.3.1 Surgical instrument tracking
One of the most significant opportunities for ML and hand-

tracking technologies to disrupt the surgical field is with

intraoperative assistance. One way these technologies can be used

is by using computer models to track and record the movement

of surgical instruments in the hands of different surgeons.

Zhang and Gao proposed a marker-free surgical instrument

tracking framework based on object extraction via deep learning
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(49). They compared their deep learning framework with a

marker-free tracking-by-detection framework. They found that

the proposed deep learning framework improved accuracy by

37%, compared with a 23% improvement using the other model.

The findings highlight the rapid development of accurate and

efficient tracking technologies for use in various procedures (49).

Surgical instrument tracking has also been used with analysis

by AI. Baldi et al. created a model of an eye and then recorded

several videos in which surgical instruments were moved

throughout the model eye. Several characteristics of the surgical

tools were labeled in the frames of the videos, such as location,

depth, and tool type (6). Two different deep learning models

were trained to predict the tool characteristics, and their

performances were recorded. They found that the accuracy of the

classification model on the validation dataset was 83% for the x-y

region, 96% for depth, 100% for instrument type, and 100% for

laterality of insertion. The close-up detection model was

performed at 67 frames per second with a mean average

precision of 79.3%. The findings illustrate how deep learning

models can enable software-based safety feedback mechanisms

during surgery and document metrics to guide further research

for optimizing surgical outcomes (6).
4.3.2 Objective skill assessment and task
recognition in surgery

Objective skill assessment and task recognition in surgery have

also been areas of interest in using deep neural networks. Wang

and Fey created an analytic framework with a parallel deep

learning architecture, SATR-DL, to assess trainee expertise and

recognize surgical training activity (30). According to the results,

the deep learning model was able to successfully recognize

trainee skills and surgical tasks, including suturing, needle

passing, and knot tying. The reported accuracies of the deep

learning model were 0.960 and 1.000 in skill assessment and task
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recognition, respectively. Ultimately, the findings underscored the

potential of these neural networks for efficient quantitative

assessments in surgical applications, including robotic surgery (30).

4.3.3 Pose estimation of the surgical tool
Sani et al. attempted to develop a system to train a deep neural

network by mapping real-time data acquisition inputs of wrist,

hand, and surgical tools during mock-up heart microsurgery

procedures (5). The proposed network was trained to estimate

the poses of the tools from refined hand joint angles, and the

outputs were surgical tool orientation and jaw angle obtained by

an optical motion capture system. It was found that the neural

network could accurately estimate the surgical instrument’s pose

from the recorded hand movements of the surgeon, achieving a

mean squared error of less than 0.3%. This system is suggested

to potentially improve the remote teleoperation of similar

surgical tools in microsurgery (5).

4.3.4 Applications in robotic surgery
Deep learning models can also potentially be used to evaluate

surgical skills in robotic surgery procedures. One of the

difficulties with assessing these skills is that quantifying them

requires having an accurate way to track the movement of

surgical instruments (7). Lee et al. proposed a deep learning–

based surgical instrument tracking algorithm to evaluate

surgeons’ skills in performing robotic surgery procedures. They

overcame the drawbacks of occlusion and maintenance of the

identity of the surgical instruments, and motion metrics were

used to develop the deep learning models (7). It was found that

the surgical skill prediction models had an accuracy of 83%

with Objective Structured Assessment of Technical Skill and

Global Evaluative Assessment of Robotic Surgery. Ultimately,

it was argued that the performance of the deep learning

model demonstrated how an automatic and quantitative

method could be used to evaluate surgical skills, in contrast to

previous methods (7).

4.3.5 Endoscopic instrument tracking
Loukas et al. also adequately addressed the issue of occlusion

handling by using 2 different tracking algorithms for endoscopic

instrument tracking (98). The proposed method was validated

based on several image sequences for tracking efficiency, pose

estimation accuracy, and applicability in augmented reality-based

training. The absolute average error of the tip position for the

tool was 2.5 mm, and the average error of the instrument’s angle

to the camera plane was 2°. The approach showcased promising

results for applying augmented reality technologies to

laparoscopic skill training using a computer vision framework (98).

