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Laparoscopic surgery is the method of choice for numerous surgical
procedures, while it confronts a lot of challenges. Computer vision exerts a
vital role in addressing these challenges and has become a research hotspot,
especially in the classification, segmentation, and target detection of
abdominal anatomical structures. This study presents a comprehensive review
of the last decade of research in this area. At first, a categorized overview of
the core subtasks is presented regarding their relevance and applicability to
real-world medical scenarios. Second, the dataset used in the experimental
validation is statistically analyzed. Subsequently, the technical approaches and
trends of classification, segmentation, and target detection tasks are explored
in detail, highlighting their advantages, limitations, and practical implications.
Additionally, evaluation methods for the three types of tasks are discussed.
Finally, gaps in current research are identified. Meanwhile, the great potential
for development in this area is emphasized.
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1 Introduction

Laparoscopic surgery refers to an advanced, minimally invasive surgical technique.

However, laparoscopic surgery faces many challenges, including limited field of view

and image quality issues (1–3). This also raises the bar for surgeons, requiring

enhanced spatial positioning, hand-eye coordination, and technical skills (4, 5).

Computer vision (CV) has emerged as a promising tool to address these challenges,

which can potentially enhance the accuracy and efficiency of laparoscopic procedures.

CV has made significant progress in its application to laparoscopic surgery through

simulating the human visual system and utilizing algorithms such as image processing,

machine learning, and deep learning(DL) to extract useful features from surgical images.

It deals with a variety of problems associated with laparoscopic surgery (6), including

improving image quality, providing real-time feedback, error detection during surgery,

assisting in identifying and localizing anatomical structures. Artificial intelligence (AI)-

driven approaches have been developed for addressing these critical tasks. For example,

machine learning models have been employed to classify surgical maneuvers, identify

surgical stages, and even predict potential complications, therefore greatly aiding in

surgical planning and execution (7). These innovations have improved the accuracy and

efficiency of surgery, contributed to better training and assessment of surgical skills, as
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well as enhanced standardization and safety in surgery. Visual tasks

concentrating on the organs in the abdomen can help surgeons by

guiding them visually and assisting them to find and identify

structures within the body (8). For example, accurately segmenting

abdominal organs to show their contours and locations can

contribute to avoiding damaging vital structures during surgery,

reducing surgical risks, and improving the safety and success rate

of surgery (9). Automatic identification and localization of lesion

areas, foreign objects, or abnormal structures can provide doctors

with diagnostic basis and treatment recommendations. This can

facilitate rapid diagnosis, timely and effective treatment measures,

shorten operation time, and improve the success rate of surgery

and the patient’s treatment experience.

Despite the advancements and the promising potential of CV in

laparoscopic surgery, there is an increasing need for a comprehensive

review to synthesize the existing research and guide future

developments. The field is rapidly evolving, with numerous studies

investigating various perspectives of CV applications in

laparoscopic surgery. However, these studies usually focus on

specific tasks or techniques, making it challenging for researchers

and practitioners to have a clear and cohesive understanding of

the overall landscape (10). A systematic review that collates and

critically evaluates the current state of CV methods for anatomical

structure analysis in laparoscopic images can provide valuable

insights, identify existing literature gaps, and suggest future

research directions. The review can also serve as a resource for

developing standardized protocols and benchmarks for the

evaluation of AI systems in this domain.

Currently, the segmentation, classification, and object detection

tasks for abdominal organs in laparoscopy are intensively studied.
FIGURE 1

The number of papers searched on other platforms, such as conferences
selection criteria, are listed by different years, ranging from 2014 to June 2
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We searched for references on Google Scholar. The results of the

search query revealed 117 papers associated with the topic.

Specific data on the sources of articles from conferences, journals,

and preprints, as well as other platforms, are shown in Figure 1.

The time span is from 2014 to June 2024, with the majority

coming from 2023 and 2024. We specifically examined articles

from IEEE, Science Direct, PubMed, and Springer, as well as the

proceedings of medical imaging conferences, including MICCAI,

IPMI, ISBI, RSNA, and SPIE. Figure 5a illustrates the percentage

of all included studies for the three tasks of segmentation,

classification, and target detection, which we will examine in detail

below and suggest future research directions. Therefore, this work

has the following three contributions:

• Comprehensive Survey: We conducted an exhaustive survey

of the existing literature on using CV in laparoscopic

surgery, systematically searching and analyzing articles on

segmentation, classification, and object detection of

anatomical structures.

• Task-specific categorization: We systematically categorize the

core subtasks in the context of real-world healthcare scenarios,

emphasizing their relevance and applicability in the

clinical environment.

• Data and Metrics: We discuss the datasets commonly applied in

this field, their characteristics, and the importance of using

consistent and comprehensive evaluation indicators in order

to facilitate fair comparison and evaluation of methods.

• Methodological Insights: We discuss the reviewed literature from

task-specific and methodological perspectives, emphasizing their

strengths, limitations, as well as practical implications.
, different types of journals, preprint platforms, etc., according to the
024.
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• Future Directions: We identify key challenges, indicate potential

research directions, and highlight the potential for future

developments to advance CV use in laparoscopic surgery.

This study is structured as follows: Section 2 describes the

specific healthcare scenarios and tasks covered in the selected

literature. Section 3 describes in detail the datasets used in the

relevant publications. Then, Section 4 provides a detailed analysis

of the methods in the related literature from different

perspectives, including learning strategies. Finally, Section 5

summarizes the results of this study, highlights the main

findings, and provides an outlook on possible further

developments in this research area.
2 Core tasks and application scenarios

As presented in Figure 2, seven types of core tasks are

summarized in the study for classification, segmentation, and

target detection of anatomical structures in laparoscopic surgical
FIGURE 2

Core tasks and application scenarios. (a) Represents the classification of a
structures. (c) Demonstrates semantic segmentation of anatomical struc
anatomical structures, whereas (f) illustrates the recognition of the triad. Fin

Frontiers in Surgery 03
images. These sub-tasks and their application scenarios will be

detailed in the following section in order to investigate their

importance and application effects in the actual surgical process.
2.1 Classification of anomalous regions

This task is typically a binary classification task helping

physicians to make faster and more accurate diagnoses and

treatment plans by classifying images as normal or abnormal, as

presented in Figure 2a (11). For an image I, find f such that:

f (I) ¼ {normal, anomalous} (1)

In Equation 1, normal represents the normal category and

anomalous represents the abnormal category.

Common subtasks include classification of endometriosis,

which is difficult because the differences between normal and

pathological tissues are difficult to discern for non-specialists, the
bnormal regions, while (b) focuses on the classification of anatomical
tures, and (d) highlights lesion detection. (e) Shows the detection of
ally, (g) presents composite tasks that integrate multiple objectives.

frontiersin.org

https://doi.org/10.3389/fsurg.2025.1557153
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Zhou et al. 10.3389/fsurg.2025.1557153
lesion sites have diversity and complexity, and there exist

significant variations in visual appearance within and between

people (12). Image classification techniques can significantly

enhance the accuracy of diagnosing endometriosis and reduce

the need for multiple procedures due to missed lesion sites.

Visalaxi et al. (13) applied Resnet50 to automatically diagnose

endometriosis with 91% accuracy.
2.2 Classification of anatomical structures

This task assigns category labels to an entire image or region of

interest (ROI). Common tasks include organ categorization, i.e.,

categorizing different organs in an image or rating a class of

organs, as presented in Figure 2b (14). Considering an image or

ROI R, find a function f such that:

f (R) ¼ l (2)

In Equation 2, l [ Lstructures and Lstructure represents the type

of anatomical structures.

For example, full-resolution convolutional neural network

(FrCNN) (15) is adopted for automated detection of different

organs such as the uterus, ovaries, fallopian tubes. Another

challenging task is grading the vascularity of the gallbladder wall,

which involves scrutinizing the vascular morphology as well as

the thickness, inflammatory state, and fat coverage of the

gallbladder wall. Fatty infiltration or thickening of the gallbladder

wall adds to the difficulty of evaluation (16). Loukas et al. (17)

achieved image- and video-level classification of blood vessels in

the gallbladder wall through multiple instance learning.
2.3 Semantic segmentation of anatomical
structures

The task is aimed at assigning a category label to each pixel in

an image containing common abdominal anatomical structures

such as liver, kidney, gallbladder, and fat. This segmentation

method goes beyond simply dividing up regions in an image to

comprehend the semantic information of the various regions, i.e.,

the type of anatomical structure that each region represents, as

presented in Figure 2c (18). Given an input image I, the

objective is to find a function f such that:

f (I) ¼ {Lij}
H,W
i¼1,j¼1 (3)

In Equation 3, Lij [ Lstructure and Lstructure is the set of class

labels for anatomical structures, H �W represent the dimensions

of the image.

Transanal total rectal mesorectal excision (TaTME) has

become the focus of recent laparoscopic research and is an

important tool for treating colon and rectal cancers. LDCNet

(19) can segment organs and tissues appearing in TaTME, such

as the liver, gallbladder, spleen, and intestines. So that robots
Frontiers in Surgery 04
could help with anterior rectal resections or rectal extirpations,

Kolbinger et al. (20) made a machine-learning model that can

correctly name 11 types of tissues.

