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With the widespread adoption of minimally invasive surgery, laparoscopic surgery
has been an essential component of modern surgical procedures. As key
technologies, laparoscopic phase recognition and skill evaluation aim to identify
different stages of the surgical process and assess surgeons’ operational skills
using automated methods. This, in turn, can improve the quality of surgery and
the skill of surgeons. This review summarizes the progress of research in
laparoscopic surgery, phase recognition, and skill evaluation. At first, the
importance of laparoscopic surgery is introduced, clarifying the relationship
between phase recognition, skill evaluation, and other surgical tasks. The publicly
available surgical datasets for laparoscopic phase recognition tasks are then
detailed. The review highlights the research methods that have exhibited superior
performance in these public datasets and identifies common characteristics of
these high-performing methods. Based on the insights obtained, the commonly
used phase recognition research and surgical skill evaluation methods and
models in this field are summarized. In addition, this study briefly outlines the
standards and methods for evaluating laparoscopic surgical skills. Finally, an
analysis of the difficulties researchers face and potential future development
directions is presented. Moreover, this paper aims to provide valuable references
for researchers, promoting further advancements in this domain.
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1 Introduction

As an advanced minimally invasive surgical technique, laparoscopic surgery has been

widely applied in a variety of procedures. This approach involves making multiple small

incisions in different areas of the patient’s abdomen, through which a camera and

various specialized surgical instruments are inserted (1). Surgeons manipulate these

instruments while monitoring the surgical field through a high-definition display, As

shown in Figure 1. Therefore, it significantly reduces the trauma surgery causes,

shortens the patient’s postoperative recovery time, and lowers postsurgical pain.

However, laparoscopic surgery requires high surgical skills from surgeons, especially in

understanding the surgical process (2), interpreting information from the surgical field (3),

adapting to complex surgical scenarios (4), and mastering precise operational skills (5).
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fsurg.2025.1551838&domain=pdf&date_stamp=2020-03-12
mailto:yezi1022@gmail.com
https://doi.org/10.3389/fsurg.2025.1551838
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsurg.2025.1551838/full
https://www.frontiersin.org/articles/10.3389/fsurg.2025.1551838/full
https://www.frontiersin.org/articles/10.3389/fsurg.2025.1551838/full
https://www.frontiersin.org/articles/10.3389/fsurg.2025.1551838/full
https://www.frontiersin.org/journals/Surgery
https://doi.org/10.3389/fsurg.2025.1551838
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 1

Clinical workflow of laparoscopic surgery: Real-time endoscopic view monitored by the surgical team.
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Laparoscopic surgery has several advantages over traditional

open surgery, including reduced pain, reduced patient recovery

time, decreased wound infections, and reduced morbidity and

mortality (6). In addition, laparoscopic surgery provides an

enlarged high-definition surgical field of view (7), which can

significantly improve surgical accuracy. However, this also places

greater demands on surgeons, who must have extensive surgical

experience and proficiency with surgical tools. At the same time,

laparoscopic surgery has higher requirements for surgical

equipment and instruments, often requiring high-resolution

camera equipment and specialized surgical tools, which are costly

and require regular maintenance. Although laparoscopic surgery

has many advantages, it also has certain limitations. Patient

selection is one of the main challenges. For example,

laparoscopic surgery is often very challenging for patients who

have previously undergone open abdominal surgery (6), while

traditional open surgery has fewer limitations in these cases and

even advantages when addressing complex procedures.

Common types of laparoscopic surgery include laparoscopic

cholecystectomy, appendectomy, hepatectomy, gastrointestinal

surgery, and hysterectomy. Each type of surgery has its specific

indications. At the same time, most of the advantages of laparoscopy

for these procedures are reflected in the ability to reduce

postoperative discomfort, accelerate patient recovery time, and reduce

the risk of infection by incision (7). The details of the common types

of laparoscopic surgery are presented in Figure 2, which presents the

specific indications corresponding to each type of surgery and the

advantages of laparoscopic performing these procedures.

Phase recognition is the analysis of surgical videos to identify

different stages of surgery, which is vital to understanding the

surgical process, providing intraoperative assistance, evaluating

the performance of surgeons (8), and predicting the remaining
Frontiers in Surgery 02
surgical time. Accurate phase recognition can give surgeons

real-time feedback and issue warnings in abnormal situations,

improving the safety and effectiveness of surgery. Skill

assessment in laparoscopic surgery comprehensively evaluates

the surgeon’s operational skills during surgery (9). Skill

assessment contributes to determining whether the surgeon’s

operations satisfy practical standards, providing targeted

feedback and improvement suggestions for the surgeon. The

intrinsic relationship between stage identification and skill

assessment is mainly reflected in three aspects as follows:

Firstly, accurate stage identification provides a necessary

contextual framework for calculating meaningful surgical skill

assessment indicators, as the performance of surgeons can only

be correctly evaluated at specific surgical stages. Secondly,

emerging hybrid architectures demonstrate that utilizing shared

spatiotemporal features and jointly training two tasks can

improve accuracy compared to isolated models. In addition,

real-time phase recognition triggers a skill assessment protocol

for specific stages, achieving situational awareness assessment

that considers different technical requirements during the

surgical stage. Accurate stage identification provides reliable

foundational data for skill assessment, making the assessment

process more precise. Meanwhile, skill assessment results can be

better adapted to the complexity of actual surgery by

continuously optimizing recognition algorithms, thus promoting

improved phase recognition.

In current research on surgical video analysis, beyond the task of

phase recognition, there are various other tasks, including the

detection of the use of surgical tools, the segmentation of surgical

instruments, the segmentation of organs, the recognition of surgical

maneuvers, and the prediction of the remaining surgical duration

(10). While surgical video analysis encompasses multiple technical
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https://doi.org/10.3389/fsurg.2025.1551838
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 2

Common types of laparoscopic surgeries. All laparoscopic surgeries have the advantages of minimal trauma, fast recovery, short hospital stay, mild
postoperative pain, and low risk of complications. The figure shows the main indications and unique advantages of various laparoscopic surgeries.
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tasks such as instrument segmentation and organ detection, phase

recognition and skill assessment hold particular clinical primacy for

two key reasons: Firstly, real-time phase recognition directly

realizes the intraoperative decision support system, while skill

assessment provides actionable feedback for surgical training, both

of which meet the key requirements of surgical quality control.

Secondly, instrument detection and tissue segmentation are often

the foundation of advanced phase analysis, rather than the ultimate

goal itself. Related studies have indicated that understanding the

temporal evolution of surgical tool usage patterns and uncovering

their relationships with respective surgical phases can provide vital

clues for recognizing laparoscopic surgery phase recognition (11).

However, sometimes, due to the presence of blood in the surgical

tools or differences in the color of the tool shafts, depending on

the surgical tools for phase recognition can result in decreased

accuracy (3). Although there is a close association between surgical

tool detection and surgical phase recognition, the latter focuses

mainly on the overall progress and stages of surgery. In contrast,

the detection of surgical tools involves the identification and

localization of specific tools. Both tasks contribute to enhancing the

safety and efficiency of surgical operations. Recognizing surgical

phases and maneuvers is vital in strengthening surgical skills,

efficiency, and safety by providing feedback to surgeons (8).

However, surgical phase recognition aims to categorize each video

frame into high-level stages of the surgery (12). By contrast, action

recognition aims to dissect each video frame into fine-grained and

meticulous tasks directly from the data. Surgical phase recognition
Frontiers in Surgery 03
requires more extended video frames than action recognition since

each phase typically encompasses several actions (8). Compared

with other visual recognition and classification tasks, laparoscopic

surgery phase recognition poses a more daunting challenge due to

the high visual similarity of frames across different phases.