4.3.6 Intraoperative real-time feedback
Although ML and hand-tracking technologies have been

documented to analyze surgical techniques retrospectively, there

has also been a significant interest in developing models that can

provide real-time feedback in intraoperative settings. Yibulayimu

et al. used ML to create a model that automatically evaluated the

trainee’s performance of liposuction surgery and provided visual
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postoperative and real-time feedback (67). The model was

assessed on liposuction surgery datasets, with an optimistic

accuracy ranging from 89% to 94%. The findings highlight the

potential for ML and other technologies to provide immediate

feedback to surgical professionals (67).
4.3.7 Surgical skill assessment during cataract
surgery

Morita et al. sought to use the potential of ML in evaluating

the surgical skills of ophthalmologists in cataract surgery (45).

They proposed a method that used image classification

and segmentation networks to detect surgical problems and the

surgical instrument, respectively. The network could detect

surgical problems with an area under the receiver operating

characteristic curve of 0.97 and detect the tips of the forceps

and incisional sites with 86.9% and 94.9% detection

rates, respectively (45).
4.3.8 Instrument tracking and adaptive sampling
models for 4D imaging

Tang et al. proposed a deep learning–based automated

instrument tracking and adaptive sampling model that could be

used for 4D imaging of ophthalmic surgical maneuvers (3). The

findings indicate that real-time localization of surgical

instruments can be achieved using SECTR with the deep learning

model. Moreover, adaptive sampling enhances the visualization

of instrument-tissue interactions by increasing sampling density

without sacrificing speed (3).
4.3.9 ML-based surgical workflow analysis
Using surgical videos for AI-based analysis holds immense

potential to identify defects and refine surgical techniques.

Khan et al. (106) demonstrated this potential by employing

Touch Surgery (Digital Surgery Ltd.) to develop and validate

an ML-driven stage and procedure analysis tool. Expert

surgeons labeled the stages and steps of 50 anonymized

endoscopic transsphenoidal surgery videos, with 40 videos used

to train a CNN. Based on 10 repetitive videos by Touch

Surgery, the model’s evaluation showed promising results, with

the ML model’s automatic detection of surgeons’ stage and

procedure recognition.

The results indicated that the longest phase was the sellar phase

(median 28 min), followed by the nasal phase (median 22 min) and

the closing phase (median 14 min). The longest step was tumor

identification and resection (median 17 min). In comparison,

posterior septectomy and sphenoid septation resection (median

14 min) and anterior sellar wall (median 10 min) varied

considerably within the recorded stages.

Despite variations in video appearance, stage duration, and

stage sequence, the model demonstrated high accuracy in

recognizing surgical steps (91% accuracy, 90% F1 score) and

procedures (76% accuracy, 75% F1 score). These findings

underscored the reliability of ML-based surgical workflow

analysis, which has numerous potential applications, such as

education, operational efficiency, and patient outcomes (106).
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4.3.10 AI-based surgical phase recognition
and analysis

Cheng et al. (107) presented an AI-based automated surgical

phase recognition system in laparoscopic cholecystectomy. That

study represented an excellent attempt to combine the

capabilities of CNNs and LSTM networks to recognize the

operative phases of a sequence of frames from a given

laparoscopic cholecystectomy video. Although it is well-known

that CNNs and LSTMs are highly effective techniques for

analyzing medical data, this work leveraged CNNs to extract

spatial information from adjacent pixels to generate frame-based

visual features. Then, it passed them to an LSTM to capture the

temporal transitions of the visual features across consecutive

frames. This approach achieved very high accuracy in

laparoscopic cholecystectomy operative phase recognition.

Kitaguchi et al. (108) aimed to develop a deep learning model

for automatic surgical phase recognition during video laparoscopic

sigmoidectomy. This model can be used for real-time phase

recognition and to evaluate the accuracy of recognizing surgical

steps and actions using image data via a CNN. The automatic

surgical phase recognition achieved an accuracy of 91.9%,

whereas the recognition of extracorporeal actions and irrigation

reached accuracies of 89.4% and 82.5%, respectively. Additionally,

the system performed real-time phase recognition at 32 frames

per second, with the CNN facilitating the recognition of surgical

steps and actions based on manually annotated data. The results

highlight the system’s high accuracy in automatically recognizing

surgical steps and specific actions. Furthermore, it confirmed the

feasibility of a real-time automatic surgical phase recognition

system with a high frame rate (108).
4.3.11 Future directions
Ultimately, expanding ML and hand-tracking technologies pose

considerable opportunities for disruption in the surgical field. From

improving the ability of trainees to learn valuable techniques through

retrospective analysis to real-time feedback in intraoperative settings,

there are myriad applications for these technologies. One limitation

of these technologies is the lack of more extensive validation studies

to more comprehensively evaluate the accuracy of these ML and

hand-tracking models. In addition, future research needs to be

done across a more diverse set of procedures to showcase these

technologies’ potential for beneficial disruption. Nonetheless, these

technologies are rapidly expanding and improving, and surgical

professionals should strongly consider how they can improve

various areas within the field.
4.4 Applications of ML and hand and
instrument tracking in neurosurgery

AI and ML have been applied to neurosurgery in several ways.