Compared to larger organs, tissues are representatively more

dispersed, smaller, finer in granularity, and highly variable in

appearance. They may blend with the surrounding anatomical

region, making precise segmentation more challenging. Loose

connective tissue fibers (LCTFs) are a complicated, hard-to-spot

anatomical structure. Careful removal of loose connective tissue

fibers improves cancer prognosis and reduces the risk of surgical

complications. Kumazu et al. (21) then trained Unet to segment

LCTFs. Through cutting away loose connective tissue in the rectal

mesentery, Total Mesorectal Excision(TME) lowers the risk of

positive circumferential margins and is a strong indicator of local

recurrence (22). SwinPA-Net (23) identifies loose connective tissue

in the rectal mesentery, helping to avoid damage to vital tissues

such as blood vessels and nerves during surgery.

In addition, artificially defined anatomical regions are needed

in specific surgical scenarios, usually areas that need to be

precisely manipulated or observed during surgery. The surgeon

must accurately remove the mesenteric tissue surrounding the

rectum during TME. As a result, a common semantic

segmentation task is identifying and labeling the anatomical lines

of the rectal mesentery (24).
2.4 Detection of lesion

The current task aims to identify and localize possible lesion

regions in an image, determining the presence of a lesion and its

location and labeling it with a bounding box, as presented in

Figure 2d (18). Given an image I, find f such that:

f (I) ¼ {Bi}
M
i¼1 (4)

In Equation 4, Bi are the coordinates of the lesion,

Bi ¼ (xi1, yi1, xi2, yi2)

Leibetseder et al. (18) applied Faster R-CNN and Mask R-CNN

to find areas of endometriosis in laparoscopic gynecological videos

and give confidence to those areas.
2.5 Detection of anatomical structures

Typically, lesion identification tasks detect relatively small and

fewer targets because lesions are usually localized anomalous

regions in an image. By contrast, the anatomical structure

recognition task can be more complex. The task aims to

automatically identify and localize different anatomical structures

appearing in an image, usually involving multiple targets of

different shapes and sizes, each with its own unique

characteristics, as presented in Figure 2e (25, 26). For an image I,

find f such that:

f (I) ¼ {(Bi, li)}
N
i¼1 (5)
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In Equation 5, Bi are the bounding boxes, Bi ¼ (xi1, yi1, xi2, yi2)

and li represent the anatomical structures labels.

Boonkong et al. (25) employed DNNs to detect the uterus in

laparoscopic images. Cui et al. (27) introduced a YOLOv4-based

method for recognizing vas deferens images in laparoscopic

inguinal hernia repair surgery. Moreover, specific critical points

are common targets for detection. They may not be actual

anatomical structures, but rather “judgments” made by the

surgeon based on laparoscopic images. Detecting these

anatomical landmarks helps the surgeon locate organ tissues and

assess their morphology, location, and interrelationships (26).
2.6 Recognition of surgical action triplet

In 2014, Katic et al. (28) developed the surgical action triplet:

!instrument, verb, target¿. This is a task that involves correctly

identifying surgical instruments, actions that are being

performed, and body parts that they make interactions within

complicated laparoscopic videos, as presented in Figure 2f (29).

The difficulty lies in the surgical instruments’ nuances, the

actions’ temporal properties, and the similarity of the target

organs. To be specific, identifying surgical instruments requires

a detailed analysis of their heads and handles. The interaction

between the instrument and the target organ needs to be taken

into consideration. Secondly, the color and texture of intra-

abdominal organs may be similar due to the influence of fat or

connective tissue, further increasing the difficulty of

identification. In addition, the identification of the triad is

highly associated with the temporal information in the video.

Several of the above issues lead to making recognizing surgical

triplets a challenging task. CholecTriplet2021 (30) and

CholecTriplet2022 challenge (31) are endoscopic vision

challenges organized by MICCAI to identify surgical action

triplets in laparoscopic videos.

Given an image sequence {It}
T
t¼1, find f such that:

f {It}
T
t¼1

� � ¼ (I, A, T) (6)

In Equation 6, I is the set of instruments, A refers to the set of

actions, and T indicates the set of targets.
2.7 Composite task

In addition to the above-mentioned tasks involving only

segmentation, classification, or detection, other tasks may require

multiple stages, usually combining the steps of segmentation,

classification, and detection, such as predicting a critical view of

safety (CVS) in laparoscopic cholecystectomy (LC), as presented

in Figure 2g (32).

In LC, CVS is often used as a standard operating procedure

(33). CVS is the most important field to confirm the safety of the

operation, and it can only be achieved if the three conditions of

“access to the gallbladder by the cystic duct and the cystic artery
Frontiers in Surgery 05
only” are met simultaneously (34). Therefore, predicting the CVS

usually involves a two-step process: (1) accurately identifying and

locating the critical tissues. localization of key tissues. (2)

Reasoning about the geometric relationships between the tissues

and determining the quality of their exposure to determine

whether the CVS criteria are met.

The TCNN model (35) is a model that segments the hepatic

capsule structures first and then evaluates the CVS using the

segmentation masks. In contrast to TCNN, the Murali et al. (36)

trained using only bounding box annotations, outperforming

several benchmark methods and scales efficiently when trained

based on segmentation masks. In addition to semantic

segmentation or target detection as an intermediate step, Alapatt

et al. (37) also proposed a direct prediction of CVS based on

self-supervised learning without prior segmentation or

identification of gallbladder structures.
3 Public datasets

Recently, freely available datasets have exerted a central impact

on developing new methods for segmentation, classification, and

target detection of abdominal organs and tissues from

laparoscopic images.

With the consideration of 117 publications, it was found that

totally over 90 datasets were used, categorized as public datasets,

private datasets, and non-conforming datasets. “Conforming” is

defined as being related to the tasks studied in this paper. Some

studies involve multiple tasks, including surgical stage

identification, surgical instrument segmentation, etc. The datasets

which could be adopted for these additional tasks were not

considered to meet the criteria. As shown in Table 1, it should

be noted that the “Application” column refers to the types of

tasks that can be applied to the dataset. Specifically, some of the

datasets in the list are designed for such tasks, which we call

specialized datasets, and the rest are generalized datasets.

Figure 3 illustrates the number of times all publicly available

datasets are used, as well as the percentage of generalized and

specialized datasets.

We have selected six of the most extensively used public

datasets and categorized them into generic and specialized, which

are explored separately in the following subsections.
3.1 General datasets

Generic datasets often lack specific labeling or annotations for

the visual tasks studied in this paper, therefore requiring additional

annotation work. These datasets are invaluable due to their large

number and variety of images, and provide a wide base for all

types of research and development of AI applications in

laparoscopic surgery.

3.1.1 Cholec80
The Cholec80 dataset (38) contains 80 LC videos. Each of these

frames is labeled with a surgical stage and tool presence, which can
frontiersin.org
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TABLE 1 Public datasets.

Dataset Year Size Procedurea Applications References
Cholec80 2016 80 videos LC Surgical phase recognition, Surgical instrument presence detection (15, 37–40, 43, 50, 55,

84, 96–99)

M2cai16-workflow 2016 41 videos LC Surgical phase recognition (39–41)

M2cai16-instrument 2017 15 videos LC Surgical instrument detection (40)

EndoVis 17’ kidney
Boundary detection

2017 1500 frames PN in porcine Kidney boundary detection (68)

Nephrec9 2017 1262 videos PN Surgical phase recognition (70)

EndoVis 17’ robotic
Instrument segmentation

2017 8 videos Porcine procedures Surgical instrument segmentation; Tissue segmentation (42)

ITEC LapGyn4 2018 30682 images GLS Surgical action recognition; Anatomical structure recognition;
Action on anatomy recognition; Instrument count recognition

(15, 100, 101)

EndoVis 18’ sub-challenge 2018 30+ videos CS Surgical instrument segmentation; Organ segmentation (42, 55)

EndoVis 19’ surgical
Workflow and Skill analysis

2019 30+ videos LC Surgical workflow and skill analysis (102)

CholecSeg8k 2020 8080 frames LC Anatomical structure segmentation; Surgical instrument
segmentation

(44, 50, 67, 71, 76, 77,
79, 81, 99, 103–106)

SurgAI 2020 461 images GLS Anatomical structure segmentation; Surgical instrument
segmentation

(10)

GLENDA 2020 25682 frames GLS Endometriosis classification; Endometriosis detection (11, 13, 18, 47, 93)

M2caiSeg 2020 307 images Other Anatomical structure segmentation; Surgical instrument
segmentation

(75, 99, 104)

CholecT40 2020 40 videos LC Surgical action triplet recognition; Surgical action triplet detection/
localization; Surgical instrument presence detection; Surgical
instrument detection/localization; Surgical action/verb recognition;
Surgical target recognition; Surgical phase recognition

(29)

LapSig300 2020 300 videos CS Surgical phase recognition; Surgical action recognition (86)

Endoscapes dataset 2021 201 videos Other Surgical scene segmentation; Object detection; Critical view of
safety assessment

(35–37, 45, 50, 55, 55,
84)

GBVasc181 2021 181 images LC Gallbladder wall vascularity classification (16, 17)

AutoLaparo 2022 21 videos LC Surgical workflow recognition; Laparoscope motion prediction;
Instrument and key anatomy segmentation

(37, 63)

CholecT45 2022 45 videos LC Surgical action triplet recognition; Surgical action triplet detection/
localization; Surgical instrument presence detection; Surgical
instrument detection/localization; Surgical action/verb recognition;
Surgical target recognition; Surgical phase recognition

(31, 32, 43, 60, 107)

Dresden surgical Anatomy
dataset

2023 13195 images Proctoco-lectomy Anatomical structure segmentation (9, 20, 78, 90, 108)

SurgAI3.8K 2023 3800 images GLS Anatomical structure segmentation (65)

CholecT50 2023 50 videos LC Same as CholecT45 (31, 58, 59, 84)

Endo700k 2023 700,000+
images

Other Label not provided (43)

Cholec80-CVS 2023 80 videos LC CVS recognition (46)

aFor the “Procedure” column, “Other” means involving multiple types of surgery. LC, laparoscopic cholecystectomy; GLS, gynecologic laparoscopic surgeries; PN, partial nephrectomy; CS,
colorectal surgery.
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be used to test the performance of tool presence detection and stage

identification methods. In addition, the dataset can be used for a

variety of other applications including automated surgical video

database indexing, real-time surgical procedure monitoring, and

optimizing operating room staffing.