Moreover, modeling the inter-phase correlations presents

significant challenges (13). The main challenges in this field

include the following aspects: firstly, blood contamination of the

lens may occur during the surgical process, causing occlusion (14);

commonly, electrocautery can produce smoke; and motion blur

caused by rapid camera movement or instrument adjustment can

reduce frame clarity. Secondly, subtle differences between

consecutive surgical stages can lead to fuzzy classification. In

addition, skill assessment tasks may be subjective due to the

reliance on expert annotations for skill assessment, which may vary

among raters. Addressing these challenges requires robust

algorithms that can handle noisy inputs and capture contextual

temporal patterns.

This review aims to systematically revisit the latest research

advances in phase recognition and skill assessment in laparoscopic

surgery, considering the importance of laparoscopic surgery in

modern healthcare and the potential of phase recognition and skill

assessment to improve the quality and safety of surgical

procedures. We aim to explore public datasets, existing model

methodologies, practical applications, challenges faced, and

potential future directions in laparoscopic surgery phase

recognition and skill assessment. In addition, this provides
frontiersin.org
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references for researchers and surgeons in the field, fostering further

development and application of laparoscopic surgery technology.

The main contributions of our study are listed below:

• This review investigates laparoscopic surgery’s phase recognition

and skill assessment research, providing a comprehensive

analysis and organization of these methods.

• We compile a summary of research on laparoscopic surgery phase

recognition using public datasets and perform performance

comparisons of these methods. In addition, we provide an in-

depth analysis of the limitations of existing datasets, including

annotation inconsistencies, lack of multi-center validation, and

challenges in cross-domain generalization.

• We identified common features of high-performing methods,

including commonly used spatial models, temporal models,

and other optimization strategies. Furthermore, we compare

the evolution of temporal modeling techniques (LSTM, TCN,

Transformer) and discuss their advantages and limitations,

providing insights into the future direction of phase

recognition model architectures. On this basis, we also delved

into optimization strategies such as attention mechanisms,

transfer learning, federated learning, and multimodal fusion.

These are the biggest differences between our review and

other existing reviews.

• After analyzing the research methods and application areas

associated with laparoscopic surgery phase recognition and

skill assessment, we summarized the main challenges and

potential opportunities for future development in this field.
2 Literature search and selection
methods

2.1 Search strategy

A systematic literature search was conducted across three

primary platforms: Google Scholar, arXiv, and Sci-Hub,

focusing on studies published between January 2019 and

January 2025 to capture the latest advancements in deep

learning (DL) applications for laparoscopic surgery. Conducted

searches by combining the keywords “laparoscopic surgery” or

“minimally invasive surgery” with “phase recognition,”

“surgical phase analysis,” or “surgical skill assessment” to

ensure comprehensive coverage of the relevant research

domain. By applying methodological filtering criteria, the

search incorporates technical aspects such as “deep learning,”

“computer vision,” or “neural networks,” along with studies

involving “datasets,” “Cholec80,” “M2CAI16,” or “benchmarks”

to ensure the retrieval of research that includes representative

data and evaluation standards.
2.2 Inclusion and exclusion criteria

During the research screening process, a series of standards

are strictly followed to ensure the relevance and scientific
Frontiers in Surgery 04
validity of the selected literature. The research needs to focus

specifically on laparoscopic surgeries such as cholecystectomy or

appendectomy, and adopt deep learning based methods for

surgical stage identification or skill assessment. Meanwhile, data

transparency is an important consideration in screening,

requiring research to use publicly available datasets or provide

detailed descriptions of proprietary datasets. In addition, the

research needs to be published in peer-reviewed journals or

conferences, or as a preprint for arXiv, and ensure that the full

text is provided in English.

To ensure the rigor of screening, certain types of research are

excluded. For example, research involving non laparoscopic

surgery is not considered, and studies using traditional image

processing, rule-based systems, or non machine learning methods

also do not meet screening criteria. Meanwhile, research without

quantitative results or complete method descriptions will not be

included. In addition, studies using datasets from unknown

sources were also excluded to ensure the reliability of the

selected literature.
3 Publicly available surgical datasets

3.1 Cholec80

The Cholec80 (14) endoscopic video dataset contains 80 videos

of cholecystectomy surgeries performed by 13 surgeons. In

addition, captured at a rate of 25 frames per second (fps) and

downsampled to 1 fps for processing, these videos have

resolutions of 1,920� 1,080 or 854� 480. The dataset provides

annotations for two tasks: surgical phase recognition (7 phases)

and binary tool presence detection (10). Table 1 displays the

specific phases of the dataset. Each video is annotated by a single

senior surgeon, with phases P2 (Calot triangle dissection) and P4

(Gallbladder dissection) containing the highest frame counts,

while P5 (Gallbladder packaging) and P7 (Gallbladder retraction)

are the shortest.

While Cholec80 is considered large-scale in terms of case

quantity (80 videos), it exhibits limitations in three key

dimensions to the extent that we consider it to be medium-

scale: Firstly, in terms of annotation granularity, the tools on

the Cholec80 dataset only label based on its presence (�50%

visibility of tooltips), lacking pixel level segmentation or

motion data. Secondly, compared to other public datasets, the

Cholec80 dataset has a clear disadvantage in that all surgical

videos come from a single institution with standardized

procedures and lack diversity. Finally, subsampling at 1 fps

results in significantly fewer total frames compared to other

public datasets, limiting the ability for temporal modeling.

Additionally, it is important to note that a single annotation

mechanism designed with only one surgeon for annotation

may introduce subjective bias in the definition of phase

transitions, particularly in the fuzzy intervals between similar

phase transitions (such as P5–P6 transitions). This may affect

the model generalization ability between datasets with different

annotation protocols.
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TABLE 1 Summary of public datasets on phase recognition in laparoscopic surgery.

Name Year Data Procedure Number of phases Phases
Cholec80 2016 80 videos Cholecystectomy 7 P1: Preparation

P2: Calot Triangle Dissection

P3: Clipping and Cutting

P4: Gallbladder Dissection

P5: Gallbladder Packaging

P6: Cleaning and Coagulation

P7: Gallbladder Retraction

M2CAI16 2016 41 videos Cholecystectomy 8 P1: Trocar Placement

P2: Preparation

P3: Calot Triangle Dissection

P4: Clipping and Cutting

P5: Gallbladder Dissection

P6: Gallbladder Packaging

P7: Cleaning and Coagulation

P8: Gallbladder Retraction

AutoLaparo 2018 21 videos Hysterectomy 7 P1: Preparation

P2: Dividing Ligament and Peritoneum

P3: Dividing Uterine Vessels and Ligament

P4: Transecting the Vagina

P5: Specimen Removal

P6: Suturing

P7: Washing

Liao et al. 10.3389/fsurg.2025.1551838
3.2 M2CAI16-workflow

In this study, the surgical workflow challenge dataset,

M2CAI16-workflow, was created for the M2CAI challenge.

Forty-one laparoscopic videos of cholecystectomy, each with a

resolution of 1,920� 1,080 and recorded at a speed of 25 frames

per second (15), were included in the dataset. Skilled surgeons

separated each video into eight phases (16), with Table 1

providing comprehensive descriptions of each step. The surgical

phases defined in the M2CAI16-workflow dataset are similar to

those specified in the Cholec80 dataset, i.e., one more “Trocar

Placement” phase is determined before the seven phases

described in the Cholec80 dataset.

Compared with other data sets for laparoscopic surgery

phase recognition, the labels in the MACAI16 workflow

data set are phase labels defined in collaboration with

multiple authoritative institutions, high in quality, and

suitable for model training and validation of surgical phase

recognition. But there are also certain limitations. Firstly,

compared to the 80 surgical videos in the Cholec80 dataset,

MACAI16-workflow only contains 41 videos, which is

relatively insufficient in data volume and challenging to

support large-scale deep learning models’ training fully. In

addition, the data of the MACAI16 flow only involve

cholecystectomy surgery and do not cover the stages of

other laparoscopic surgical procedures, which limits the

generalizability of the model. More importantly,

compared to other datasets for laparoscopic surgery phase

recognition, MACAI16-workflow only annotates surgical

stages, lacking tools, anatomical structures, or other multi-

task information, which appears incomplete in multi-task

learning scenarios.
Frontiers in Surgery 05
3.3 AutoLaparo

The dataset AutoLaparo (2) is a large-scale, integrated,

multi-task data set for image-guided surgical automation in

laparoscopic hysterectomy. This dataset was developed based

on complete videos of the entire hysterectomy procedure. The

21 videos in the dataset were recorded at a speed of 25 frames

per second with a resolution of 1,920� 1,080 pixels. The

dataset defines three highly correlated tasks: surgical workflow

recognition, laparoscopic motion prediction, and instrument

and key anatomical segmentation. Experienced senior

gynecologists and experts performed annotations. In Table 1,

the specific stage definitions of the dataset are visible. In

summary, it can be concluded that P2 and P3 occupy a more

significant proportion of the videos, while P1 and P5 account

for a smaller proportion.