Deep learning approaches have allowed neurosurgeons to track the

movements of instruments intraoperatively. For example, in a

paper by Raymond et al., a deep learning network was initially

trained with images from surgery to recognize and track surgical
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instruments. The Residual Network 101, a CNN consisting of

101 deep layers, was used. These types of networks work by

deconstructing aspects of the image and analyzing the different

spectral bands in the image, allowing the network to identify

specific components within the image. From here, the images

were deconstructed in both low and high levels of resolution,

eventually allowing for every detail of the image to be identified.

This process is crucial for properly identifying surgical

instruments within a video. After the deconstruction of these

images, they were analyzed by a region proposal network, which

allows for determining regions of interest. Once regions of

interest have been identified, they are tested by the CNN to

determine the accuracy of instrument recognition and prediction

accuracy. Bounding boxes are used as a pictographic

representation of these predictions. A computer vision model was

used to track instruments during mastoidectomy surgeries. These

deep learning technologies allowed the authors to track the exact

coordinates of the surgical instruments during the procedure.

Images from the procedure were analyzed as described above to

determine the precise coordinates of these instruments and the

bounding boxes. The model then measured outcomes such as the

intersection over union ratio, accuracy, precision, and average

precision (Figure 11) (83).

Other papers have also proposed ML methods to track objects

or hands’ movements in surgery. Kögl et al. published a study in

2022 describing the use of ML to track the movements of hands

via hand topology (8). This tool-free neuronavigational method

focused on 21 landmarks assigned to a hand and used real and

synthetic images to train 2 deep learning networks to estimate

hand pose. Real images were used to understand the

2-dimensional coordinates of the hand, whereas synthetic images

were used to train the model on relative depth. The Google

MediaPipe ML framework was implemented to determine the

2.5-dimensional hand pose. However, the aim was to estimate

the 3D pose. Therefore, once these images had been used to

train the neural networks, solving the Perspective-n-Point

problem was then necessary. This was done by determining

where the hand was in space relative to the frame, allowing the

determination of the 3D hand pose. Once the 3D hand pose had

been estimated, these coordinates were inputted into the 3D

Slicer using the OpenIGTLink. The overall aim was to have tool-

free neuronavigation that would allow the estimation of hand

pose to allow neurosurgeons to use their fingertips to plan

craniotomies instead of conventional pointers (Figure 12) (8).

Similar methods of hand pose estimation have been used in

neurosurgical procedures such as microanastomosis. Gonzalez-

Romo et al. published a study that used 21 hand landmarks in

conjunction with ML to identify gross and fine movements during

microanastomosis procedures for evaluating surgeons’ performance

(Figure 7) (11). The Python programming language was used to

develop a motion detector incorporating Google Mediapipe

(https://ai.google.dev/edge/mediapipe/solutions/guide). This motion

detector was able to analyze videos of anastomosis procedures to

track the motion of hands in a physical sensor-free manner.

In a recent study by Kim et al. (82), a deep learning–based

object detection model (YOLOv8 OBB Framework) was used to
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FIGURE 11

Machine learning (ML) applications in neurosurgery. Raymond et al. (83) tried to develop a convolutional neural network–based computer vision
model to track 2 surgical instruments used in mastoidectomy procedures (drill and suction irrigator). Intraoperative video recordings were used to
teach the model. Then, the model measured the outcomes, such as accuracy, precision, and average precision. The study stated 2 extremes
regarding detection accuracy. (A) Detection accuracy for both the drill and the suction-irrigator was 100%. (B) Detection accuracy for the drill was
98%, but absent for the suction irrigator. Green bounding boxes were generated by the ML model to enhance visualization. Used with permission
from Raymond MJ, Biswal B, Pipaliya RM, Rowley MA, Meyer TA. Convolutional neural network-based deep learning engine for mastoidectomy
instrument recognition and movement tracking. Otolaryngol Head Neck Surg. 2024;170(6):1555–60. doi: 10.1002/ohn.733.