In addition to Cholec80, there are several datasets from surgical

flow recognition, instrument segmentation challenges, e.g.,

M2cai16-workflow challenge (39–41) and EndoVis 17’ Robotic

Instrument Segmentation sub-challenge (42). Moreover, these

datasets were also used in the study by re-labeling.

3.1.2 Endo700k
Due to the scarcity of publicly available labeled data and the

acquisition and labeling process complexity, Endo700k (43) is

aimed at alleviating these problems through large-scale self-

supervised pre-training. Endo700k is consisted of nine publicly
Frontiers in Surgery 06
available endoscopic datasets merged together, containing over

700,000 unlabeled images involving nine types of minimally

invasive surgeries, including prostatectomy, cholecystectomy, and

gastrectomy. It enables researchers to fine-tune models on large

amounts of unlabeled data.
3.2 Specialized datasets

3.2.1 CholecSeg8k
The CholecSeg8k dataset (44) is based on the Cholec80 dataset,

where 17 video clips were carefully selected from 80 videos of

cholecystectomy surgeries, and 8,080 image frames were extracted

from them for pixel-level annotation. These images include

different stages and scenarios of cholecystectomy surgeries. The
frontiersin.org
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FIGURE 3

Percentage of generalized and specialized datasets and frequency of use of each dataset. The scale on the diameter indicates the number of times the
dataset has been used, with a higher bar indicating a higher frequency of use. The area of the sector indicates the ratio of specialized datasets to
common datasets.
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CholecSeg8k dataset is finely labeled, with each image being labeled

for 13 critical categories.
3.2.2 Endoscapes dataset
The endoscape dataset (45) contains 201 LC videos in which

frames are sparsely but regularly labeled with segmentation

masks, bounding boxes, and CVS assessments. This dataset can

be used for machine learning tasks, including object detection,

instance segmentation, CVS prediction, and diverse experiments

such as hybrid supervised, semi-supervised, and temporal

modeling. The Endoscapes dataset provides four subsets covering

different annotation types and data. In addition, comprehensive

performance benchmarks are available, providing evaluation

criteria for research.

In addition to Endoscapes, Rios et al. (46) annotated all videos

in Cholec80 based on the CVS standard, which can also be applied

in studies of CVS prediction.
3.2.3 GLENDA
GLENDA (Gynecologic Laparoscopic Endometriosis Dataset)

is a dataset identifying endometriosis (47). The dataset contains

over 350 labeled images of endometriosis lesions covering the

four pathologic endometriosis categories and non-pathologic

control example images from more than 100 gynecologic

laparoscopic procedures. Tasks including binary classification

(endometriosis) and detection/localization are supported.
Frontiers in Surgery 07
3.2.4 CholecT50
CholecT50 (31) is a dataset that identifies action triples

for laparoscopic cholecystectomy surgery. The dataset

contains 50 video clips documenting laparoscopic

cholecystectomy procedures, with 100 categories of surgical

action triplets being labeled in detail. These annotations

contained approximately 151,000 triad instances, including 6

instrument categories, 10 action verb categories, and 15

target categories.

Cholect45 and Cholect40 are two subsets of Cholect50,

containing videos of 45 and 40 surgical procedures, which are

also annotated with triad information in the form of [instrument,

verb, goal].
3.2.5 Dresden surgical anatomy dataset
The Dresden Surgical Anatomy Dataset (DSAD) (9)

concentrates on solving the problem of semantic segmentation of

abdominal organs.

The dataset provides totally 13,195 laparoscopic images

utilizing videos of robot-assisted rectal resections and

contains semantic segmentation of eight abdominal organs,

the abdominal wall, and two vascular structures. Each

image provides a weak annotation of the presence of the

organ, providing researchers with various applications of

the data.
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FIGURE 4

A generalized process for applying DL models to laparoscopic medical scenarios. The first part is the data acquisition and preprocessing steps; the
second part is the model architecture and the model evaluation, which is the main discussion in this chapter; the third part is the model output
and post-processing operations; and the fourth part is the actual application scenarios.

Zhou et al. 10.3389/fsurg.2025.1557153
4 Methodology and technical strategy

Most of the studies in the literature collected in this paper have

applied DL methods. Figure 4 shows a generic process, containing

four main modules: input, model, output and application.

Firstly, videos of laparoscopic surgical need to be collected. In

order to process long video data, operations such as frame lifting

are usually required. Next, segmentation masks, category labels,

bounding boxes, etc. need to be labeled by the surgeon.

Subsequently, the data are preprocessed aiming to improve

robustness of the model. For different tasks, appropriate network

architectures are selected in line with their characteristics, such as

Unet and DeeplabV3, and some technical improvement modules,

such as the attention mechanism, may be added. It is also

possible to adopt different learning paradigms or design entirely

new network architectures. Afterwards, the model performance is

evaluated. Also, a team of surgeons will perform a qualitative

assessment. After the model outputs the results, post-processing

operations are usually needed to further enhance the quality of
Frontiers in Surgery 08
the results. Final result can be applied in different practical

scenarios, such as lesion localization and organ identification.

These data can also be used for surgical skills training as well as

scientific research to advance the field of medicine and

artificial intelligence.

As presented in Figure 5, 62% of the included studies are

focused on segmentation tasks (73 articles), 25% on classification

tasks (32 articles), and 13% on target detection tasks (15

articles). These tasks are detailed. Next, we will analyze and

detail the methodological techniques, model architecture, and

strategy evaluation for each of these three types of tasks.
4.1 Classification methods

This section deals exclusively with publications concentrating

on classification methods, where 32 contributions were identified,

as presented in Table 2. They will be characterized and logically

grouped according to different characteristics in the following. At
frontiersin.org

https://doi.org/10.3389/fsurg.2025.1557153
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 5

Proportion of papers across the three assignment categories and their corresponding evaluation metrics. This figure presents an analysis of research
distribution and evaluation metrics in laparoscopic image analysis. (a) Displays the percentage of papers focusing on three types of tasks. (b) Illustrates
the frequency of evaluation metrics used for classification tasks. (c) Highlights the frequency of evaluation metrics applied in segmentation tasks.
(d) Shows the frequency of evaluation metrics employed for object detection tasks.
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first, developments are organized according to learning strategies:

supervised and not supervised learning. Then, recent

developments in multi-task-based learning are described. Finally,

an analysis of evaluation metrics for classification methods.

4.1.1 Supervised learning
Network architectures like the one shown in Figure 6a are

usually used in supervised learning methods for classification

tasks. The encoder can be a CNN, extracting features with

semantic information from the original image through a series of

convolutional layers, pooling layers, and other operations. These

features retain key information in the image, including organ

shape, and texture, and reduce the dimensionality of the data.

Classifiers typically have one or more fully connected layers,

where the output represents a probability distribution for each

category and the one with the highest probability is selected as

the classification result.

Practically, ResNet50 is often used as an Encoder network

through methods such as transfer learning. Visalaxi et al. (13)

and Nifora et al. (11) utilized ResNet50 to classify laparoscopic
Frontiers in Surgery 09
images to assist in the diagnosis of endometriosis, achieving

90% and over 95% accuracy rates respectively. It is of note

that the latter used a larger dataset. For anatomical structure

classification, Hayashi et al. (48) introduced a timestamp

smoothing technique followed by classification using a

Bayesian neural network. Finally, uncertainty-guided temporal

filtering based on uncertainty modifies the results with high

uncertainty. In addition, Konduri et al. (15) used an improved

K-mean algorithm for clustering, and extracted texture and

spectral features using local binary patterns and averaged

spectra. Feature selection was optimized based on an improved

Cuckoo search optimization algorithm. The final classification

was performed through a FrCNN, and the results indicated

that the method achieved more than 99% accuracy in

organ classification.

