AUTHOR=Chung Jae Hun , Kim Yushin , Lee Dongjun , Lim Dongwon , Hwang Sun-Hwi , Lee Si-Hak , Jung Woohwan TITLE=Machine learning-based real-time prediction of duodenal stump leakage from gastrectomy in gastric cancer patients JOURNAL=Frontiers in Surgery VOLUME=Volume 12 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/surgery/articles/10.3389/fsurg.2025.1550990 DOI=10.3389/fsurg.2025.1550990 ISSN=2296-875X ABSTRACT=PurposeThis study aimed to develop a machine learning (ML) model for real-time prediction of duodenal stump leakage (DSL) following gastrectomy in patients with gastric cancer (GC) using a comprehensive set of clinical variables to improve postoperative outcomes and monitoring efficiency.MethodsA retrospective analysis was conducted on 1,107 patients with GC who underwent gastrectomy at Pusan National University Yangsan Hospital between 2019 and 2022. One hundred eighty-nine features were extracted from each patient record, including demographic data, preoperative comorbidities, and blood test outcomes from the subsequent seven postoperative days (POD). Six ML algorithms were evaluated: Logistic Regression (LR), K-nearest neighbors (KNN), Support Vector Machine (SVM), Random Forest (RF), Extreme Gradient Boosting (XGB), and Neural Network (NN). The models predicted DSL occurrence preoperatively and on POD 1, 2, 3, 5, and 7. Performance was assessed using the Area Under the Receiver Operating Characteristic Curve (AUROC) and Recall@K.ResultsAmong the 1,107 patients, 29 developed DSL. XGB demonstrated the highest AUROC score (0.880), followed by RF (0.858), LR (0.823), SVM (0.819), NN (0.753), and KNN (0.726). The RF achieved the best Recall@K score of 0.643. Including additional POD features improved the predictive performance, with the AUROC value increasing to 0.879 on POD 7. The confidence scores of the model indicated that the DSL predictions became more reliable over time.ConclusionThe study concluded that ML models, notably the XGB algorithm, can effectively predict DSL in real-time using comprehensive clinical data, enhancing the clinical decision-making process for GC patients.