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Purpose: This study aimed to develop a machine learning (ML) model for real-

time prediction of duodenal stump leakage (DSL) following gastrectomy in

patients with gastric cancer (GC) using a comprehensive set of clinical

variables to improve postoperative outcomes and monitoring efficiency.

Methods: A retrospective analysis was conducted on 1,107 patients with GC who

underwent gastrectomy at Pusan National University Yangsan Hospital between

2019 and 2022. One hundred eighty-nine features were extracted from each

patient record, including demographic data, preoperative comorbidities, and

blood test outcomes from the subsequent seven postoperative days (POD). Six

ML algorithms were evaluated: Logistic Regression (LR), K-nearest neighbors

(KNN), Support Vector Machine (SVM), Random Forest (RF), Extreme Gradient

Boosting (XGB), and Neural Network (NN). The models predicted DSL

occurrence preoperatively and on POD 1, 2, 3, 5, and 7. Performance was

assessed using the Area Under the Receiver Operating Characteristic Curve

(AUROC) and Recall@K.

Results: Among the 1,107 patients, 29 developed DSL. XGB demonstrated the

highest AUROC score (0.880), followed by RF (0.858), LR (0.823), SVM (0.819),

NN (0.753), and KNN (0.726). The RF achieved the best Recall@K score of

0.643. Including additional POD features improved the predictive

performance, with the AUROC value increasing to 0.879 on POD 7. The

confidence scores of the model indicated that the DSL predictions became

more reliable over time.

Conclusion: The study concluded that ML models, notably the XGB algorithm,

can effectively predict DSL in real-time using comprehensive clinical data,

enhancing the clinical decision-making process for GC patients.
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Introduction

Gastric cancer (GC) is the most prevalent malignancy of the

upper gastrointestinal tract. It ranks fourth in terms of mortality

and fifth in terms of the global incidence (1). The incidence rate

of GC is the highest in Eastern Asia and Eastern Europe (2).

While endoscopic submucosal dissection can be conducted

selectively as a curative treatment option for early gastric

cancer, gastrectomy remains the primary treatment for GC (3).

However, this surgical approach is associated with significant

risks of postoperative complications, including bleeding, bowel

obstruction, duodenal stump leakage (DSL), anastomotic

leakage, pancreatic fistula, pancreatitis, and delayed gastric

emptying (4). Among these, DSL is one of the most severe

complications owing to its high morbidity and mortality, with

an incidence rate ranging from 1.6% to 5% and a mortality

rate between 16% and 20% (5, 6). DSL can lead to a cascade

of serious complications, including intraabdominal abscess,

wound infection, necrosis or dehiscence, diffuse peritonitis,

sepsis, malnutrition, fluid and electrolyte imbalances,

dermatitis, acute cholecystitis, pancreatitis, abdominal

bleeding, and pneumonia (5).

Despite its high potential risk (7), predicting DSL is a

challenging problem owing to its low incidence and inherent

patient safety issues, which limit prospective studies.

Consequently, much of the existing research relies on

retrospective analyses of medical records, employing statistical

methods such as Student’s t-test, chi-square test, and logistic

regression to identify associated risk factors (8, 9). Previous

studies have identified several risk factors for DSL, including

inadequate duodenal stump closure, devascularization, cancer

involvement at the resection line, inflamed duodenal wall,

local hematoma, incorrect drain placement, multiple

comorbidities, and postoperative duodenal distension (5, 10).

The reconstruction method used after gastrectomy can also

influence the risk of DSL. DSL occurs exclusively in patients

undergoing Billroth II (BII) and Roux-en-Y (RY)

reconstruction, both of which involve duodenal stump

creation (11).

Machine learning (ML) methods have recently gained traction

in the medical field, such as in cancer informatics and the

prediction of postoperative complications (12, 13). Compared to

the traditional statistical approaches, ML can manage a large

number of variables effectively. Specifically, ML can capture and

interpret complex interactions between input variables to make

accurate outcome predictions (14).

But previous models for predicting postoperative complications

have largely depended on static or early postoperative data, limiting

their adaptability to the dynamic nature of clinical settings. To

address these limitations, this study introduces a ML algorithms

that integrates both preoperative variables and postoperative day

(POD)-specific information. By incorporating time-sensitive

clinical data, this approach aims to support real-time decision-

making processes, offering a more responsive and tailored

method for managing patient care in the postoperative period.