The AutoLaparo dataset is one of the few designed explicitly

for laparoscopic hysterectomy surgery. Still, it only includes

hysterectomy surgery, limiting its generalizability to other

types of laparoscopic surgery scenarios. In addition, there are

only 21 videos in the AutoLaparo dataset. Although each

video has a longer duration, the number is limited, making it

difficult to cover multiple surgical variants and complex

situations. However, the reason why it is called a large-scale

dataset is from a comprehensive and multi-faceted

perspective. Although it only contains 21 videos, each video

contains more total frames than the Cholec80 dataset and has

three common annotation tasks, including surgical phase

recognition, surgical tool segmentation, and laparoscopic

motion prediction. In addition, the annotations were jointly

validated by senior gynecologists from 7 hospitals to ensure

cross institutional consistency.
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3.4 JIGSAWS

JIGSAWS (17) (JHU-ISI Gesture and Skill Assessment Working

Set) is a dataset used for studying surgical skill assessment and

surgical activity modeling, created in collaboration between Johns

Hopkins University (JHU) and Intuitive Surgical Inc. (ISI). The

JIGSAWS dataset mainly includes three basic surgical tasks,

namely suturing, knot-tying, and needle-passing. Eight surgeons

with different levels of experience completed these three tasks,

repeating each task five times to provide rich skill performance

data. The JIGSAWS dataset consists of kinematic data, video data,

and manual annotation, covering multiple dimensions of surgical

operations and providing important resources for automated

assessment of surgical skills.

In terms of skill assessment, JIGSAWS adopts a standardized

scoring system, which is evaluated by an experienced

gynecologist based on the OSATS (Objective Structured

Assessment of Technical Skills) scoring system. The scoring

system covers six core dimensions: respect for tissue, suture/

needle handling, time and motion, flow of operation, overall

performance, and final product quality. Each criterion is rated on

a scale from 1 to 5, and the evaluation process adopts blind

testing to reduce subjective bias. The dataset emphasizes the

comparison of skill levels between novices and experts, ranging

from resident physicians with less than 10 h of experience to

experts with over 100 h of experience, providing researchers with

continuous skill level data that helps explore the development of

surgical skills and optimize automated evaluation methods.

However, despite the significant value of the JIGSAWS dataset

in surgical skill assessment, there are still certain limitations. This

dataset mainly focuses on basic training tasks such as suturing

and knotting, without involving more complex clinical

procedures, which limits its applicability in real surgical

environments. Therefore, although JIGSAWS provides a

standardized experimental framework in the field of surgical skill

assessment, its coverage still needs to be further expanded in the

future to support more complex surgical scenarios and more

comprehensive skill assessment research.
4 Research on phase recognition in
laparoscopic surgery videos

4.1 Definition and importance of phase
recognition

Laparoscopic video phase recognition uses video analysis

techniques to automatically identify and classify different surgical

process stages. This involves analyzing laparoscopic video to

detect phases during surgery automatically. Understanding every

step of the surgical workflow is the goal of assisting different

applications, such as auxiliary surgery and postoperative analysis.

Phase recognition is essential for surgical workflow analysis

because it is helpful for the standardization and postoperative

evaluation of procedures (18). Phase recognition is also crucial to

improve the safety (19) and surgery efficiency. It can monitor the
Frontiers in Surgery 06
surgical procedure, alert physicians to possible problems before

they arise (4), help physicians better prepare for the next

operation or make decisions, guarantee the procedure’s success,

and support surgical education and analysis. Furthermore, a

more objective assessment of the surgeon’s skill can be made by

analyzing the key steps in the surgical video.
4.2 Exploration of phase recognition
methods and technologies

Much literature has been accumulated on the study of phase

recognition in laparoscopic surgery, which has similarities and

significant differences. To better understand the development of

this field and the current situation, we will start with two aspects

of commonalities and differences in these studies, focusing on

in-depth analysis through direct objectives, core steps, and

adopted model. Through comparative analysis of these aspects,

we hope to help researchers in this field have a clearer

understanding of current research trends and challenges,

promoting further development of phase recognition research in

laparoscopic surgery.

4.2.1 Analysis based on research objectives
In the research on laparoscopic surgery phase recognition, the

direct objectives of researchers vary. As illustrated in Figure 3, these

objectives focus on four key areas: improving the accuracy and

efficiency of phase recognition of laparoscopic surgery,

addressing the challenges of insufficient datasets, exploring

methods for multimodal information fusion, and improving the

generalizability of the methods used in phase recognition tasks.

Most studies focus on improving existing models to enhance

the accuracy and efficiency of laparoscopic surgery phase

recognition. For example, Ding et al. (4) achieved improved

precision in laparoscopic surgery phase recognition by extracting

high-level features from surgical videos. This method improves

the model’s performance by correcting for blurriness or incorrect

predictions resulting from low-level frames.

The lack of enough datasets is another difficulty for researchers

in phase recognition. Many researchers have proposed

corresponding solutions. For example, in (20), because of the

insufficient annotated data, the authors used semi-supervised

learning to improve the model’s performance. Furthermore, in

(21), the federated learning method was proposed, which allowed

the model to train on multiple dispersed datasets. This protects

data privacy and will enable data to be used by several institutions.

Multimodal information fusion is also essential in the phase

recognition task of laparoscopic surgery. Combining tool

recognition features with phase recognition features is one of the

applications of the method. For example, by adding tool

recognition results as auxiliary features to the phase recognition

model, Yuan et al. (22) improved the phase prediction accuracy

of the model.

Another goal of phase recognition is to improve the model’s

generalization ability on different surgical environments or

datasets. Therefore, they used data augmentation and transfer
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FIGURE 3

Summarizing the research objectives related to laparoscopic surgery phase recognition.

FIGURE 4

Commonly used method structures in laparoscopic surgery phase recognition research.

Liao et al. 10.3389/fsurg.2025.1551838
learning techniques to ensure the model can maintain stable

performance. In (20), the model’s generalization ability was

improved by increasing the diversity of training data, that is, by

using data augmentation techniques. In (23), the model’s

generalization ability and accuracy have been significantly

improved by pre-training on one surgical type and transferring

knowledge to other surgical types.
4.2.2 Analysis based on core steps
Although the direct goals of researchers vary, the core steps of

laparoscopic surgery phase recognition research are generally

similar. Figure 5 shows that the main steps of laparoscopic

surgery phase recognition research include the collection and

preprocessing of laparoscopic surgery videos, phase classification
Frontiers in Surgery 07
annotation, deep learning model training, and testing, as well as

model performance evaluation.

In the study of phase recognition in laparoscopic surgical

videos, the first step is to collect a large number of laparoscopic

surgical videos. These videos can come from the same medical

center or many different medical centers. These videos are

preprocessed, including format conversion and de-identification,

to protect patients’ privacy. The video content is annotated

following different stages of surgery, providing basic data for

training deep learning models.

To accurately train AI models, researchers collaborated with

experienced surgeons to define the key stages of surgery and

provided corresponding detailed annotations for the videos. The

number and content of the key stages represented in these

studies are different, and the corresponding numbers of key
frontiersin.org
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FIGURE 5

Applications of phase recognition tasks in laparoscopic surgery: including a concise process of surgical phase identification using DL models.