Furthermore, for CVS prediction, DeepCVS (49) is a two-stage

model firstly using Deeplab v3+ with Xception 65 as the backbone

of a segmentation network to identify anatomical structures. Then,

a multi-label classification network was then utilized to evaluate the

achievement of the CVS criterion. Murali et al. (50) proposed to
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TABLE 2 Classification methods.

References Year Learning
strategya

Targetc Model Datasetb

(15) 2024 SL Uterus, ovary, liver, colon,
etc.

Improved K-means clustering+LBP+AS+Improved cuckoo search
optimization+FrCNN

ITEC LapGyn4, Cholec80

(54) 2024 SL CVS LG-CVS+Domain Generalization+Disentangled Learning+Latent
Graph+GNNs

Endoscapes

(54) 2024 WSL Stomach, uterus, etc. ChatGPT 4.0+SceneXplain Plugin Proprietary

(56) 2023 SL Triplet Vision-Language Models+GNNs+Spatio-Temporal Reasoning
Network+Visual-Semantic Reasoning Network

CholecT50

(55) 2023 SL Anatomical structures SurgicalGPT: GPT2+Language-Vision-GPT+Transformer Cholec80, EndoVis18

(48) 2023 SL Areas related to blood
vessels

Temporal Label Smoothing+Classification using BNNs
+Uncertainty guided temporal filtering

Proprietary

(11) 2023 SL Endometriosis ResNet50+Transfer learning GLENDA

(36) 2023 WSL CVS LatentGraph-CVS: Graphical representations containing
semantic information about anatomical structures+GNNs

Endoscapes

(37) 2023 USL CVS Large-scale self-supervised pretraining+Downstream task fine-
tuning: MoCo v2(ResNet50)+TeCNO

AutoLaparo, Cholec80,
Endoscapes

(50) 2023 SL CVS GNNs+Potential spatio-temporal maps+Per-frame graph
prediction+Temporal edge creation

Endoscapes; Cholec80;
CholecSeg8k

(59) 2023 SL Triplet ResNet50+LSTM+Multi-Label Mutual Channel Loss CholecT50

(107) 2023 SL Triplet Temporal Attention Module+CAGTAM+Encoder-Decoder
+ResNet18+CAM

CholecT45

(60) 2023 SL Triplet Swin Transfomer+Self-distillation+Multi-task Learning
+Ensembling

CholecT45

(61) 2023 SL Triplet ResNet50+MCIT-IG(Transformer)+Interaction-Graph(GNNs)
+Mixed Supervision

CholecT50

(43) 2023 SL Triplet EndoViT(Transformer)+Encoder-Decoder+Transfer learning Endo700k, Cholec80,
CholecT45

(32) 2023 SL Triplet, CVS, gallbladder
inflammation

ConceptNet(GNNs)+Knowledge Graph CholecT45

(49) 2022 SL CVS DeepCVS: Multi-Stage Learning+DeepLabV3 (Xception65)
+Multi-Label Classification Networks

Proprietary

(58) 2022 SL Triplet ResNet18+CAGAM+MHMA+Encoder-Decoder CholecT50

(109) 2021 SL Gallbladder inflammation ResNet50+Multilevel Bayesian regression models Proprietary

(110) 2021 SL CVS EndoDigest(DNNs) Proprietary

(13) 2021 SL Endometriosis ResNet50+Transfer learning GLENDA

(17) 2021 USL GB wall Multiple-instance learning+Variational Bayesian Gaussian
Mixture Models+SVM

GBVasc181

(111) 2020 SL Unqualifed, pharynx etc. ResNet50+Inceptionv3+vgg11-bn+vgg16-bn+DenseNet121
+Transfer learning

Proprietary

(16) 2020 SL GB wall VGG+ResNet+SVM GBVasc181

(96) 2020 SL GB wall K-Means+SVM+Naïve Bayes+CNNs Cholec80

(112) 2020 SL Gallbladder CNNs Proprietary

(41) 2020 USL Abdominal wall, fat tissue
etc.

Multi-Instance Multi-Label Learning+Variational Bayesian
gaussian mixture models

M2cai16-workflow

(29) 2020 SL Triplet MTL+Class Activation Guide+3D Interaction Space CholecT40

(14) 2018 SL Uterus, ovaries, liver,
colon etc.

AlexNet+GoogLeNet+SVM Proprietary

(113) 2018 SL Six porcine tissues: liver,
spleen etc.

Hyperpixel classification strategy based on texture and reflectivity
information

Proprietary

(114) 2017 SL Ureteral etc. GoogLeNet Proprietary

(115) 2017 SL Organ tissue Multi-spectral texture analysis Proprietary

aFor the “Learning Strategy” column. SL, supervised learning; WSL, weakly supervised learning.
bFor the “Dataset” column, “Proprietary” means that the dataset is not publicly available.
cTarget may involve surgical instruments, etc. Only anatomical structures are listed here.
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encode surgical videos as potential spatio-temporal maps

representing anatomical structures and instruments and their

properties evolving over time. A pre-trained model is first used

to predict the graph for each frame. Then, the temporal edges

are added between nodes based on spatial consistency and visual

and semantic similarity. The article introduces a graph editing

module utilizing a priori knowledge and temporal consistency to
Frontiers in Surgery 10
correct errors in the graphs, which can therefore improve the

performance of downstream tasks. The experimental results of

this article are superior to DeepCVS (49).

In recent years, the development of Large-scale language

modeling(LLM) has been very rapid (51), and Vision-

Language Models (VLM) have shown unprecedented

potential for understanding complex surgical scenarios (52,
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FIGURE 6

This figure illustrates the deep learning architectures employed in various laparoscopic image analysis tasks: (a) architectures used for classification
tasks, (b) architectures applied in segmentation tasks, and (c) architectures designed for detection tasks.
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53). Hirides et al. (54) analyzed 100 laparoscopic surgical

images directly using ChatGPT4 and its image recognition

plugin SceneXplain, and their results performed well for the

task of recognizing anatomical structures. SurgicalGPT (55)

is an end-to-end trained VLM of gpt for visual question-

answering tasks in surgical scenarios. The model extends

the GPT2 model to include visual input and introduces a

feature extractor and visual token embedding. By ordering

word tokens before visual tokens, the model mimics the

way humans think about understanding questions, and thus

better infers answers based on images. Experimental results

show that SurgicalGPT performs well in anatomical

structure classification. Chain-of-Look (56) Prompting is an

end-to-end surgical triad recognition method. The method

decomposes the task into interpretable steps by constructing

a series of video reasoning processes and utilizes a large-

scale VLM for visual cue generation. In addition, the article

introduces a verb-centric modeling scheme to emphasize the

core semantic information of surgical actions. The method

achieves optimal performance on the CholecT50 dataset.
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4.1.2 Unsupervised learning
Unsupervised learning methods are mainly applied to the CVS

prediction task. These methods can effectively lower the

dependence on a large amount of manually annotated data and

contribute to improving the generalization ability and robustness

of the model in different surgical scenarios.

Murali et al. (36) used bounding box annotations to train CVS

prediction models. During the first stage, key anatomical structures

are identified and used as nodes of the graph. Next, the

relationships between nodes are predicted to form the graph’s

edges. In the second stage, GNNs is applied to predict the CVS,

and an auxiliary reconstruction goal is introduced to fine-tune

the rest of the model. Alapatt et al. (37) achieved end-to-end

prediction of CVS. The ResNet-50 feature extractor was firstly

pre-trained using Momentum Contrast. This contrast learning

method learns image representations through minimizing the

embedding differences between different augmented views of the

same image and by maximizing the embedding distance between

different images. Then initialize the classifier and fine-tuned

based on the Endoscapes dataset to predict the CVS.
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FIGURE 7

Frameowrk of multitask learning.
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4.1.3 Multi-task learning
MTL aims to enhance the generalization performance of

individual tasks and the overall model by learning multiple

related tasks simultaneously. As displayed in Figure 7, in MTL,

models are designed to address multiple tasks simultaneously

rather than being trained independently for each task separately

(57). These tasks usually show some correlation and thus can

share the underlying feature representation, which can utilize the

limited data resources in a more efficient way. Recent studies

have shown that applying multi-task learning to surgical action

recognition triad recognition can obviously improve the

performance and robustness of the model.

Tripnet (29) is based on the MTL strategy and contains three

branches including tool, verb, and target recognition. In this case,

the class activation guidance unit is utilizing the weak localization

information in the tool prediction, i.e., the class activation map, to

guide the recognition of verbs and targets. And a new trainable 3D

interaction space is proposed for capturing the associations between

the triples components. However, there is still room for

improvement in Tripnet’s fine-grained performance when dealing

with complex scenes. To address this issue, Rendezvous (58)

introduces two different attention mechanisms. One of them refers

to the Class Activation-Guided Attention Mechanism based on Tool

Activation Graphs, capturing spatial attention of the components of

a single action triad in a scene for improved verb and target

detection. The Multi-Headed Hybrid Attention module is a hybrid

of self-attention and cross-attention, capturing the interaction and

semantic relationships between tools, verbs, and targets.