Materials and methods

Patients and data

A total of 1,171 patients with gastric cancer underwent

gastrectomy at Pusan National University Yangsan Hospital

between 2019 and 2022. After excluding patients who underwent

proximal gastrectomy with double-tract reconstruction (n = 13),

completion total gastrectomy with a previous history of Billroth

II or Roux-en-Y reconstruction (n = 21), distal or subtotal

gastrectomy with Billroth I reconstruction (n = 24), and cases

with missing reconstruction records (n = 6), we identified 1,107

patients who underwent gastrectomy with a newly formed

duodenal stump (Figure 1). We collected retrospective data on

clinicopathological and perioperative parameters to train the ML

models for predicting DSL. An array of 189 features, including

demographic data such as age, sex, body mass index (BMI),

preoperative comorbidities, preoperative medical histories, and

blood test outcomes from the subsequent seven PODs, were

extracted from each patient record. Informed consent was not

required for this study because of its retrospective nature and use

of anonymous clinical data in the analysis. This study was

approved by the Institutional Review Board of the Pusan

National University Yangsan Hospital, Korea (IRB No.

05-2022-282).

Predictor features and outcomes

The ML model predicted the occurrence of DSL at six specific

time points: pre-operation, POD 0, POD 1, POD 2, POD 3, POD 5,

and POD 7. Notably, Pre-operative predictions were made prior to

gastric surgery, using only predictive features available at that time.

These included demographic characteristics such as age and sex,

the patient’s medical history, and preoperative test results. For

predictions on postoperative day (POD), additional features,

including C-reactive protein (CRP), white blood cell (WBC)

count, serum amylase, lipase, aspartate aminotransferase (AST),

and alanine aminotransferase (ALT) obtained from blood test

results up to that point, can be incorporated. Figure 2 provides a

detailed visualization of the distribution of 189 features across

treatment phases, categorized into baseline clinical characteristics,

preoperative workup information, intraoperative information,

postoperative laboratory tests, and pathology reports. Each

category is represented as a stacked bar chart, with features

distributed across specific time points: pre-operation, POD 0,

POD 1, POD 2, POD 3, POD 5, and POD 7. Baseline clinical

characteristics (20 features) include demographic and

comorbidity data collected before surgery. Preoperative workup

information (21 features) encompasses diagnostic imaging and

laboratory results obtained prior to surgery. Intraoperative

information (12 features) captures surgical details such as blood

loss and anastomosis methods. Postoperative laboratory tests

(101 features) include daily laboratory values from POD 0 to

POD 7, such as CRP and WBC counts. Postoperative pathology
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reports (35 features) contain histopathological findings from

resected specimens. The figure demonstrates how these features

are cumulatively incorporated into the model at each prediction

point. For example, on POD 3, the model uses preoperative

features along with data from POD 1 to POD 3.

Data preprocessing

Variability in data capture was observed across cohorts. This

variation stemmed from some patients being discharged early or

missing certain post-operative tests. To maintain a consistent

data collection period across the patient cohort and prevent bias

from incomplete data, we excluded 257 records representing

patients with hospitalization durations of less than seven days.

To address the issue of missing values, we applied an iterative

imputation method from scikit-learn, which estimates missing

values by creating a predictive model for each feature in a

round-robin manner (15). At each step of the round-robin

imputation, we use Bayesian Ridge regression since it is known

to work well on data with small sample sizes (16). In addition,

we standardized the numerical features to have a zero mean and

unit variance.

To validate the model’s performance, we compared four

existing studies. Features that were not present in our dataset

were excluded from this comparison. However, we supplemented

FIGURE 1

Consort diagram.

Chung et al. 10.3389/fsurg.2025.1550990

Frontiers in Surgery 03 frontiersin.org

https://doi.org/10.3389/fsurg.2025.1550990
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


the data with basic demographic information and underlying

diseases, regardless of whether these factors had been reported in

earlier studies, to ensure a comprehensive approach. This allowed

us to confirm an empirical improvement in performance with

our model. Table 1 presents a comparison of the features used or

excluded in these existing studies.

Feature selection

This study aims to enhance DSL prediction following

gastrectomy in patients with gastric cancer. We hypothesized that

leveraging a comprehensive set of features could significantly

improve the performance of machine learning models in

FIGURE 2

Distribution of 189 features across treatment phases.

TABLE 1 Comparison of features utilized to train machine learning.