Liao et al. 10.3389/fsurg.2025.1551838
stages for each study are summarized in Tables 2 and 3. Although

the number of these stages varies, their definitions are consistent in

key steps such as Calot triangulation, tissue separation, and cutting.

Some studies even annotate possible adverse events that may occur

during the surgical process with the purpose of training models to

recognize these events. For example, the laparoscopic

cholecystectomy video dataset constructed by Tomer Golany

et al. (43) specifically recorded adverse events such as significant

bleeding, gallbladder perforation, and massive bile leakage,

providing valuable annotated data for model training. Using

annotated data, researchers can train deep-learning models to

recognize and predict surgical phases in laparoscopic videos.

In the deep learning model training and testing process,

laparoscopic surgery phase recognition research mainly includes

four core steps: video processing and feature extraction, temporal

modeling, design of classification layers, and construction of loss

functions. In addition, in specific applications, multimodal fusion

techniques may also be involved further to enhance the

performance and robustness of the model. To facilitate

understanding of the subsequent model analysis, let us first

outline these key steps and the underlying principles.

Firstly, in laparoscopic surgery phase recognition, it is necessary

to convert the input video frame sequence into feature

representations that deep learning models can effectively process.

Assuming that the surgical video contains T frames, each frame

can be represented as Xt , where t [ {1, 2, . . ., T}. These frames are

input into a deep neural network (such as a Convolutional Neural
Frontiers in Surgery 08
Network, CNN) for feature extraction. Specifically, as shown in

Equation (1), the feature extraction process can be represented as:

Ft ¼ CNN(Xt) (1)

Among them, Ft is the feature vector extracted from the t-th frame.

The entire video can be transformed into a series of feature vectors,

denoted {F1, F2, . . ., FT }. The CNN here can be replaced with

other spatial models.

Next, due to the surgical stage’s apparent temporal continuity

and interdependence, the feature sequences {F1, F2, . . ., FT } will

be input into the temporal model for modeling. Temporal

models can capture dynamic features and long-term and short-

term dependencies during surgical procedures. Taking the LSTM

temporal model as an example, when using LSTM for time

modeling, it can be represented by the following formula (2):

ht ¼ LSTM(Ft , ht�1) (2)

Among them, ht is the hidden state of the LSTM model in frame t,

which depends on the current input feature Ft and the previous

hidden state ht�1. The LSTM here can be replaced with other

temporal models.

The output hidden state ht of the temporal model will be input

into a fully connected layer or classifier to predict the surgical phase

label for each frame. The calculation process of probability
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TABLE 2 Comparison of studies on surgical phase recognition tasks using
DL models-Part 1.

Ref. Year Type Dataset Number
of Phases

DL model

(24) 2019 Single-task M2CAI16 8 ResNet50 þ LSTM

Cholec80 7

(25) 2019 Multi-task Cholec80 7 CNN þ LSTM

(26) 2019 Single-task NPA 7 CNN þ LSTM

(27) 2019 Single-task Cholec80 7 CNN

CATARACTS 4

(28) 2019 Multi-task Cholec80 7 CNN þ NARX

(29) 2019 Multi-task NPA 11 Inception-ResNet-v2
þ LightGBM

(1) 2020 Single-task NPA 8 ResNet50

(30) 2020 Single-task NPA 7 CNN þ Non-local
Block

(31) 2020 Single-task Cholec80 7 ResNet50 þ MS-
TCN

NPA

(32) 2020 Single-task NPA 9 CNN

(33) 2020 Multi-task NPA 7 InceptionV3 þ
ResNet50

8

(34) 2020 Multi-task Cholec80 7 CNN þ LSTM

(5) 2021 Single-task Cholec80 7 CNN þ GNN

(10) 2021 Single-task Cholec80 7 CNN þ LSTM þ
SSM

NPA 13

(35) 2021 Single-task M2CAI16 8 ResNeXt101 þ SE

(16) 2021 Single-task Cholec80 7 Transformer

M2CAI16 8

(36) 2021 Multi-task Cholec80 7 IIM þ MS-TCN

(37) 2021 Single-task Cholec80 7 PeleeNet þ ST-
ERFNet

(18) 2021 Single-task NPA 6 CNN þ LSTM

(23) 2021 Single-task NPA 7 Conv1D þ LSTM

(38) 2021 Single-task NPA 11 ResNet50 þ TCN

(39) 2021 Single-task Cholec80 7 CNN þ LSTM þ
3D-CNN

NPA 21

(40) 2021 Single-task NPA 8 3DCNN

(41) 2021 Single-task NPA 7 SVM þ HMM

(42) 2021 Single-task NPA 8 IPCSN þ MS-TCN
þ PKNF

(19) 2022 Single-task Cholec80 7 CNN þ CBAM þ
IndyLSTM

(2) 2022 Multi-task AutoLaparo 7 SV-RCNet

TMRNet

TeCNO

Trans-SVNet

(3) 2022 Single-task NPA 7 EfficientNet-B7 þ
SAM

(43) 2022 Single-task NPA 10 ResNet50 þ MS-
TCN

NPA ¼ not publicly available.
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distribution is given by Equation (3):

P(yt j X) ¼ softmax(Wht þ b) (3)

Where W and b are the classifier’s weight matrix and bias vector,

and yt is the predicted phase label of the t-th frame. Calculating
Frontiers in Surgery 09
the phase label probability at each time step and maximizing it,

the phase sequence of the entire video can be obtained.

In order to optimize model performance, the cross-entropy loss

function is commonly used during the training process to measure

the error between predicted labels and true labels. The loss function

is specifically defined by Equation (4):

L ¼ � 1
T

XT

t¼1

XC

c¼1

y(c)t logP(y(c)t j X) (4)

where C is the total number of phase categories, y(c)t is the one-hot

encoding of the true label, and P(y(c)t j X) is the predicted

probability for category c at time step t. The model can better

match the predicted probabilities to the true labels across all

frames by minimizing the cross-entropy loss.

When phase categories are highly imbalanced, the standard

cross-entropy loss may be dominated by high-frequency classes.

Focal Loss dynamically adjusts sample weights to focus on

hard-to-classify examples, as shown by Equation (5):

LFL ¼ � 1
T

XT

t¼1

XC

c¼1

a(c)
t 1� P(y(c)t jX)� �g

y(c)t logP(y(c)t jX) (5)

where a(c)
t is a weighting factor for class c at time step t, used to

balance class frequency. g is the focusing parameter that adjusts

the contribution of easy and hard samples.

In order to ensure the continuity of predictions between adjacent

frames and avoid unreasonable phase jumps, Temporal Consistency

Loss is often used in research. The formula is given by Equation (6):

LTC ¼ 1
T � 1

XT�1

t¼1

P(yt jX)� P(ytþ1jX)k k2 (6)

This loss minimizes the change in prediction probability between

adjacent frames, making the phase recognition results smoother,

thereby improving the temporal stability and logical coherence of

the surgical process.

In addition to the above process, in some complex scenarios,

multimodal feature fusion technology can be introduced to improve

the accuracy of phase recognition. For example, other features, such

as tool usage, can also be integrated into visual features. The fusion

method can be achieved through feature concatenation or weighted

summation. Feature concatenation can be represented by Equation (7):

F0
t ¼ concat(Ft , Gt) (7)

where Ft represents the visual features and Gt represents the tool

features. The weighted summation method can be expressed by

Equation (8):

F0
t ¼ aFt þ bGt (8)

Among them, a and b are learnable weight parameters that balance the

contributions of different modal features.
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TABLE 3 Comparison of studies on surgical phase recognition tasks using DL models-Part 2.