FIGURE 12

Machine learning (ML) application in neurosurgery tool-free methods. In an ML-based hand pose estimation study, Kögl et al. (8) presented a new
tool-free neuronavigation method using an RGB camera during burr hole placement. This figure shows the stepwise process used to track hand
motion for landmark selection. (A) Illustration of the monocular RGB camera used for this experiment to capture the motion of the hand.
(B) Illustration of the hand being used to select landmarks for burr hole placement. (C) Computed tomography showing predefined anatomical
landmarks. (D) Photograph showing the final position of the burr hole placement for a craniotomy using this system. Used with permission from
Kögl FV, Léger É, Haouchine N, et al. A Tool-free Neuronavigation Method based on Single-view Hand Tracking. Comput Methods Biomech
Biomed Eng Imaging Vis. 2023;11(4):1307–1315. doi:10.1080/21681163.2022.2163428.

Yangi et al. 10.3389/fsurg.2025.1528362
estimate the accurate localization of spinal fixation instruments

during spinal surgery. The model was trained using various

datasets of images from different manufacturers. Their model’s

F1 score is 0.86 (1.00 precision and 0.80 recall). Although the

model had high precision, the study stated that it had some

limitations in detecting all the instruments present.

Applications of ML algorithms in neurosurgery are on the

rise and have a significant potential for development. As

improvements in ML technologies progress, their integration into

neurosurgery is becoming more widespread. This trend highlights

the opportunities for leveraging ML algorithms to enhance
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neurosurgical procedures such as diagnosis, preoperative surgical

planning, and outcome prediction.
4.5 Challenges, ethical considerations, and
future directions

Despite the rapid advancement of ML and hand-tracking

technologies in recent years, their implementation in clinical

settings still faces several limitations. Technical challenges such as

data quality and integration from various sensors, as well as
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real-time processing and computational limitations, are at the

forefront of these limitations. However, the eventual expansion of

platforms such as video acquisition can help address some of

these computational concerns. Filicori et al. surveyed currently

available video recording technology companies and found that

those on the market already allow for in-depth performance

analysis through manual and automated review (109). In

addition, these devices have the potential to be integrated into

future robotic surgical platforms.

From another perspective, the integration of AI algorithms into

surgical practice may heavily rely on human effort. For instance,

successful surgical instrument detection requires surgical videos

to be annotated, and even frame by frame labeling or

categorization may be necessary. Although this process is time-

consuming, it is crucial for providing the necessary visualization

to AI algorithms (110). The use of these models in surgical

practice has not always been successful. Although these models

have shown success in laparoscopic procedures, they have been

less effective in open surgical procedures. This may be because of

the complex anatomy encountered during open surgeries and the

greater difficulty in annotating video frames of open surgical

procedures compared to laparoscopic ones. More studies are

needed to enhance the potential applications of AI in open

surgical procedures (111).

Another concern may be the cost and infrastructure needs

associated with integrating these technologies. However, Dayak

and Cevik (12) proposed a computer vision–based simulator

using a single camera and planar mirror that improved accuracy

by 60% over relevant methods in the literature, even at low

resolutions and low processing time. The authors also argued

that their method was a low-cost alternative for computer

vision–based minimally invasive surgery training tools (12).

Other toolkits, such as multimodal learning analytics, are being

researched to potentially complement traditional measures of

learning by providing high-frequency data on the behavior and

cognition of trainees (112). Moreover, the integration of these

technologies into daily surgical practice may negatively impact

the skill development of surgical trainees. This issue should not

be overlooked when leveraging AI’s facilitative and enhancing

effects on surgical education, and the surgical skill development

of novice surgeons must be closely monitored (113, 114).

The trustworthiness of AI can be questionable in certain

clinical settings (115). Although AI algorithms can rapidly

analyze vast amounts of data, their reliability depends on factors

such as the quality of the data, differences in patient populations,

and other variables (110). Although AI systems in diagnostic

settings may reduce interobserver variability, the training data

must adequately represent the broader population (110, 116). To

address this issue, AI systems should be trained using diverse

and comprehensive datasets that accurately reflect the variability

and characteristics of the broader population. On the other hand,

there is a need for qualified personnel to implement these

algorithms in surgical practice, because clinicians and healthcare

professionals must be properly trained to use these systems

effectively. Regular and continuous training programs should be
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developed to ensure that healthcare professionals receive

adequate education on the use of rapidly evolving AI models (110).