Category Features Liu et al. (46) Shao et al. (30) Lee at al. (47) Lee et al. (10) This study

Baseline information Age O O O O O

Sex O O O O O

BMI O O O O O

Underlying Diseasesa O O O O O

Clinical information ASA score O O

Smoking O O

Surgery type O O

Open Conversion O O

Number of comorbidities O O

Preoperative Hb O O O

Previous abdominal surgery O O

Intraoperative bleeding O O O

Operation time O O

Postoperative CRP (POD 1–5) O O

Postoperative WBC (POD 1–5) O O

CRP Reduction rate O O

Combined resection O O

Tumor information cTNM-T O O O O

pTNM-T O O O O

Maximum tumor size O O O

BMI, body mass index; ASA, American Society of Anesthesiologists score; Hb, hemoglobin; CRP, C-reactive protein; POD, postoperative day; WBC, white blood cell.
aUnderly diseases included six categories: hypertension (HTN), diabetes mellitus (DM), cardiovascular disease, cerebrovascular disease, renal disease, and respiratory disease.
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predicting DSL. By incorporating a number of features, including

daily postoperative data, the goal was to achieve a more accurate

representation of a patient’s health status, leading to better

predictive outcomes. To assess the impact of feature quantity on

model performance, we compared the prediction accuracy across

different sets of features.

The selected features include nine basic features (i.e., 3

demographic informations; age, sex, BMI and underlying

diseases; HTN, DM, cardiovascular disease, cerebrovascular

disease, renal disease, respiratory disease) to ensure a fair

comparison (Table 1). The remaining features, ranging from one

to 151, were randomly selected, resulting in 10–160 features for

each experiment. Each experiment was repeated ten times to

estimate the mean performance and variance.

Machine learning algorithms

We evaluated the effectiveness of our method using six widely

adopted machine learning algorithms. Each algorithm can calculate

the probability of a patient developing DSL, which we refer to as

the model’s confidence level. The algorithms were implemented

in Python 3.11, with XGB using the xgboost 1.7.5 library, while

the remaining models were implemented using the scikit-

learn library.

(1) Logistic regression (LR): A classification model that estimates

the probability of binary outcomes based on a set of predictor

variables. We used the C parameter set to 0.01, which controls

the regularization strength. We applied L2 regularization to

prevent overfitting by penalizing large coefficients. The

L-BFGS solver was applied for optimization.

(2) K-nearest neighbors (KNN): This approach classifies new data

points by considering their k-nearest instances in the training

data, often using a majority voting scheme. We set the K to 9,

which considers the 9 nearest neighbors to make predictions.

(3) Support vector machine (SVM): An algorithm that classifies

data by determining the optimal hyperplane, maximizing

the margin between two classes (17). We used the

C parameter set to 1, which controls the regularization

strength. A Radial Basis Function (RBF) kernel was applied

to handle non-linear relationships in the data.

(4) Random forest (RF): An ensemble learning method that uses

multiple decision trees to mitigate overfitting and effectively

handle large datasets. We limited the depth of each tree to

8. Each tree was trained on a random sample containing

50% of the data, and the model consisted of 100 decision trees.

(5) Extreme gradient boosting (XGB): An optimized distributed

gradient boosting algorithm designed to handle complex

interactions among features (18). We used a learning rate of

0.05 to control the step size at each iteration. The depth of

each tree was set to 6, and the model was configured to

grow 100 trees in parallel. Additionally, the model used a

subsample ratio of 33% of the data for each tree to

introduce variability. We applied the lossguide grow policy

to prioritize splitting nodes with the highest loss reduction.

(6) Neural network (NN): This algorithm denotes a feed-forward

neural network. We used two hidden layers, each containing

150 neurons. The learning rate was set to adaptive, allowing

the model to adjust the rate based on performance during

training. The model was trained for a maximum of 1,000

iterations, and the L-BFGS solver was applied for

optimization. To prevent overfitting, the number of hidden

layers in the neural network was limited to two. When

using deeper architectures, techniques such as dropout (19)

and batch normalization (20) can be employed to

mitigate overfitting.

Specifically, LR is often favored for its interpretability, which is

important in clinical settings (21). SVM and RF are known for

handling high-dimensional datasets. Thus, they were the best

performers in an extensive empirical evaluation with 18 ML

algorithm families (22). Since our data has 189 features, we

selected those algorithms. Gradient boosting algorithms, such as

XGB, have gained prominence due to their ability to model

complex interactions within the data while maintaining high

accuracy (23). In addition, we incorporated NN, which was not

considered in earlier works since it is one of the most widely

used machine learning models today (24).