Ref. Year Type Dataset Number of Phases DL model
(4) 2022 Single-task Cholec80 7 ResNet50 þ RCDL þ SFE þ SFA

M2CAI16 8

(7) 2022 Multi-task Actions 160 16 CNN þ LSTM þ TCN

Cataract-101 10

Cholec80 7

(44) 2022 Single-task Cholec80 7 ResNet þ TCN þ GRU þ Causal TCN

M2CAI16 8

(22) 2022 Multi-task Cholec80 7 ResNet50 þ UNet þ TeCNO þ MS-TCN

(45) 2022 Single-task NPA 7 CNN þ LSTM þ HMM

(46) 2022 Single-task NPA 12 Resnet50 þ MSTCN

Resnet50 þ Trans-SVNet

(47) 2022 Single-task NPA 5 Conv3D þ seq2seq

(48) 2022 Single-task Cholec80 7 CNN þ LSTM

NPA 12

(49) 2022 Single-task NPA 8 TCN þ LSTM

(8) 2023 Single-task Cholec80 7 L-Trans þ G-Informer

AutoLaparo 7

(50) 2023 Single-task NPA 12 FCN þ MS-TCN

(51) 2023 Single-task NPA 6 VTN þ LSTM

(52) 2023 Multi-task Cholec80 7 Transformer

M2CAI16 8

(53) 2023 Single-task Cholec80 7 EfficientNetV2 þ Transformer

(54) 2023 Single-task Cholec80 7 Attn_conv Inc_2DLSTM þ Gcaps_TAE

(55) 2023 Single-task Cholec80 7 Swin Transformer þ LSTM

(56) 2023 Single-task Cholec80 7 ResNet50 þ MS-TCN þ ASFormer

(21) 2023 Single-task NPA 6 ResNet50

(57) 2023 Single-task Cholec80 7 CNN þ TCN þ GRU

NPA 10

(58) 2023 Single-task NPA 6 YOLOv3

EfficientNet-B7

(20) 2023 Multi-task Cholec80 7 MoCo v2

SimCLR

DINO

SwAV

(59) 2023 Single-task NPA 7 CNN þ Transformer

(60) 2023 Single-task NPA 13 DESM

(61) 2023 Single-task NPA 5 ResNet50 þ SS-TCN

CATARACTS 11

(62) 2023 Multi-task NPA 7 ASFormer þ TCN

(63) 2024 Single-task Cholec80 7 ResNet þ MS-TCN

(64) 2024 Single-task Cholec80 7 Faster R-CNN þ ResNet þ Transformer

M2CAI16 8

Autolaparo 7

(65) 2024 Single-task Cholec80 7 Transformer þ Hierarchical Temporal Attention

Autolaparo 7

(66) 2025 Single-task Cholec80 7 Vision Transformer þ L-Trans þ G-Informer

AutoLaparo 7

NPA ¼ not publicly available.

Liao et al. 10.3389/fsurg.2025.1551838
These steps and methods constitute the basic process and

principles of phase recognition research in laparoscopic surgery,

providing a theoretical basis for further analysis and optimization

of specific models.

4.2.3 Analysis based on models or methods
Based on the above analysis, we will currently discuss the most

complex aspect of this field: the commonalities and differences

among the models or methods applied in laparoscopic surgery
Frontiers in Surgery 10
phase recognition research. Table 4 summarizes the studies

conducted on public datasets for laparoscopic surgery phase

recognition. Most of these studies are based on laparoscopic

cholecystectomy and primarily utilize the Cholec80 and

M2CAI16-workflow datasets. As shown in this table, we can

observe that the performance of these methods is related to the

used models and the improvements made to the techniques.

The research and development of phase recognition in

laparoscopic surgery has gradually evolved from spatial to
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temporal models. The earliest research mainly focused on using the

spatial features of static images for classification. Researchers

mostly use traditional computer vision methods or direct use of

convolutional neural networks (CNN) for surgical image

classification. For example, in 2019, Gurvan Lecuyer et al. (27)

proposed a CNN-based surgical step recognition method and

developed a user-assisted annotation tool. This auxiliary system

significantly improves the accuracy and efficiency of annotation,

demonstrating the potential of deep learning in optimizing the

surgical video annotation process. These methods identify

different stages of surgery by extracting spatial information from

images. Still, their accuracy is low due to the neglect of temporal
TABLE 4 Comparison of related research on phase recognition using public

Ref. Year Applicationa DL
(24) 2019 Phase recognition ResNet50 þ LSTM

(25) 2019 Phase recognition CNN þ LSTM

Tool recognition

(30) 2020 Phase recognition CNN þ Non-local Blo

(31) 2020 Phase recognition ResNet50 þ MS-TCN

(5) 2021 Phase recognition CNN þ GNN

(10) 2021 Phase recognition CNN þ LSTM þ SSM

(35) 2021 Phase recognition ResNeXt101 þ SE Att

(15) 2021 Workflow recognition TMRNet

(16) 2021 Phase recognition Trans-SVNet

(67) 2021 Phase recognition CNN þ SE Attention

(36) 2021 Workflow recognition IIM þ MS-TCN

Instrument detection

(37) 2021 Phase recognition PeleeNet þ ST-ERFNe

(19) 2022 Phase recognition ResNet50 þ CBAM þ
(4) 2022 Phase recognition ResNet50 þ RCDL þ

(7) 2022 Phase recognition CNN þ LSTM þ TCN

Video retrieval task

(68) 2022 Phase recognition CDC Networks

(13) 2022 Phase recognition CNN þ Transformer

(44) 2022 Phase recognition TCN þ GRU

(8) 2023 Phase recognition L-Trans þ G-Informer

(52) 2023 Phase recognition Transformer þ VFE þ
Tool recognition

(69) 2023 Phase recognition Self-KD

(53) 2023 Phase recognition EfficientNetV2 þ Tran

(54) 2023 Phase recognition CNN þ LSTM þ BiG

(55) 2023 Workflow recognition Swin Transformer þ L

(56) 2023 Phase recognition ResNet50 þ MS-TCN

(63) 2024 Phase recognition ResNet þ MS-TCN

(64) 2024 Phase recognition Faster R-CNN þ ResN

(65) 2024 Phase recognition Transformer þ Hierar

(66) 2025 Phase recognition Vision Transformer þ

Most of the studied surgical procedures are laparoscopic cholecystectomies.
aPhase recognition: Focuses on segmenting surgical procedures into distinct stages (e.g., gallblad
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features during the surgical process, especially in complex

surgical stages. However, from Tables 2, 3, and 4, it can be seen

that despite the continuous evolution of research methods,

almost all laparoscopic surgery phase recognition methods still

retain the spatial information extraction module, namely the

spatial model. Still, in most cases, other models are also

combined. Next, we will analyze and summarize these studies’

most commonly used spatial models further.

4.2.3.1 Spatial model analysis
According to the summary of deep learning models in Tables 2, 3

and 4, it is evident that most studies employ deep Convolutional
datasets.

model Dataset Accuracy
M2CAI16 91.2%

Cholec80 92.4%

Cholec80 89.2%

ck Cholec80 91.7%

Cholec80 88.56%

Cholec80 93.77%

Cholec80 90.8%

ention M2CAI16 85.8%

Cholec80 90.1%

M2CAI16 87%

Cholec80 90.3%

M2CAI16 87.2%

Cholec80 91.26%

Cholec80 88%

t Cholec80 86.07%

IndyLSTM Cholec80 89.8%

SFE þ SFA Cholec80 91.8%

M2CAI16 91.6%

Cholec80 90.2%

M2CAI16 91.4%

Cholec80 89.27%

Cholec80 92%

M2CAI16 88.2%

Cholec80 91.5%

AutoLaparo 81.43%

FE þ LSC Cholec80 93.12%

M2CAI16 91.5%

Cholec80 93.24%

sformer Cholec80 94.9%

RU Cholec80 98.95%

STM Cholec80 92.8%

þ ASFormer Cholec80 95.43%

Cholec80 93.6%

et þ Transformer Cholec80 93.5%

M2CAI16 91.8%

Autolaparo 81.6%

chical Temporal Attention Cholec80 93.4%

Autolaparo 85.7%

L-Trans þ G-Informer Cholec80 92.4%

AutoLaparo 81.4%

der dissection). Workflow recognition: Encompasses broader process analysis.
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TABLE 5 Common spatial models used in studies related to surgical phase
recognition tasks in laparoscopic surgery videos.