To further enhance the extraction of spatio-temporal

dependent features, the multi-task fine-grained spatio-temporal

framework (MT-FiST) (59) was proposed by Li et al. The model

contains four task branches for recognizing surgical tools,

actions, targets, and triples. MT-FiST decouples global task

features into category-aligned fine-grained features using a multi-

labeled intercommunication channel loss function, which can

enable the model to learn more local details in the surgical scene

and ensure feature differentiation and diversity. And captures the

temporal correlation between neighboring frames through a
Frontiers in Surgery 12
partially shared parameter LSTM cell. Yamlahi et al. (60)

presented the first attempt to use self-distillation to address the

problems of category imbalance and label ambiguity in surgical

video analysis. At first, an instructor model is trained. Then, a

student model is trained using soft labels to reduce the

overconfidence problem. Second, a heterogeneous integration

model is proposed, which can combine three different Swin

Transformer sizes.

Recent studies have introduced GNNs that utilize graph

structures to capture the complex relationships between elements

during surgery. The MCIT-IG model (61) is consisted of two

phases. In the first phase, embeddings for each target category

are generated. In the second stage, a bidirectional dynamic graph

is constructed to simulate the interaction between instrument

instances and target category embeddings, and verbs are learned

on the interaction edge features to detect triples. In addition, a

hybrid supervised learning strategy that combines weak target

presence labeling from MCIT and pseudo-triad labeling from IG

is used to train the network. Concept Graph Neural Networks

(32) incorporates knowledge graphs into surgical video analysis

and models different concepts and their relationships during

surgical procedures as graph structures. Elements of the surgical

process (e.g., surgical tools, organization, etc.) can be modeled as

nodes of the graph. Interactions between the elements are

modeled as hyperedges of the graph.

4.1.4 Evaluation metrics
Evaluation metrics are used to evaluate model performance and

quantify how well a model performs in different dimensions,

helping comprehend the strengths and weaknesses of a model.

Totally ten categories of evaluation metrics were used in the

classification methodology, each concentrating on a different

evaluation dimension.

As shown in Figure 5, Acc and AP were used most frequently, 15

and 11 times, respectively. Acc evaluates the overall correct

classification rate of the model, i.e., the number of correctly

predicted samples as a proportion of the total number of samples.

The high frequency of Acc usage may reflect the fact that overall
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correctness is still the most intuitive and popular evaluation criterion

for a lot of tasks, especially when the class distribution is balanced.

However, AP evaluates the balance between the Precision(Pre) and

Recall(Rec) of the model under different thresholds, which is

particularly appropriate for evaluating the performance of multi-class

classification problems. The high-frequency use of AP suggests that

researchers value the combined performance of the model under

different confidence thresholds, particularly for applications in

complex scenarios. The widespread use of Acc and AP may also be

associated with their implementation and standardization in

mainstream machine learning libraries, such as the support of these

metrics in tools like scikit-learn, TensorFlow, and PyTorch.

Moreover, the other metrics were used relatively infrequently.

In this study, pre and F1 scores were used 3 times each, and Rec

was used 5 times. Besides, acc is simple and easy to understand

but performs poorly on class-imbalanced datasets. Pre and Rec

are suitable for class-imbalanced scenarios, especially when the

cost of focusing on misclassification is high. Pre-high precision

suggests fewer false positives but may miss them. Rec high recall

indicates fewer misses but may miss them. F1 Score is used for

balancing Pre and Rec, and is suitable for scenarios requiring a

combination of the two. Krippendorff’s alpha (K-Alpha),

Sensitivity (Sen), Specificity (Spe), and AUC Score were also used

in specific applications, with each metric used once.
4.2 Segmentation methods

The current section explains the publications of segmentation

methods, including 73 articles, as shown in Table 3. Firstly, they

are grouped in line with learning strategies: supervised learning,

semi-supervised learning, weakly supervised learning, and

unsupervised learning. Subsequently, relevant studies based on

transfer learning and attention mechanisms are shared. Finally,

evaluation metrics of segmentation methods are analyzed.

4.2.1 Supervised learning
The researchers used various deep-learning models and

techniques to investigate the segmentation task. These models

cover general-purpose semantic segmentation networks, including

the DeepLabv3 family, Mask R-CNN, FPN, and models

commonly used for biomedical image segmentation, including

Unet and ESFPNet. The selection of models needs to consider

their accuracy, speed, complexity, and performance on specific tasks.

The performance of DeepLabV3 in image semantic

segmentation tasks has been extensively validated. The network

employs techniques such as Dilated Convolution and Global

Average Pooling to efficiently extend the receptive field and

maintain detailed information, contributing to better capturing

organ boundaries and fine texture information. Igaki et al. (62)

performed semantic segmentation of sparse connective tissue by

DeepLabV3+. AutoLaparo (63) used Mask R-CNN, YOLACT,

and YolactEdge to segment anatomical structures, achieving good

segmentation results.

When compared with the previous studies, the following

articles focus on the application of networks such as Unet that
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are commonly used for biomedical image segmentation and are

designed to be more specific to the characteristics of medical

images and the needs of surgical tasks. Unet (64) is known for

its unique encoder-decoder architecture and hopping connection

design. A similar network architecture is usually used in

segmentation tasks, as shown in Figure 6b. In this case, the

encoder employs a representative structure of CNNs, which

gradually extracts image features through multiple convolutional

and pooling layers to map the input image to a low-resolution

feature map. Different from traditional decoders, Unet’s decoder

employs operations such as up-sampling and convolutional

transposition to gradually restore the low-resolution feature map

to the original input image’s size, helping refine the segmentation

results by learning contextual information and detailed features.

The jump connection in the Unet architecture connects the

feature maps of each layer in the encoder to the corresponding

decoder layer, which realizes cross-layer information transfer to

better comprehend the semantic information of the image and

improve the accuracy and robustness of segmentation.

SurgAI3.8K (65) is the first gynecological dataset with

anatomical annotations, on which the authors employed the

U-Net architecture to automatically perform the segmentation of

the uterus, uterine contours, and regions of the left and right

tubal junctions in surgical images. Bardozzo et al. (66) used a

U-Net model for semantic segmentation of the liver, which was

interpreted a posteriori by Grad-CAM and Grad-CAM++.

Additionally, Silva et al. (67), compared the performance of

different networks including Unet, Unet++, DynUNet, UNETR,

and DeepLabV3+ on the CholecSeg8k dataset. The results

demonstrate that the performance of different networks varies on

segmentation tasks with different anatomical structures. This

indicates that for a specific task, it is essential to consider the

advantages and disadvantages of different models and choose the

most suitable one.

Numerous studies have used U-Net or its variants as the basic

segmentation network architecture, building on it with structural

improvements or combining it with other approaches, such as

adversarial training strategies, discriminator networks, or the

incorporation of new loss functions.

For example, for the application in kidney edge detection,

KiBo-Net (68) improves the structure of U-Net by adding

additional convolutional and dropout layers. And the input of

the network is modified to be the distance field, and by

extracting the depth information and distance field of the

image, it predicts whether the pixel belongs to the kidney edge

or not. Franccois et al. (69) applied the U-Net architecture to

detect the occluded contours of the uterus, proposed a new

distance-based evaluation score, and enhanced the performance

of the network by introducing a new structural penalty term.

NephCNN (70) segment blood vessels in laparoscopic

nephrectomy videos. The network utilizes a 3D fully

convolutional neural network (FCNN) as a segmenter to extract

spatio-temporal features and enhance temporal continuity

between pixels. An adversarial training strategy is employed to

maintain the coherence of the vessel shape by constraining the

segmentation results through a discriminator network. The
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TABLE 3 Segmentation methods.

References Year Learning
strategya

Targetc Model Datasetb

(108) 2024 SL Ureter, spleen,pancreas, etc. SegFormer+Class Weight Adjustment DSAD

(104) 2024 WSL AW, liver, fat ,etc. Segment Anything (SAM)+SegGPT m2caiSeg, CholecSeg8k

(99) 2024 SSL Liver etc. Autoencoder+SegFormer m2caiSeg, Cholec80,
CholecSeg8k

(116) 2024 SL Uretersm, nerves, etc. Unet Proprietary

(117) 2024 SL Gallbladder, spleen, etc. TernausNet++ TernausResNet+LinkNet+DeepLabV3 Proprietary

(105) 2024 SL Hepatic vein, CBD, etc. Encoder-Decoder+U-Net5ed+SegNet-VGG19+SegNet-VGG19
+DeepLabv3+

CholecSeg8K

(118) 2024 SL Uterus, ovaries, fallopian
tubes, etc.