Cross-validation

Cross-validation is used to evaluate the performance of models

by testing them on different subsets of the data, ensuring

robustness and generalizability. It provides a more reliable

estimate of a model’s performance than a single train-test split.

In this study, we utilized 3-fold cross-validation (Figure 3). It

divides the dataset into three groups or folds. During evaluation,

three iterations are performed, with each iteration using two

folds for training and the remaining fold for validation. The

average scores across these iterations are reported, providing a

comprehensive assessment of the model’s performance.

Evaluation measures for ML algorithms

We used AUROC and Recall@K as evaluation measures. The

AUROC is a performance metric used to evaluate binary

classification models. It measures how well a model can

distinguish between two classes by calculating the area under the

ROC curve, which plots the true positive rate (sensitivity) against

the false positive rate (1—specificity) at different classification

thresholds. The ROC curve provides a comprehensive threshold-

independent view of the model’s performance. An AUROC value

of 1 represents perfect classification, while a value of 0.5

indicates the model performs no better than random chance.

Recall@K measures the model’s ability to identify the K most at-

risk patients, which is especially useful in imbalanced datasets

with a few positive cases (25). We set K to 36, corresponding to

approximately 10% of the test set in each cross-validation fold.
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Recall@K is defined as:

Recall@K ¼

(Number of DSL patients in the top K predicted patients)

(Number of DSL patients)

This metric assesses how well the model prioritizes patients at high

risk of developing DSL, helping to guide targeted interventions.

Specifically, Recall@36 represents the percentage of DSL cases

captured when focusing on the top 10% of patients ranked by

each model.

Observation of model confidence

We analyze the confidence scores generated by the machine

learning model, representing the predicted probability of DSL.

Specifically, we focused on observing the progression of these

confidence scores over time, particularly as the number of

postoperative days (POD) increased. To accomplish this, we

sampled 10 patients each from the DSL and non-DSL groups

and calculated their respective average confidence scores for each

predictive day.

This analysis provides clinically relevant insights, indicating

when the model’s predictions become reliable. From a machine

learning perspective, it demonstrates how effectively our model

leverages accumulated post-operative data over time to enhance

its predictive accuracy.

Results

Demographic and clinicopathological
characteristics of the patients

In this cohort, DSL was diagnosed in 29 individuals. Table 2

compares the clinicopathological characteristics of 29 patients

with DSL and 1,078 patients without DSL. The characteristics

compared age; sex distribution; BMI; ASA score; underlying

diseases such as hypertension, diabetes mellitus, dyslipidemia,

cardiovascular disease, cerebrovascular disease, nephrology, and

respiratory diseases; and TNM stages (T, N, and M) based on

the 8th edition of the American Joint Committee on Cancer

TNM classification. The p-values indicate statistical significance,

with notable differences observed in sex distribution and the

presence of respiratory diseases between the two groups.

Predictive performance

Table 3 and Figure 3 present the performance of all compared

models across all prediction time points. The comparison revealed

that our study achieved the highest AUROC across five machine

learning models except NN. Specifically, the XGB model

demonstrated the highest AUROC score of 0.880, followed by RF

at 0.858, LR at 0.823, SVM at 0.819, NN at 0.753, and KNN at

0.7256 (Figure 4A). The RF model achieved the best recall at

10% with a score of 0.643, indicating that it was the most

successful in correctly identifying the top 10% of patients at risk

of DSL. The LR scored 0.589 in the recall at 10%, followed by

FIGURE 3

3-fold cross-validation of performance.
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SVM at 0.559, KNN at 0.526, XGB at 0.519, and NN at 0.498

(Figure 4B). Upon comparing the highest and second-best

AUROC values across all models, excluding NN, our study

results were significantly superior, as evidenced by the p-values:

KNN (p < 0.001), SVM (p < 0.001), LR (p = 0.022), RF

(p < 0.001), and XGB (p < 0.001). In the analysis of recall at 10%,

our study also demonstrated statistically significant higher values

across all models compared to the second-best recall at 10%,

with the respective p-values: KNN (p < 0.001), NN (p = 0.002),

SVM (p < 0.001), LR (p < 0.001), RF (p < 0.001), and XGB

(p = 0.008).