Architecture Functions Year Methods
CNN (1998) 1. Image recognition

and classification
2. Object detection
3. Image segmentation

2019 (24–28)

2020 (1, 30–34)

2021 (5, 10, 18, 24, 35, 38–40, 67)

2022 (4, 7, 13, 19, 22, 43–46, 48)

2023 (21, 54, 56, 57, 59, 61)

2024 (63, 64)

ResNet (2015) 1. Image recognition
and classification
2. Object detection
3. Image segmentation
4. Image generation

2019 (24, 29)

2020 (1, 31, 33)

2021 (35, 38)

2022 (4, 19, 22, 43, 44, 46)

2023 (21, 56, 61)

2024 (63, 64)

Transformer
(2017)

1. Image recognition and
classification 2. Object
detection 3. Image
segmentation
4. Semantic segmentation

2021 (16)

2022 (13)

2023 (52, 53, 55, 56, 59, 62)

2024 (64, 65)
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Neural Network (CNN) architectures for feature extraction.

Among them, the method proposed in reference (54) utilizes a

gated capsule autoencoder model (Gcaps_TAE) for surgical

phase recognition in laparoscopic videos. This method achieved

an accuracy of 98.95% on the Cholec80 dataset, significantly

outperforming other state-of-the-art methods. In this approach,

the Inception model is adopted for spatial feature extraction. The

Inception model, a type of CNN architecture, improves the

model’s expressive power and computational efficiency by

extracting multi-scale feature information by introducing

convolutional kernels and pooling layers of various sizes. The

application of CNN architecture in these studies can achieve

excellent results due to the inherent characteristics of CNNs.

CNNs use convolutional and pooling layers to extract features

and reduce dimensionality from input images. It excels at

capturing local image features and is particularly suitable for

processing image data in laparoscopic surgery. Meanwhile, CNNs

can effectively recognize and classify surgical instruments, tissue

structures, etc., in images. These advantages enable CNN to

perform excellently in both single-task and multi-task scenarios

in laparoscopic surgery phase recognition.

The Residual Network (ResNet) is also a type of CNN that

introduces residual connections based on traditional CNN,

allowing the network to train deeper. Residual connections allow

input information to bypass one or more layers and pass directly

to subsequent layers. This can alleviate the gradient vanishing

problem and enable deeper networks to train successfully,

ultimately extracting higher-level image features. ResNet is widely

used to investigate phase recognition in laparoscopic surgery. For

example, in (5), the authors employed the SEResNet50 to extract

high-level features of video frames, and the encoder of this

method only relies on stage annotation for training without

depending on other auxiliary information. Furthermore, Zhang

et al. (56) used the Slow-Fast Temporal Modeling Network (SF-

TMN) method for surgical phase recognition. They used ResNet

in this method to extract spatial features from video frames.

Numerous studies, including those that applied ResNet to extract

spatial features, ultimately improved significantly. Generally, due

to its deep network structure and residual connections, ResNet

enhances the model’s performance by extracting high-level

features from complex images.

Recently, researchers have adopted Transformer for spatial

feature extraction. For example, Pan et al. (55) put forward the

Swin Transformer to obtain multi-scale features. The Swin

Transformer can process images of various scales by combining

the benefits of CNN and Transformer. It uses an improved self-

attention mechanism to extract spatial information from images.

Furthermore, Swin Transformer applies the Shifted Window,

which minimizes computational costs while processing high-

resolution images and preserving the capacity to extract local and

global features. This method not only retains the advantages of

the Transformer model in capturing long-distance dependencies

but also combines the strengths of CNN in local feature

extraction, making the Swin Transformer performance in

handling complex visual tasks. Its multi-scale feature extraction

and self-attention mechanism enable the model to identify
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different phases in surgical videos accurately. For instance, the

Swin Transformer enhances phase recognition accuracy by

precisely identifying the usage of surgical instruments and

changes in tissue structure when exploring high-resolution

surgical videos.
4.2.3.2 Temporal model analysis
The above summary outlines the commonly applied spatial models

in laparoscopic surgery phase recognition. The widely used spatial

models and their functions, along with the studies utilizing them,

are organized in Table 5. However, depending solely on spatial

features is insufficient for comprehensively understanding the

dynamic changes during surgery. Therefore, with the

advancement of technology, temporal models have gradually

been introduced into surgical phase recognition, especially

recurrent neural networks (RNNs) such as long short-term

memory networks (LSTM) have been applied to the processing

of surgical videos. These models can effectively capture the

temporal dependencies between video frames, significantly

improving recognition accuracy. For example, a hybrid model

combining CNN for spatial feature extraction and LSTM for

processing temporal information has gradually become the

mainstream method. This type of method can better capture the

dynamic characteristics of each stage during the surgical process

and has achieved significant performance improvements in some

studies. Standard temporal models include Long Short-Term

Memory (LSTM), Temporal Convolutional Networks (TCN), and

Transformer-based models. The following sections will offer a

detailed analysis of these temporal models.

The above-mentioned Gcaps_TAE (54) uses the Inception

model and the 2D-LSTM models. The Inception model was

adopted for extracting spatial features, while the 2D-LSTM model

was utilized to extract temporal features, enabling the model to

capture essential features better. Pan et al. (55) utilized a

combination of Swin Transformer and LSTM. Swin Transformer

is applied to extract multi-scale visual features, while LSTM is
frontiersin.org
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TABLE 6 Predominant temporal models in research on surgical phase
recognition tasks for laparoscopic surgery videos.

Architecture Functions Year Methods
LSTM (1997) 1. Time series prediction

2. Video analysis
3. Speech recognition
4. Natural language
processing

2019 (24–26)

2020 (34)

2021 (10, 18, 23, 39)

2022 (7, 19, 45, 48, 49)

2023 (51, 55)

Transformer
(2017)

1. Time series forecasting
2. Video analysis
3. Speech recognition
4. Natural language
processing

2021 (16)

2022 (13)

2023 (52, 53, 55, 56, 59,
62)

2024 (64, 65)

TCN (2018) 1. Time series forecasting
2. Speech recognition
3. Natural language
processing
4. Action recognition

2020 (31)

2021 (36, 38, 42)

2022 (7, 22, 43, 44, 46, 49)

2023 (50, 56, 57, 61, 62)

2024 (63)
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employed to extract temporal information from sequence frames.

Through its gating mechanism, the LSTM can capture and

remember long-term sequence information in surgical videos by

merging the features that the Swin Transformer outputs.

Therefore, LSTM is commonly used to extract temporal features

in the phase recognition task of laparoscopic surgery. Typically,

LSTM is used with CNNs or other spatial feature extraction

models to obtain joint modeling of spatiotemporal features.

In addition to LSTM networks, TCNs and Transformers are

commonly used temporal models in laparoscopic surgery phase

recognition tasks. As mentioned earlier, Zhang et al. (56)

proposed SF-TMN for surgical phase recognition. The proposed

network operates in two stages: during the first stage, ResNet50

is used to extract spatial features from video frames; during the

second stage, the extracted full video features are used for

training, employing two different temporal modeling networks,

Multi-Stage Temporal Convolutional Network (MS-TCN), and

Transformer for Action Segmentation (ASFormer). The slow

pathway of SF-TMN focuses on frame-level temporal modeling,

while the fast pathway concentrates on segment-level temporal

modeling. The initial predictions are generated by combining

features from both the slow and fast pathways and are further

optimized in a subsequent temporal refinement stage.

Additionally, the proposed model achieves excellent results by

combining TCN and Transformer for temporal feature

extraction, with an evaluation accuracy of 95.43%.

TCNs excel in handling time series data. TCNs capture long-

term dependencies through dilated convolution operations,

making it adept at processing time-series data over extended

periods. Dilated convolutions introduce gaps within the

convolution operations, which can effectively expand the

receptive field of the convolutional kernel without increasing

computational complexity. This capability makes TCNs

particularly effective for managing long-term dependencies in

laparoscopic surgery videos, enabling it to capture critical

dynamic changes during surgical procedures.