Densely Multi-scale Pyramid Module+Feature Fusion Module
+Encoder-Decoder

Proprietary

(119) 2024 SL Contours, bulges and
ligaments

SAM+ResNet+DPE+SGA+BFU Proprietary

(103) 2024 SL+USL Liver etc. DeepLab+HRNet32+HRNet48+Swin Transformer Small+Swin
Transformer Base

CholecSeg8k

(97) 2024 SL CVS DeepCVS Cholec80

(98) 2024 SL Gallbladder, CBD, etc. Channel Attention Pyramid Scene Parsing Plus Network:
Pyramid Scene Parsing Plus Module+Multi-scale information
Fusion Module Transfer learning

Cholec80

(120) 2024 SL SMV, ICA, ICV etc. DL model Proprietary

(121) 2024 SL Ureter UreterNet+FPN Proprietary

(106) 2024 SL Liver etc. SP-TCN+HRNetv2+Swin Transformer CholecSeg8k

(101) 2024 SL Endometriosis, CVS, etc. DeepPyramid++PVF+DPR+VGG16+ResNet34+ResNet50 ITEC LapGyn4

(122) 2024 SL Gallbladder, intestinal, etc. Hierarchical Semantic Segmentation (HSS)+Hiera-Mix+Swin
Seg

Proprietary

(54) 2024 SL CVS LG-CVS+Domain Generalization+Disentangled Learning
+Latent Graph+GNNs

Endoscapes

(88) 2024 SL Hepatic veins, glisson Feature Pyramid Network(EfficientNetV2-L)+Transfer learning Proprietary

(123) 2024 SL Ureteral Unet Proprietary

(90) 2024 SL 11 anatomical structures DeepLabV3, SegFormer+Attention+Multi-Teacher knowledge
distillation+Integrated learning

DSAD

(19) 2024 SL Liver, gallbladder, spleen, etc. LDCNet: Res2Net+Attention+Encoder-Decoder+FCN Proprietary

(79) 2024 SSL Liver etc. Multi-scale Projection Head CholecSeg8k

(78) 2024 SSL 11 anatomical structures DeepLabV3(ResNet50) DSAD

(24) 2023 SL 16 different target structures DeepLabv3(ResNet50)+Transfer learning Proprietary

(124) 2023 SL Left adrenal vein ESFPNet+Transfer learning+Encoder-Decoder Proprietary

(125) 2023 SL Kidney A GPU-based pixel-by pixel connectivity segmentation
mechanism

Proprietary

(126) 2023 SL Hepatic vein, glisson DeepLabV3 Proprietary

(127) 2023 SL Hepatic vein, glisson DeepLabV3 Proprietary

(128) 2023 SL Autonomic nerves DeepLabV3+(Xception)+Transfer learning Proprietary

(72) 2023 SL Go/No-Go zones GoNoGoNet Proprietary

(65) 2023 SL Uterine contour and tubal
junction region

Unet SurgAI3.8K

(20) 2023 SL AW, colon etc. DeepLabV3+SegFormer+Transfer learning+Attention DSAD

(71) 2023 SL Organs and tissues LinkNet34+Decoder CholecSeg8k

(84) 2023 USL MoCo v2, SimCLR, DINO, SwAV Endoscapes

(81) 2023 USL AW, liver, fat, GB Masked Frequency Consistency module+Segformer, DeepLabV2
+Attention

CholecSeg8k

(40) 2023 SSL CD, cystic artery Unet+Multi-scale Projection Head+Auto-Encoder+Hybridloss
function

Cholec80, M2cai16-tool,
M2cai16-workflow

(62) 2022 SL Areolar tissue DeepLabv3+ Proprietary

(42) 2022 SL Intestine Unet, Vnet+Discriminator network EndoVis 18’

(73) 2022 SL Go/No-Go zones GoNoGoNet Proprietary

(76) 2022 SSL Liver etc. DeepLabv3+(ResNet)+Active learning CholecSeg8k

(77) 2022 SSL Liver, etc. Unet(ResNet18)+K-Means CholecSeg8k

(83) 2022 USL CD, cystic artery ResNet101+Label relaxation+Pseudo-label+FCN Proprietary

(86) 2022 SL mesenteric artery DeepLabV3(ResNeSt-269)+Transfer learning LapSig300

(87) 2022 SL Organs DeepLabV3+(ResNeSt)+UperNet(SwinTransformer)+Domain
randomization

Proprietary

(63) 2022 SL Uterus etc. Mask R-CNN+YOLACT+YolactEdge AutoLaparo

(Continued)
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TABLE 3 Continued

References Year Learning
strategya

Targetc Model Datasetb

(66) 2022 SL Liver Unet Proprietary

(67) 2022 SL 8 structures: AW, liver, fat etc. UNet+UNet+++DynUNet+UNETR+DeepLabV3+ CholecSeg8k

(49) 2022 SL CD etc. DeepCVS: DeepLabV3+Multistage learning+Classification
network

Proprietary

(23) 2022 SL Loose connective tissue SwinPA-Net: Swin Transformer+Dense Multiplicative
Connection+Local Pyramid Attention

LIVis(Proprietary)

(39) 2022 SL Go zone, No-Go zone, liver
etc.

GoNoGoNet+CholeNet: ResNet50+Pyramid Scene Parsing
Network+Multi-scale pyramid pooling

Cholec80; M2cai16-workflow

(21) 2021 SL Loose connective tissue fibers Unet+Data Augmentation Proprietary

(129) 2021 SL Liver etc. Mask R-CNN Proprietary

(130) 2021 SL GI tract, blood, vessels, uterus
etc.

CNNs Proprietary

(35) 2021 SSL CVS TCNN: Multiloss learning+Auto-Encoder Endoscapes

(82) 2021 USL CD, cystic artery ResNet101+Label relaxation+Pseudo-label Proprietary

(70) 2020 SL Blood vessels NephCNN: Adversarial+training+FCNN Nephrec9

(10) 2020 SL Uterus, ovaries Mask R-CNN+Transfer learning SurgAI(Proprietary)

(102) 2020 SL Liver, fat etc. Unet+TernausNet+LinkNet+SegNet+FCN EndoVis 19’

(69) 2020 SL Occluding contours of the
uterus

Unet+new loss function Proprietary

(131) 2020 SL Liver, GO zone, NO-GO zone
etc.

CNNs Proprietary

(75) 2020 SSL Liver, gallbladder, intestine,
artery etc.

CNNs+Encoder-Decoder+USL pretrain m2caiSeg

(132) 2019 SL Anatomical structures Algorithm based on the extraction and matching of image
features

Proprietary

(80) 2019 WSL Liver, gastric etc. DeepLabv3+FCN Proprietary

(68) 2019 SL Kidney KiBo-Net(Unet) EndoVis 17’ Kidney

(74) 2019 SL+SSL Liver Unet variant+Knowledge Distillation Proprietary

(133) 2019 SL Gallbladder, CD, bile duct CNNs+Encoder-Decoder+Depthwise Separable Convolution
+Flip-Based Subpixel Reconstruction

Proprietary

(134) 2019 SL Organs Xception+Encoder Proprietary

(135) 2017 SL Liver Deep residual networks+FCN+Multi-resolution loss function Proprietary

(136) 2016 SL Organs Superpixel Extraction+Descriptor+Classifier MICCAI 2014

(137) 2016 SL Liver, diaphragm, ligament
and tissues

Intra-operative 3D Scene Reconstruction+Segementation using
structures from Point Cloud+Labelling with laparoscopic scene
cues

Proprietary

(138) 2015 SL Uterus Thresholding algorithm+SVM Proprietary

(139) 2015 SL Uterus Gaussian Mixture Model Proprietary

(140) 2014 SL Uterus etc. Gaussian Mixture Model Proprietary

aFor the “Learning Strategy” column. SL, supervised learning; WSL, weakly supervised learning.
bFor the “Dataset” column, “Proprietary” means that the dataset is not publicly available.
cTarget may involve surgical instruments, etc. Only anatomical structures are listed here.
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experimental results of NephCNN significantly outperform 2D

U-Net and 3D U-Net.

When dealing with small datasets, Monasterio et al. (42)

used U-Net and V-Net as segmentation networks, first

synthesizing the erroneous segmentation labels and training a

discriminator network to detect errors and produce a dense

segmentation error map. Subsequently, the segmentation

network is co-trained by minimizing the discriminator

prediction error with the standard segmentation loss. Uramoto

et al. (71) introduced a second-level decoder on top of the

base U-Net structure, which adds semantically similar group

segmentation of images as a second-level task. The feature

maps of the second-level decoder are also fused into the first-

level decoder to enrich the latter’s feature representation. The

approach achieves better performance.
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With the development of DL techniques, more researchers have

begun to explore alternative encoder-decoder architectures other

than Unet. These improved approaches enhance the model’s

feature extraction and reconstruction capabilities by introducing

new modules and techniques, such as feature pyramid networks

and multi-scale feature fusion.

GoNoGoNet (39) is applied to recognize anatomical

structures, safe areas, and dangerous areas in LC. The network

combines ResNet50 and the pyramid scene parsing network.

The pyramid pooling module aggregates feature maps from

ResNet50 at four different scales. Afterwards, it is mapped to

pixel-level classification scores through a convolutional layer.

The whole process can be regarded as an encoder-decoder

model. Both Khalid et al. (72) and Laplante et al. (73)

evaluated the GoNoGoNet model. The results showed that
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GoNoGoNet accurately identified safe and dangerous zones in

the LC.

4.2.2 Semi-supervised learning
The core idea of semi-supervised learning(SSL) is to combine a

limited amount of labeled data with a large amount of unlabeled

data in order to improve model performance. Next, the

application of semi-supervised learning strategies is explored to

segmentation tasks.

Fu et al. (74) compared the performance of supervised and

semi-supervised learning methods. A combination of supervised

and unsupervised loss and an exponential moving average

updating strategy for the teacher network is demonstrated

through a semi-supervised mean teacher training paradigm.