Experiments on the number of features

Figure 5 demonstrates the change in AUROC values as the

number of features increases across different ML models. XGB

showed the highest improvement, with an AUROC of 0.678 for

10 features, reaching 0.867 with 120 features. Similarly, other

models like SVM, RF, and LR also showed significant

improvements as more features were included. The SVM model,

for instance, rose from 0.534 with 10 features to 0.803 with 120

features. The RF model increased from 0.638 to 0.830 over the

same range. The standard deviations of the AUROC values

across the XGB model with varying feature sets were

±0.023, ± 0.054, ± 0.036, ± 0.032, ± 0.028, ± 0.028, and ±0.012,

respectively. This indicates that increasing the number of features

leads to reduced variance, thereby enhancing the reliability of the

model’s predictions.

Effectiveness of POD information

The models predicted DSL occurrence preoperatively and on

POD 0, 1, 2, 3, 5, and 7. Patients who were discharged before

each prediction time point were excluded from the predictions.

As a result, 1,107 patients are in the dataset until POD3. while

1,102 and 850 patients remain for POD5 and POD7 predictions,

respectively. Figure 6 illustrates the evolution of the predictive

performance of our XGB model as POD information was

progressively included. The analysis began with a model that

used only pre-operative information, achieving an AUROC of

0.802. Successive POD information was gradually introduced for

TABLE 2 Comparison of clinicopathological characteristics of patients
with DSL.

Clinicopathologic
characteristics

No DSL DSL p-value

n = 1,078 n = 29

Age (years) 64.13 ± 0.34 64.55 ± 2.01 0.840

Sex (male/female) 721/357 26/3 0.010

BMI (kg/m2) 25.96 ± 1.87 25.17 ± 0.53 0.945

ASA score 0.521

1 309 7

2 654 21

3 112 1

4 3 0

Underlying disease

Hypertension 370 9 0.713

Diabetes mellitus 193 8 0.406

Dyslipidemia 121 4 0.666

Cardiovascular disease 91 2 0.767

Cerebrovascular disease 61 1 0.609

Nephrology disease 34 2 0.262

Respiratory disease 5 2 0.033

T stagea 0.886

1 705 21

2 95 3

3 127 2

4 151 3

N stagea 0.394

0 791 24

1 98 2

2 91 0

3 98 3

M stagea 0.471

0 1,059 29

1 19 0

BMI, body mass index; ASA, American Society of Anesthesiologists score.
aAccording to the 8th edition of the American Joint Committee on Cancer

TNM classification.

TABLE 3 Overall predictive performance for each study.

Study # Features Model AUROC Recall @Ka

Liu et al. (46) 29 LR 0.796 0.415

KNN 0.667 0.348

SVM 0.739 0.385

RF 0.766 0.388

XGB 0.822 0.381

NN 0.786 0.433

Shao et al. (30) 26 LR 0.551 0.170

KNN 0.596 0.248

SVM 0.644 0.215

RF 0.615 0.137

XGB 0.658 0.244

NN 0.633 0.265

Lee et al. (10) 15 LR 0.698 0.304

KNN 0.631 0.307

SVM 0.702 0.307

RF 0.779 0.344

XGB 0.764 0.456

NN 0.714 0.381

Lee et al. (47) 14 LR 0.610 0.170

KNN 0.554 0.174

SVM 0.696 0.211

RF 0.628 0.137

XGB 0.666 0.315

NN 0.650 0.244

This study 189 LR 0.823 0.589

KNN 0.726 0.526

SVM 0.819 0.559

RF 0.858 0.643

XGB 0.880 0.519

NN 0.753 0.498

LR, logistic regression; KNN, K-nearest neighbors; SVM, support vector machine; RF,

random forest; XGB, extreme gradient boosting; NN, neural network.
aK = 36 indicates the top 10% of patients recommended by each ML model.

.
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prediction from POD 1 to POD 7. This series of experiments

simulated real-time prediction scenarios, capturing the

progression from patients who had just undergone surgery to

those who had recovered over several days. Each bar in the graph

represents the area under the ROC curve for each stage of the

analysis. The predictive performance improved from 0.802 to

0.879 with the availability of additional POD information.

Evolution of confidence score

Figure 7 illustrates the average confidence scores for cases with

and without DSL at different prediction times. As more POD

information was added, the average confidence score for DSL

cases increased, eventually reaching 0.515 by POD 7, while the

score for non-DSL cases remained low at only 0.011. The gap

between the confidence scores for DSL and non-DSL cases

widened over time, reinforcing our hypothesis that incorporating

POD information improves the model’s ability to distinguish

between these two groups. For reference, the confidence scores

and p-values at each POD were: POD 0 (DSL: 0.025, No DSL:

0.002, p = 0.004), POD 1 (DSL: 0.040, No DSL: 0.002, p = 0.012),

POD 2 (DSL: 0.090, No DSL: 0.005, p < 0.001), POD 3 (DSL:

0.110, No DSL: 0.005, p < 0.001), POD 5 (DSL: 0.318, No

DSL: 0.012, p < 0.001), and POD 7 (DSL: 0.515, No DSL:

0.011, p < 0.001).