Another set of challenges in implementing these technologies

are ethical and legal considerations. These include the potential

effects on data privacy and security as well as the challenges for

regulating these ML-based surgical systems. The data used to

train these algorithms often contain sensitive patient information,

raising ethical concerns about privacy and security (110, 117,

118). A potential data leak could compromise patient

confidentiality. To address these concerns, surgical and

technological professionals must establish standards defining how

and in which situations these technologies will be used. In

addition, regulatory guidelines need to be developed and

implemented simultaneously because these technologies continue

to advance rapidly.

Another ethical consideration in using AI technologies in

surgical settings is potential bias. Algorithms trained on biased

datasets can reinforce healthcare inequalities related to race, sex,

and socioeconomic status. Automation bias poses additional

risks, particularly for under-resourced populations. To mitigate

these issues, AI models should be developed and implemented

with a focus on fairness and equity (118).

In addition to privacy and bias, a significant concern is the

potential effect of AI’s widespread use in modern medical

practice, particularly in fields like radiology and pathology, for

which it provides highly accurate diagnostic support (119). This

potential raises concerns about job opportunities and

employment in these areas, but it is important to remember that

AI is a supportive tool in medical practice, not a replacement for

human expertise (110).

Although challenges will surface when ML and hand-tracking

technologies are developed and implemented, the potential for

beneficial disruption in the surgical field is apparent. One

exciting future trend will be integrating augmented reality and

virtual reality technologies, which can potentially improve

visualization during surgical skills training and intraoperative

situations. In addition, advancements in sensor technologies and

data fusion techniques will likely continue to improve upon the

demonstrated accuracy of ML and hand-tracking models in both

retrospective and real-time formats.

Ultimately, future research endeavors and the continued

advancement of these technologies will be needed to address the

current challenges. Nonetheless, ML and hand-tracking

technologies can potentially have many exciting applications in

the surgical field that should be considered. Future studies should

focus on reducing the costs of applying AI systems in surgical

practice, developing training programs to meet the demand for

qualified personnel, and training AI algorithms with diverse

datasets to enhance their applicability across various surgical

disciplines (110). Emerging ML technologies like federated

learning allow multiple devices or institutions to collaboratively

train models while keeping their data private. The use of these

recent AI models should be expanded comprehensively in future

studies, with efforts focused on eliminating potential algorithmic

biases and securing robust data privacy (120).
frontiersin.org

https://doi.org/10.3389/fsurg.2025.1528362
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Yangi et al. 10.3389/fsurg.2025.1528362
4.6 Limitations

This study aimed to collect the current literature on using

diverse AI applications across various surgical settings involving

hand or instrument tracking. Our primary goal was to create a

resource for future studies rather than compare the effectiveness

of different AI applications or ML paradigms. The heterogeneous

nature of the data across the included studies represents a

limitation, because differences in surgical instruments, settings,

and methodologies make robust statistical comparisons

challenging, and a risk of bias analysis was not conducted for the

included studies.
5 Conclusions

In summary, ML and its subcategories, including supervised

learning, unsupervised learning, reinforced learning, and deep

learning, as well as the various sensor types such as optical,

inertial, electromagnetic, ultrasonic, and hybrid sensors, offer

unique strengths that could be combined and leveraged in

different surgical training or patient care settings. The versatility

of these technologies allows for the generation of adaptable

models that cater to the specific surgical education and patient

care questions that need to be addressed.

The hand-tracking technology and the applicability of ML have

tremendous potential to grow, which leads to a direct, tangible

impact in a wide range of sectors within surgery, such as surgical

education of trainees and patient outcome management ranging

from preoperative to postoperative stages. Acknowledging and

tackling the current limitations of the development and use of

ML will provide grounds for its successful optimization and

application in the future.

Future studies that qualitatively and quantitatively depict the

improvements generated by ML in surgical education and

operative outcomes are warranted. A multifaceted approach to

solving complex surgical problems in and out of the operating

room should be the prioritized task to create novel solutions that

complement and advance the delivery of patient-centered care.
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