Higher segmentation accuracy and stability are demonstrated

compared with the Unet-based supervised network.

However, the issue of insufficient labeled data remains a

challenge. To address this, m2caiSeg (75) employed unsupervised

pre-training and data augmentation techniques. Despite the good

performance on some categories, there is still room for the

improvement of the performance for rare categories. To further

enhance performance, TCNN (35) utilizes spatially and

temporally supervised signals provided by a self-encoder network

incorporating temporal cues and anatomical constraints. The

framework demonstrates how a low-dimensional representation

of the prediction mask can improve performance while

maintaining low computational costs.

Recognizing the need for more effective sample selection for

labeling, Qiu et al. (76) introduced an active learning method

called class-level confidence-aware active learning. The method

selects the most informative samples by keeping a class-level

confidence bank and combining the confidence scores. The

method can achieve better segmentation with a limited labeling

budget through effectively utilizing the unlabeled dataset.

Similarly, ALGES (77) is also an active learning method selecting

the most representative and diverse samples by calculating the

predictive segmentation of unlabeled images and the gradient of

the model parameters, reducing the labeling workload and

improving the model performance.

To maximize the use of existing labels, Jenke et al. (78) trained

a surgical scene segmentation model by combining multiple

partially annotated datasets. This method incorporated

supplemental annotations during model training, significantly

improving DC scores and reducing confusion between categories.

In addition, Zhang et al. (79) proposed a class-level contrast

learning method that introduces a multi-scale projection header

and improves the partitioning of the positive sample pairs to

learn the contrast of the extracted features at each scale. The

model is trained using both segmentation and classification

labels. Even though only a relatively small number of labels (1%–

10%) exhibit high intersection-unification (IoU) scores.

4.2.3 Weakly supervised learning
Weakly Supervised Learning (WSL) is also one of the vital

methods that can be used to address the challenge of labeling

laparoscopic images. In SL, the training data is labeled with exact
Frontiers in Surgery 16
labels, providing clear guidance for the model. In semi-

supervised learning (SSL), the model is trained on a small

portion of labeled data combined with a larger amount of

unlabeled data to leverage both types of information. Meanwhile,

in USL, the training data is entirely unlabeled, requiring the

model to detect patterns without any label guidance. WSL,

however, is characterized by training data with partially accurate

or incomplete labels, offering a flexible solution when precise

labeling is challenging or costly.

Fuentes et al. (80) proposed a novel method for labeling

laparoscopic images, using “stripes” as a weak annotation and

combining it with a partial cross-entropy loss function to train a

FCNN for scene segmentation. According to experimental results,

the segmentation accuracy of the method is close to that of a fully

supervised method on three different datasets, while the time

required for labeling is reduced by approximately 13 times.

4.2.4 Unsupervised learning
Unsupervised learning (USL) is an approach in machine

learning which is opposed to supervised learning. In unsupervised

learning, the training data does not contain labels or results.

Meanwhile, the algorithm needs to figure out the hidden patterns

and structures in the data itself. Next, we will delve into how

unsupervised learning can be used for segmentation tasks.

The Masked Frequency Consistency (MFC) module (81) is

employed to solve the problem of domain adaptive semantic

segmentation of laparoscopic images. The module is

implemented by image frequency representation, masking

strategy and consistency regularization. The MFC method is

demonstrated to be comparable to fully supervised methods

without manual annotation, facilitating knowledge transfer from

computer simulations to real laparoscopic datasets as well as

enabling model generalization across domains.

Next, the following study explores self-supervised learning, an

approach that utilizes the structure and intrinsic relationships of the

data itself for feature learning. Owen et al. (82, 83) applied both

label relaxation and pseudo-label self-supervision strategies. The

label relaxation method will transform the traditional segmentation

problem into a heat map regression problem, where the true label

heat map is obtained based on the Euclidean distance transform of

the original annotation. Moreover, and this method is capable of

better dealing with the fuzzy labels of the structure in the image. At

first, the pseudo-labeled self-supervised curation method trains a

new model in the teacher-student architecture by training an initial

model on labeled data and then using the predictions of that model

as pseudo-labels for unlabeled data.

Among them, the article Detection (82) is based on FCN and

uses ResNet101 as the backbone network. Besides, cross-entropy

loss and soft cross-entropy loss are employed to train the model.

The method achieved high accuracy and was recognized by

surgeons. Instead, Alkhamaiseh et al. (40) combined unsupervised

pre-training and supervised fine-tuning. In this, the autoencoder

extracts features from a partially prepared dataset and uses these

features as pre-training weights for the U-Net encoder layer.

Finally, Ramesh et al. (84) evaluated the performance of four

state-of-the-art SSL methods including MoCo v2, SimCLR, DINO,
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and SwAV on a surgical video dataset and also investigated the SSL

methods regarding different hyper-parameter settings, data

availability, and generalization capabilities, exhibiting their

potential in dealing with small datasets and data-scarce domains.
4.2.5 Transfer learning
Transfer learning is a technique widely used in DL, as shown in

Figure 8, which can migrate the learned knowledge to a specific

task by using models pre-trained on large datasets (e.g.,

ImageNet). This approach significantly reduces the training time

and improves the model’s performance in tasks with limited data

and performs particularly well in medical image analysis (85).

Laparoscopic surgical images suffer from problems including

limited data volume and labeling difficulties. This makes it

challenging to train models from scratch. In this case, transfer

learning provides an efficient solution. That is, the pre-trained

model is fine-tuned on surgical images to adapt it to a specific

application scenario.

DeepLabV3 is fully pre-trained on large-scale datasets such as

ImageNet. Meanwhile, DeepLabV3 features a flexible architecture

that can be built based on different backbone networks (e.g.,

ResNet, ResNeSt, Xception, and EfficientNet.). Therefore,

researchers can choose a suitable model according to the demands

of specific tasks and the limitations of computational resources.

DeepLabV3 and its variants are implemented in numerous open-

source frameworks, such as TensorFlow, and PyTorch, providing

rich tools and documentation. On this basis, DeepLabv3 becomes

a widely used pre-training model for segmentation tasks.

Kitaguchi et al. (86) used DeepLabv3+ as a backbone for

migration learning and training on LapSig300, showing that the
FIGURE 8

Frameowrk of transfer learning.

Frontiers in Surgery 17
model was able to accurately recognize IMAs at over 12 FPS with

an mDC of 0.798. The feasibility for real-time navigation of blood

vessels in laparoscopic colorectal surgery was demonstrated. Next,

Yoon et al. (87) proposed semantic image synthesis using a virtual

surgical environment to enhance the performance of surgical scene

segmentation. Through the combination of manual synthetic data,

domain randomized synthetic data with real data, which provides a

wider dataset. The results show that synthetic data can significantly

enhance the performance of the models on low-

performance categories.

In addition to deeplabv3, networks such as Mask R-CNN can

be used as pre-trained models to provide powerful feature

extraction for segmentation tasks.

Madad et al. (10) achieved accurate localization and

segmentation of key structures such as the uterus, ovaries, and

surgical tools by adopting Mask R-CNN for migration learning.

Une et al. (88) developed models for identifying the hepatic veins

and glissonean based on a feature pyramid network (FPN) with

EfficientNetV2-L as the backbone. The results showed high

accuracy and sufficient processing speed.
4.2.6 Attention methods
Attention Mechanism enhances the network’s ability to focus on

specific parts during information processing, similar to the human

visual process: when processing a large amount of information,

more attention is paid to what is relevant to the task, thus

enhancing the efficiency of information utilization. In neural

networks, the attention mechanism is implemented by assigning

different weights to input features, i.e., determining the region that

the model should focus on based on the correlation between input
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elements (89). As shown in Figure 9, a commonly used

implementation is the dot-product attention mechanism, which

measures the relevance of elements by calculating the dot product

between query vectors and key vectors, and then generates the

attention weights to weight the value vectors so as to focus on key

regions. In addition, to enhance the model’s representation of

different features, the Multi-Head Attention mechanism applies

multiple attention heads in parallel and computes the attention

independently in different projection spaces, enabling the model to

capture information from multiple perspectives. This mechanism

has great adaptability and flexibility in dealing with complex data,

and is especially suitable for dealing with laparoscopic surgical

images with complex and unevenly distributed structures, which

can still effectively focus on the key parts when the anatomical

structures are deformed and distorted, thus improving the

accuracy of the network.

SwinPA-Net (23) used the Swin Transformer as an encoder.

Second, efficient information transfer between feature hierarchies

can be achieved through dense multiplicative connections. In the

meanwhile, the local pyramid attention module helps the

network better focus on key regions and aggregate multi-scale

features. On the decoder side, a gradual upsampling strategy is

applied to maintain the fineness of the segmentation results.

SwinPA-Net achieves state-of-the-art performance in three

medical image segmentation tasks. Kolbinger et al. (20) trained

independent and joint models based on DeepLabv3 and

SegFormer for 11 anatomical structures in laparoscopic images.

SegFormer’s self-attention mechanism can model the

dependencies between different locations. Experimental results
FIGURE 9

(left) Scaled dot-product attention. (right) Multi-head attention.
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indicate that the models based on the attention mechanism have

higher segmentation accuracy and generalization ability

compared to those using only CNNs.