Based on attention mechanisms, Transformers can process

entire time series data in parallel, providing efficient parallel

computing capabilities suitable for handling very long sequences.

With self-attention mechanisms, Transformers can consider

information from all other time steps when computing the

output for each time step. This makes them exceptionally good

at capturing complex temporal dependencies. In laparoscopic

surgery phase recognition tasks, Transformers are usually

employed as temporal models to optimize methods.

Transformers excel in capturing vital actions and stage

transitions during surgical procedures.

4.2.3.3 Model fusion and optimization strategy
The commonly used time models and their functions in laparoscopic

surgery phase recognition tasks, as well as the studies with these

models, are summarized in Table 6. The combination of spatial

and temporal models has demonstrated strong performance in

surgical phase recognition tasks. Combining different models can

improve the accuracy of phase recognition. Apart from combining

spatial and temporal models, some optimization strategies have
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also improved accuracy, such as attention mechanisms, residual

connections, and data augmentation.

The attention mechanism can be used in laparoscopic surgery

phase recognition to capture important temporal and spatial

information by analyzing the relationship between different

surgical video frames. By using the attention mechanism, the

model can identify which frames are most important for the

current surgical phase recognition, improving recognition

accuracy. For example, in the method based on the Gcaps_TAE

proposed in reference (54), to help the Inception model better

learn important features in images, it is also integrated with the

attention mechanism. By calculating the relationship between

video frames, the attention mechanism focuses more on frames

that are relatively important to the current task. This technique

not only makes the model easier to identify but also makes it

able to capture the tiny changes that occur during surgery.

Another widely used technique is residual connection, which

allows input to skip one or more layers and pass directly to

subsequent layers by adding shortcut connections between layers.

In laparoscopic surgery phase recognition, deep neural networks

must handle complex surgical videos, and residual connections

can effectively train deeper networks to alleviate vanishing

gradient problems and improve model performance. In reference

(54), residual connections were added between the Inception

model’s attention modules. Through residual connections, the

output of the previous attention module is directly added to the

output of the next module. During the training process, this

method helps optimize the model by preserving the original

features and improving the capacity of subsequent features to

learn. Additionally, residual connections can enhance the ability

to extract features by reducing the gradient vanishing.

Data augmentation is a technique for producing different

training data through different random changes in the training

data, including rotation and cropping. The primary purpose of

this method is to improve the model’s generalization ability. Data

augmentation can simulate different changes and uncertainties

during the surgery. The model can be trained on various data

types through data augmentation, which can better adapt to
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changes in practical applications. For example, in (20), researchers

enriched the training dataset using data augmentation techniques,

including color enhancement. These enhancement techniques

enable the model to learn more features during the training

process, improving the F1 score.

In recent years, with the diversification of medical data and the

development of deep learning technology, researchers have begun

to experiment with multimodal fusion methods. As mentioned

above, Yuan et al. (22) improved the accuracy of surgical phase

prediction through multimodal fusion methods. This method

combines surgical videos with other types of data to further

improve the accuracy of phase recognition, such as sensor data

and audio data. Introducing force sensors, temperature sensors,

and other data enables the model to integrate more dimensional

information, thereby providing more accurate recognition results

in complex surgical procedures.

In addition, deep transfer learning and federated learning have

also been widely applied in laparoscopic surgery phase recognition.

With the diversification of data and the demand for cross-device

applications, deep transfer learning enables pre-trained models to

adapt to data from different hospitals and devices, avoiding the

difficulty of annotating surgical data. Transfer learning

significantly improves the generalization ability of models by pre-

training them on large-scale datasets and then fine-tuning them to

adapt to specific data. For example, Daniel Neimark et al. explored

in paper (23) how to improve the generalization performance of

surgical step recognition through transfer learning across different

surgical types. In addition, federated learning, as a privacy-

preserving distributed training method, can train models across

multiple hospitals or devices without centralized data storage,

effectively protecting patient privacy and achieving good results in

practical applications. For example, Hasan Kassem et al. proposed

a Semi-Supervised Federated Learning (FSSL) method called

Federated Cycling (FedCy) (21) for surgical stage recognition.

FedCy is the first federated learning method applied to surgical

videos, avoiding data-sharing issues.

4.2.3.4 Summary
Based on the above analysis and the summary of Tables 2, 3 and 4, it

can be concluded that most methods for the phase recognition task

in laparoscopic surgery are based on the following architecture: the

combination of spatial and temporal models and various

optimization strategies. As shown in Figure 4, these optimization

techniques are appropriate for both spatial and temporal models.

Spatial models are mainly employed to extract spatial features

from surgical videos, while temporal models capture dynamic

changes during the surgery. Researchers can enhance phase

recognition accuracy by merging spatial and temporal models.

Similarly, optimization strategies, including attention mechanisms,

residual connections, and data augmentation, can also enhance the

model’s performance. These strategies improve the accuracy of

feature extraction and address the problems that deep learning

models may encounter during the training process, such as

gradient vanishing and overfitting. We hope that through these

analyses and summaries, we can help researchers in this field to

overview the current research status and gain inspiration.
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4.3 Applications of phase recognition

In the current section, we will analyze in detail the multiple

application areas of the laparoscopic surgical phase recognition

task, as presented in Figure 5. This task presents significant

advantages during the surgical planning and evaluation phase.

Phase recognition can help surgeons more accurately plan surgical

steps and predict the time required for surgery. After the

completion of the surgery, the surgeon’s key decisions and surgical

operations are comprehensively evaluated (1), further improving

the accuracy of surgical planning. During surgery, real-time phase

recognition provides surgeons with immediate feedback to assist

them in identifying the current stage of surgery and predicting the

next operation, which not only enables surgeons to make more

accurate and rapid decisions and avoid surgical errors (43) but

also enables surgeons to prepare in advance through the system

warning of upcoming complex surgical steps. This further

improves the safety and success rate of surgery.

In addition, the surgical phase recognition task greatly supports

surgical education (51). By automatically labeling the surgical stage,

learners can more easily understand the entire surgical process,

focus on the key skills in the surgical stage, and strengthen the

learning and mastery of surgical operations. The analysis of the

duration of different surgical stages and related operations can

also be used to assess the surgeon’s surgical skills (51) and

identify potential problems in the surgical process, which can

improve the quality of the surgery and the surgeon’s professional

skills. For novice surgeons, they can quickly learn surgical skills

and discover their problems by observing and analyzing the

surgical videos of skilled surgeons.

Retrospective identification of steps in surgical videos also

exerts a vital role in postoperative patient care (50). Through

these video analyses, surgeons can better understand the key

aspects of postoperative care and ensure that patients receive the

best postoperative care and treatment.
5 Research on laparoscopic surgery
skill assessment

The treatment outcomes of patients are closely associated with

surgeons’ surgical skills. Thus, it is essential to research surgical

skill assessment, aiming to train surgeons and improve their

surgical skills based on the feedback from the surgical skill

assessment. The assessment of laparoscopic surgical skills is a

complex process involving multiple standards and methods.
5.1 Standards and methods for surgical skill
assessment

The evaluation of laparoscopic surgical skills is mainly

performed by analyzing surgical videos, which can provide a

more intuitive observation of the surgeon’s operational skills

during the surgical process. The key methods for evaluating

surgical skills mainly consist of expert review, integration of
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motion recognition techniques, standardization of surgical field of

view, and analysis of surgical instrument usage. In the laparoscopic

surgery video skill assessment task, commonly used standards and

methods can be observed in Figure 6, and these standards and

methods will be detailed below.

Having surgical videos reviewed by experts is a relatively

traditional evaluation method, where experts evaluate surgical

skills based on their own experience and established standards.

Although artificial intelligence is advancing, expert review is still

vital for evaluating surgical skills. However, the expert review

also has certain drawbacks, as it depends on personal experience

and judgment, inevitably adding subjectivity (70).