Discussion

DSL is one of the most severe complications following

gastrectomy, with high morbidity and mortality rates. However,

due to the low incidence of DSL, conducting large-scale studies

or drawing statistically significant conclusions is challenging. Our

FIGURE 4

Comprehensive performance of all models across all prediction time (A) AUROC of machine learning models. (B) Recall @ 10%. LR, logistic regression;

KNN, K-nearest neighbors; SVM, support vector machine; RF, random forest; XGB, extreme gradient boosting; NN, neural network.
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FIGURE 6

Increase of predictive performance as more POD information is provided. AUROC, area under receiver operating characteristic curve; POD,

postoperative day.

FIGURE 5

Improvement of AUROC scores with additional features. AUROC, area under receiver operating characteristic curve; SD, Standard deviation.
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study found that the high generalization performance of ML

algorithms allowed for the early-stage risk detection of DSL.

Therefore, the use of ML models for DSL predictions is crucial.

Statistics are typically used to draw inferences and derive

scientific insights from data collected from a given population

(26). In contrast, ML is particularly useful for making predictions

when working with a larger set of variables and considering the

complex relationships between input and output variables (27,

28). This is particularly valuable in clinical settings where the

ability to predict outcomes in real-time can significantly enhance

patient care. Therefore, this study focused on leveraging the

advantages of ML to predict rare but significant occurrences such

as DSL. Despite its low incidence, the accurate prediction of DSL

is crucial for improving patients’ postoperative outcomes and

monitoring efficiency.

Several studies have developed models using various machine-

learning algorithms to predict complications after gastric surgery.

For instance, Hong QQ et al. employed LASSO regression,

Random Forest(RF), and Neural Network(NN) models to predict

the incidence of complications on the third postoperative day

after radical gastrectomy (29). Additionally, Shao et al. utilized

Extreme Gradient Boosting(XGB) to develop a model assessing

the risk of anastomotic leakage following gastrectomy (30). These

prior studies offer valuable insights for surgeons to predict

complications preoperatively or immediately postoperatively,

thereby enhancing clinical practice. However, in the real-world

clinical setting, where patient conditions change in real-time and

blood tests vary throughout the postoperative hospital stay, these

research outcomes may not be suitable for real-time prediction of

complications. For practical application in clinical settings,

prediction models must be responsive to daily fluctuations in

patient conditions and the results of ongoing follow-up tests.

We observed that the models with the highest AUROC and

those with the highest Recall@K were not always the same

(Table 3 and Figure 4). AUROC provides a comprehensive,

threshold-independent assessment of a model’s performance

across all potential decision thresholds, making it useful for

evaluating the overall stability and effectiveness of the algorithm.

On the other hand, Recall@K is more context-specific, measuring

the model’s ability to capture a high percentage of true DSL

cases within the top K patients, which is particularly valuable

when resources are limited, and a hospital needs to focus on a

fixed number of high-risk patients. Given the variability in

practical settings where the value of K can be adjusted based on

clinical needs, it is important to use both metrics. While

AUROC indicates the general robustness of a model, Recall@K

allows for more targeted decision-making. In real-world

applications, choosing an algorithm based on its performance in

Recall@K, tailored to the desired K, could lead to more effective

patient management strategies.

However, the results presented in Table 3 and Figure 4

demonstrate the effectiveness of our strategy, which utilizes all

the available features. Except for experiments with neural

networks, our strategy outperforms existing methods that rely on

features that are selectively chosen by researchers. Neural

networks tend to overfit data (25). Therefore, it is recommended

to reduce the number of input features to prevent this issue.

Chen et al. emphasized the importance of feature selection,

FIGURE 7

Evolution of confidence score by time. DSL, duodenal stump leakage.
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particularly for datasets with various variables and features (31).

Their study showed that proper feature selection helps eliminate

less critical variables, thereby enhancing the accuracy and

performance of the classification models. This underscores the

advantages of careful feature selection. A model trained with a

well-curated set of features generally outperforms a model with a

comparable number of randomly selected features. Nevertheless,

our primary focus was on the benefits of applying ML to

comprehensive feature sets.

As shown in Figure 5, regardless of the number of input

features, the accuracy of the XGB algorithm consistently surpassed

that of the other ML methods, indicating that XGB is suitable for

real-time DSL prediction. Although XGB’s effectiveness in tabular

data has been highlighted in various studies (32, 33), our findings

suggest that it is particularly effective in processing POD

information, even with many missing values. This characteristic,

combined with our extensive feature set, likely explains the robust

performance in predicting DSL. Because the performance of ML

models improves as the number of input features grows, the

accuracy of predictions tends to improve over time as more

postoperative test results become available.

Figure 6 shows that the accuracy improved notably when

results from POD 2 were included. As more postoperative blood

tests are conducted, the volume of data encompassing a wider

range of features gradually increases. This temporal data

enrichment, as depicted in Figures 5–7, leads to enhanced

predictive accuracy for DSL, evidenced by the rising AUROC

values. Along with this trend, a reduction in the standard

deviation was observed, corresponding to the increasing

postoperative variables. For real-time prediction of patient

complications, acknowledging and incorporating the expanding

nature of the dataset throughout the postoperative period is

essential. The findings from this study indicate that, with the

inclusion of more features, models like XGB, SVM, RF, and LR

not only improved their performance but also displayed

enhanced robustness. Therefore, these models are suitable for

real-time prediction of complications and can help provide a

nuanced understanding of a patient’s evolving condition.

Three key insights can be derived from Figure 7. First, the

overall confidence scores appear relatively low, largely due to

significant class imbalance from the sparsity of DSL cases.

However, these low scores do not imply poor predictive

performance, as evidenced by the high area under the AUROC

scores. If needed, techniques such as oversampling can be used

to adjust the confidence scores and address class imbalance (34).

Secondly, contrary to expectations, the model did not decrease its

confidence scores for non-DSL records as more POD

information was introduced. Instead, these scores increased, but

at a slower pace compared to the DSL cases. This widening gap

between confidence scores for DSL and non-DSL cases suggests

that adding more POD information enhances the model’s ability

to differentiate between the two classes, supporting our

hypothesis. Finally, an interesting inflection point was observed

when the model received POD 5 information. The sharp increase

in confidence scores for DSL cases—reaching 0.318 by POD 5

and 0.515 by POD 7—indicates that these time points may

contain particularly crucial clinical information with significance.

These results support the previously identified timing of DSL

incidence, which typically occurs between 5 and 10 days post-

surgery, as reported in the existing literature (35).

This analysis offers valuable insights into how the confidence of

the XGB model in its predictions evolves over time, highlighting

the significant role of POD information in enhancing the model’s

ability to differentiate between patients who will develop DSL

and those who will not.

Most previous studies on DSL have identified pre-operative risk

factors, suggesting that they might be among the highly important

features in this study. We anticipated that several factors from

earlier research, such as gastric outlet obstruction, liver cirrhosis,

and cardiovascular disease, would be included among the

important features; however, our results differed (10, 36).

According to the findings of this study, among the top 30

important features were identified (Figure 8). Clinically, this is a

significant finding. Previous studies have identified factors such

as non-reinforcement of the duodenal stump, BMI (≥ 24 kg/m²),

and elevated preoperative CRP levels as risk factors for DSL.

Although no studies have specifically identified DM as a risk

factor for DSL, it has been noted in prior research as a systemic

condition that impairs recovery after bowel anastomosis or injury

(37). Among the top features predicting DSL, DM is the only

factor reflecting the preoperative condition of the patient.

Therefore, further studies are needed to investigate the

correlation between DM and DSL. Previous in vivo studies have

shown that diabetes leads to alterations in cellular components

involved in the early phase of repair of intestinal anastomoses

(38). This impairment is primarily due to chronic hyperglycemia,

which damages vasculature and hinders proper blood perfusion,

thereby disrupting the healing processes (39). Moreover, the

other top features, excluding the day of soft diet started and DM,

were predominantly related to two main clinical aspects: the

patient’s systemic inflammatory state and the detection of leaking

pancreatic juice. For instance, CRP levels and WBC counts

reflect the body’s inflammatory response, which can indicate

complications such as infections or an ongoing inflammatory

process at the surgical site. Elevated lipase and amylase levels in

the drainage fluid are crucial for detecting leakage from the

pancreas, which is a direct contributor to DSL. These biomarkers

are essential for early detection and timely intervention,

underscoring the importance of continuous monitoring during

the postoperative period. These clinical insights demonstrate the

practical application of ML in identifying crucial predictive

features. Unlike traditional statistical methods, ML is not solely

focused on the relationships among variables but on their direct

impact on patient outcomes. This emphasizes the potential of

ML to enhance clinical decision-making by pinpointing the most

relevant factors that contribute to postoperative complications (40).