Although expert review can effectively evaluate the skills of

surgeons, its repeatability and accessibility are limited (71). In

addition, this process is very time-consuming and laborious.

Therefore, with the development of deep learning, researchers

have shifted their attention to investigating automatic surgical

skill assessment. Numerous studies analyze surgical tool

movement through motion tracking to evaluate surgical skills

(70). Studies have indicated that evaluating surgical skills

through motion tracking can effectively distinguish the

performance of expert surgeons from novice surgeons. Motion

tracking mainly evaluates the flexibility of surgeons in operating
FIGURE 6

Common standards and methods for skill assessment in laparoscopic surge
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surgical tools. This method provides objective data support,

including the path length of surgical tools and the range of

surgical tool movement (71), which can be adopted for

analyzing the action economy and tool utilization efficiency

during the surgical process. Moreover, combining action

tracking and deep learning provides new possibilities for

surgical skill assessment.

Studies have found that surgeons with different skill levels

have different uses of surgical tools in laparoscopic surgery.

Thus, the quantitative analysis of the use of tools in laparoscopic

surgery is also a way of thinking in the task of laparoscopic

surgical skill assessment (72). Studies have shown that during

the knotting and suturing operations of laparoscopic surgery, the

surgical movement data of surgeons with different surgical levels

are different, such as the acceleration, angular velocity, and

direction of the surgeon’s arm (73). Therefore, it is possible to

evaluate the level of surgical skills of surgeons by analyzing

sensor data during surgery (73). Clarity, stability, and control of

coverage of the surgical field are also vital aspects in evaluating

laparoscopic surgical skills. The development of appropriate

surgical horizons can not only be applied to evaluate surgical

skills but also exert a role in improving the safety of

laparoscopic surgery (70).
ry.
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5.2 Applications of surgical skill assessment

AI-based laparoscopic surgery video skill assessment methods

provide a lot of advantages. At first, artificial intelligence can

automatically analyze surgical videos using machine learning

algorithms, providing more objective results than traditional

manual evaluations. This lowers the subjective bias introduced by

human evaluators and lightens their workload (70). Moreover,

automated assessment can significantly shorten the evaluation

time, enhance efficiency, and reduce costs.

The application of surgical skill assessment mainly focuses on

the following two perspectives: education and training of

surgeons and ensuring surgical quality, as shown in Figure 7. By

evaluating surgical skills, novice surgeons can learn based on

videos of expert surgeons and corresponding evaluation results.

Meanwhile, they can also discover and reflect on their

shortcomings through their evaluation results and practice in a

targeted manner. Regarding surgical quality assurance, regular

evaluation of the surgical skills of surgeons in practice can ensure

that surgeons have the essential skill level for surgery, timely

identify surgeons with insufficient skills, and provide necessary

training, significantly improving the success rate and safety of

surgery (71).
FIGURE 7

Overview of applications for skill assessment in laparoscopic surgery videos
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6 Discussion

Research on stage recognition and skill evaluation in

laparoscopic surgery presents several challenges, which can be

categorized into two perspectives: surgery-oriented challenges,

arising from the inherent complexities of the procedure, and

technology-oriented challenges, related to the application of

artificial intelligence technology.

Surgery-oriented challenges primarily stem from the complexities

of the laparoscopic surgery environment. Factors such as bleeding,

occlusion, smoke, and variations in operator habits often lead to

poor visibility, overlapping of organs and instruments, and

significant lighting changes in video footage. These issues can

interfere with the input data for surgical stage recognition models,

reducing their accuracy and robustness. Additionally, different types

of laparoscopic procedures have unique characteristics in terms of

organ anatomy, surgical techniques, and intraoperative challenges,

making it difficult to develop a universal system for surgical stage

recognition or skill evaluation.

Technology-oriented challenges arise from the application of

artificial intelligence in surgical analysis. Data imbalance is a

common issue, as surgical videos often emphasize certain frequent

procedures, while some stages are brief and lack sufficient data,
.
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leading to model bias during training. Effectively leveraging

temporal and spatial information is another key challenge, such as

capturing contextual relationships between surgical stages in long-

sequence videos and detecting interactions between surgical

instruments and tissues in localized images. Additionally, model

generalization remains a concern, as performance may be limited

when applied to data from different hospitals, equipment, or

surgeons. In few-shot learning scenarios, achieving robust stage

recognition and skill evaluation with minimal labeled data is an

urgent problem that needs to be addressed.

Beyond the challenges from the surgical and technological

perspectives, it is also crucial to consider the new opportunities and

challenges brought by emerging surgical equipment. For example,

with the increasing adoption of robot-assisted surgical systems, stage

recognition and skill evaluation must adapt to these advancements.

On one hand, robotic systems offer a stable field of view, more

precise instrument control, and automated recording capabilities,

which may help reduce the complexity of stage recognition. On the

other hand, multi-arm coordination, remote master-slave control,

and the lack of direct tactile feedback introduce new challenges, such

as increased instrument occlusion and dynamic changes in the

operating environment. Additionally, variations in software versions,

operational characteristics, and data formats across different robotic

platforms can lead to domain shifts, making model generalization

and cross-platform adaptation more difficult. Developing effective

adaptation techniques between robotic and traditional laparoscopic

systems remains a key direction for future research.

Despite these challenges, the rapid advancement of deep

learning offers new approaches for processing complex surgical

videos. Self-supervised learning enables models to leverage large

amounts of unlabeled surgical videos, extracting richer features

while reducing dependence on manual annotation. Additionally,

ongoing research explores the integration of multimodal

information, such as visual data and auxiliary signals, to enhance

contextual understanding in surgical stage recognition and skill

evaluation. Looking ahead, greater emphasis should be placed on

real-time clinical deployment and multi-center, multi-scenario

validation to ensure the stability and generalizability of AI

systems across diverse practical environments.

Accurate surgical stage recognition and skill evaluation can

enhance both intraoperative and postoperative outcomes. During

surgery, it enables real-time process guidance and risk warnings,

helping to reduce errors. After surgery, it provides objective skill

assessment and personalized training programs for surgeons. For

patients, precise stage identification and standardized surgical

procedures contribute to shorter recovery times and a lower risk

of complications. With continued advancements in multimodal

data fusion, deep learning, and clinical validation, the research on

automated stage recognition and skill evaluation in laparoscopic

surgery holds great promise for broader clinical applications.
7 Conclusion

This study reviews recent research in laparoscopic phase

recognition and skill assessment. As an advanced minimally
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invasive surgical technique, laparoscopic surgery requires very

high surgical skills. Therefore, phase recognition is crucial to

evaluating surgical skills and improving surgeons’ skills.

Through detailed analysis of publicly available datasets,

including Cholec80, M2CAI16-workflow, and AutoLaparo, we lay

the foundation for the study of laparoscopic surgery phase

recognition research conducted on public datasets. We

summarize the structures of models that have exhibited strong

performance in this task, detailing commonly used spatial

models, temporal models, and other optimization strategies.

Many of these methods have achieved promising results.

However, this field of research still confronts several challenges,

including handling complex scene variations in surgical videos,

addressing occlusions of surgical tools, and learning automatically

from large-scale unannotated video data. In addition, current

research mainly focuses on specific types of laparoscopic surgeries,

lacking extensive studies on different surgical types.

From a practical application perspective, implementing

phase recognition and skill assessment technologies in clinical

practice requires overcoming challenges related to data

privacy, algorithmic interpretability, and integration with

existing medical systems. Moreover, introducing these

technologies must consider their acceptance by medical

professionals, ensuring that surgeons widely recognize the

technology’s practicality and effectiveness.

In conclusion, despite the existing challenges, the research

and application of phase recognition and skill assessment

technologies in laparoscopic surgery demonstrate substantial

development potential. With constant technological

advancements and deeper integration with medical practice,

significant progress is expected to be made in ensuring

surgical quality, enhancing surgical training, and assessing

surgical skills in the future.
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