XGB relies on multiple decision trees, allowing us to measure

the importance of a feature by counting the number of times it

is used to split the data across all trees. Figure 8 illustrates the

proportion of features utilized by XGB. Several clinical studies

using machine learning have extracted a subset of features from

their databases as the optimal feature set for predicting specific
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issues. According to a systematic review, earlier studies on AI

prediction of surgical complications analyzed 16,193 features

(41). However, as commonly recognized in the machine learning

community, the optimal feature set can vary depending on the

size of the dataset (42, 43). This variability makes it challenging

to expect that a feature set derived from one research study using

data from a specific hospital will also be optimal when applied to

other hospitals. In this study, we empirically demonstrate that

the XGB (18) and SVM (17) algorithms achieve better

performance when trained on a larger number of features

compared to using feature sets identified in previous studies.

Additionally, we show that these algorithms maintain stable

performance despite variations in the number of features. These

results suggest that our approach could be effective when

utilizing data from different institutions to train DSL prediction

models, offering greater generalization and adaptability across

various clinical settings.

Moving beyond simple complication prediction, actionable

clinical scenarios can be envisioned for applying this model.

Evidence on intraoperative drain placement remains

controversial. Weindelmayer et al. found that avoiding drains

after gastrectomy for gastric cancer may increase the risk of

postoperative invasive procedures, supporting routine drain use

(44). In contrast, Lim et al. reported limited benefits of

prophylactic drainage in preventing major intra-abdominal

complications, aligning with the growing preference for drain

omission under enhanced recovery after surgery (ERAS)

protocols (45). Our predictive model aims to resolve these

conflicting approaches by providing real-time risk assessment for

DSL, a severe complication linked to fluid collections. By guiding

surgeons on whether to place a drain during surgery and when

to remove it postoperatively, the model enhances safety while

supporting ERAS principles, potentially improving recovery

outcomes and standardizing decision-making.

To facilitate implementation in clinical practice, we propose

integrating the ML model directly into the hospital’s Electronic

Medical Record system (EMR). By doing so, all postoperative

patient monitoring results can be automatically consolidated and

analyzed by the ML model. This setup would enable immediate

prediction and notification to medical staff when the probability

of complications spikes. Implementing such a system would

significantly aid in the early diagnosis and prompt additional

intervention or image workup of patient complications,

ultimately improving patient outcomes in terms of both

mortality and morbidity. This would be a vital integration into

conventional EMR systems, reinforcing the practical implications

and benefits of our predictive model in clinical workflows.

This study is the first to develop a real-time prediction model

for DSL following gastrectomy in patients with GC. However, it

has several limitations. One limitation of the ML approach is its

inability to explain all correlations between features. Additionally,

the algorithm was trained using retrospective clinical data from a

single center, which implies that it may not be generalizable to

other medical institutions. Applying this model to other settings

FIGURE 8

Top 30 important features. CRPDn, CRP on postoperative day n; CRP Δn, rate of decrease in CRP levels on postoperative day n; HbDn, Hemoglobin on

postoperative day n; ASTDn, AST on postoperative day n; ALTDn, ALT on postoperative day n; JPL or R Amylase or Lipase Δn, rate of decrease in amylase

or lipase levels on postoperative day n; WBCDn, WBC on postoperative day n; WBC Δn, rate of decrease in WBC levels on postoperative day n; SD,

Soft diet.
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would likely require retraining with their specific datasets to ensure

accuracy and reliability. To enhance generalizability, future work

should focus on external validation using multi-institutional

datasets from diverse geographical regions and clinical settings.

Additionally, we recommend implementing transfer learning

approaches that allow the model to be fine-tuned with smaller

datasets from new institutions, potentially improving adaptability

while maintaining predictive performance. Despite these

limitations, our comprehensive feature selection approach and

temporal modeling strategy provide a framework that could be

replicated across institutions, even if specific model parameters

require adjustment.

Conclusion

According to this study, handling high-dimensional data with

ML improves predictive efficacy and enhances robustness in the

clinical field. A real-time predictive model will assist

gastrointestinal surgeons in accurately predicting DSL after

gastrectomy, allowing them to make informed decisions about

adding additional follow-up tests, implementing more careful

patient management, and determining the appropriate timing

for discharge.
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