In practical applications, real-time is also an important

consideration. To this end, Maack et al. (90) proposed an

approach based on multi-teacher knowledge distillation. The

mDC score of the real-time network is improved by training

multiple DeepLabv3 and SegFormer-based teacher networks and

aligning the outputs of these teacher networks with the output of

a student network. Lightweight dynamic convolution network

(LDCNet) (19) is a lightweight novel dynamic convolution

network for real-time segmentation. A dynamic convolution-

based attention module is used between the coders and decoders,

allowing the network to better focus on regions of interest. The

encoder part uses Res2Net and introduces a sensory wild block

module to further refine the features. The progressive decoder

obtains effective feature reconstruction by fusing high-level

features with low-level features. The experimental results suggest

that LDCNet combines high speed and accuracy and exhibits

high practical value in real scenarios.

4.2.7 Evaluation metrics
Thirteen different evaluation metrics were used in the

segmentation task, with significant differences in their frequency of use.

As presented in Figure 5c, the Dice Coefficient (DC) is one of

the most commonly used segmentation metrics to measure the

similarity between predicted segmentation and true segmentation.

DC was used for totally 27 times in the literature, suggesting that

researchers place great importance on the quality of the overlap
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of segmented regions. IoU is another widely used metric, which

was used a total of 24 times, aiming to assess the intersection

and concurrency ratio between predicted segmentation and

true segmentation.

Acc, F1 Score, Rec, and Pre also have some applications in the

segmentation task. Rec measures the model’s ability to detect all

positive sample regions in the segmentation task, focusing on

regions that are not correctly segmented. Pre evaluates the

proportion of positive sample regions predicted by the model that

are actually positive, emphasizing the accuracy of the prediction.

Acc is of comparatively low importance because the segmentation

task is more concerned with regions of overlap and matching.

Other metrics, including Sen, correlation, agreement are used

less frequently. AP is used in some complex multi-class

segmentation tasks. Hausdorff_95 evaluates the maximum

distance between the predicted segmentation and the true

segmentation boundary, and is mainly applied in segmentation

tasks requiring high accuracy. Mean Misrecognition measures the

missegmentation region of the model. Error evaluates the overall

segmentation error of the model.
4.3 Object detection methods

In the current section, we will discuss the research associated

with the target detection task, which consists of 15 articles, as

shown in Table 4. These studies can be categorized into two

main groups: one is based on traditional image processing

algorithms, and the other is based on DL methods. Next, we will

elaborate on these two directions, first presenting the research
TABLE 4 Object detection methods.

References Year Learning
strategya

Targetc M

(141) 2024 SL Liver base of segment IV,
Rouviere’s sulcus

YO

(142) 2024 SL Vas deferens and subabdominal
vessels, etc.

YO

(36) 2023 WSL Gallbladder, CD, cystic artery,
hepatic duct, cystic plate, etc.

La
sem
+G

(26) 2023 SL LM-RS, LM-S4, LM-CBD, LM-CD Yo

(94) 2023 SL CBD, CD, S4, RS Yo

(95) 2023 SL EHBD, CD, S4, RS Yo

(25) 2023 SL Uterus Co
Effi

(18) 2022 SL Endometriosis Fa

(143) 2022 SL CD, cystic artery, CBD, cystic plate Su

(144) 2021 SL CD, CBD, S4, RS Yo

(145) 2021 SL Anatomical landmarks Yo

(27) 2021 SL Vas deferens Yo

(93) 2021 SL Endometriosis Co

(92) 2017 SL Triangular tissue Co

(91) 2015 SL FU-junctions Co

aFor the “Learning Strategy” column. SL, supervised learning; WSL, weakly supervised learning.
bFor the “Dataset” column, “Proprietary” means that the dataset is not publicly available.
cTarget may involve surgical instruments, etc. Only anatomical structures are listed here.

Frontiers in Surgery 19
progress of traditional image processing algorithms and then

discussing the latest results based on DL.
4.3.1 Based on conventional image processing
techniques

The next presentation is a study based on traditional image

processing techniques adopted for addressing tasks, including

lesion detection. The core idea of traditional image processing

techniques is to obtain the localization and identification of the

target of interest through mathematical manipulation and feature

analysis, mainly including feature extraction and pattern recognition.

Prokopetc et al. (91) trained uterus detectors and FU

connection detectors. These detectors incorporate connection-

specific context-sensitive features to achieve automatic target

detection through linear classification. Nakasuji et al. (92)

successfully identified triangular tissue regions of pulled by

surgical forceps, by combining corner point detection and ridge

detection with Delaunay triangular dissection. Visalaxi et al. (93)

extracted focal regions of endometriosis using OpenCV, adaptive

thresholding, and contour masking, and evaluated the

recognition effect by the mean intensity value.
4.3.2 Based on deep learning
The aforementioned methods based on traditional image

processing techniques have been successful to a certain extent,

while they have many limitations, such as the comparative

sensitivity to image quality and parameter selection, as well as

the lack of precision in localizing specific targets. Therefore, the

subsequent research incorporated novel techniques, aiming to

achieve higher performance.
ethod Datasetb

LOv7 Proprietary

LOv8 Proprietary

tentGraph-CVS: constructing graphical representations containing
antic information about anatomical structures and visual features
NNs

Endoscapes

loV3 Proprietary

loV3 Proprietary

loV3 Proprietary

mparing the performance of Faster R-CNN, SSD, CenterNet,
cientDet, YOLOv4, YOLOv5, YOLOv7+transfer learning

Proprietary

ster R-CNN(ResNet50), Mask R-CNN(ResNet101) GLENDA

rgSmart: YoloV3(ResNet)+transfer learning Proprietary

loV3 Proprietary

lo,YoloV4 tiny Proprietary

loV4 Proprietary

nventional image processing techniques GLENDA

nventional processing techniques Proprietary

nventional image processing techniques Proprietary
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The DL models in these articles cover a wide range of classical

target detection algorithms, such as YOLOv3, and Faster R-CNN.

Mask R-CNN employs a two-step detection process. First, a pre-

trained ResNet backbone network is used to pull out features.

Afterwards, the features are sent through a feature pyramid network

for fusion. Then, more Region Proposal Networks (RPNs) propose

bounding boxes. RoI Pooling and RoI Align pull out features and

perform target detection or pixel-level segmentation. A similar

network architecture is usually used in target detection tasks, as

shown in Figure 6c. By contrast, the YOLO family of models excels

in real-time applications with its high inference speed and good

detection performance for scenarios requiring fast processing.

Nakanuma et al. (26) developed a YOLOv3-based AI system

for the detection of anatomical marker points that surgeons rely

on during surgery. The system’s performance was evaluated by

an external evaluation committee, showing that the system could

accurately identify key anatomical landmarks. Similarly, Fujinaga

et al. (94) and Endo et al. (95) conducted a similar study. The

results demonstrated the method’s effectiveness. In addition to

the direct application of YOLOv3, boonkong et al. (25) compared

the performance of eight models on uterine detection tasks,

including Faster R-CNN, SSD, CenterNet, EfficientDet, YOLOv4,

YOLOv5, and YOLOv7. Based on the obtained results, YOLO

series models perform optimally in terms of accuracy and speed.

4.3.3 Evaluation metrics
As shown in Figure 5, target detection methods use a wide

variety of evaluation metrics, including both qualitative and

quantitative evaluations.

Quantitative evaluation is based on numerical computation and

image analysis and is mainly adopted for measuring the performance

of algorithms in terms of localization and accuracy. Among them,

AP is used most frequently. There are some qualitative evaluation

methods, such as five-level scale evaluation and questionnaire

format evaluation. Moreover, the effectiveness of the algorithm is

evaluated from the point of view of user experience and practical

application by collecting users’ subjective feelings and opinions on

the effectiveness of the algorithm.
5 Discussion

5.1 Datasets

Totally 24 publicly available datasets were involved in the study

of anatomical structures in laparoscopic surgical images, among

which 7 were generalized datasets and 11 were proprietary

datasets. The most frequently used dataset was the generic

dataset, which was used for 13 times. Although they were used

more frequently, their additional annotation work remained a

challenge for research efficiency and resource allocation.

Aside from the high-frequent use of the generic datasets, there

was a large variation in the frequency of application of the other

datasets, with 15 datasets being used only once. This situation

reveals the dispersion and diversity of dataset use within the

field, possibly caused by the diversity of research topics and the
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unique strengths of specific datasets. This diversity allows

researchers to select the most appropriate datasets for different

problems, driving innovation in methods and techniques.

However, this decentralization also brings certain disadvantages

that may result in duplication of effort: researchers need to

develop or adapt specific processing methods for each new

dataset, which can thus increase research time and costs.

Secondly, the lack of extensive validation and application of

datasets used at low frequencies may hide some undiscovered

flaws or limitations, lowering the reliability of the research results.

The comparison of similar tasks reveals that they all employ

different datasets. This makes it difficult to directly compare the

methods and results of different studies, limits the unified

assessment and standardization of techniques in the field, and

increases the complexity of comprehensively assessing the effects

of different methods.

It is of note that most of the datasets contain annotations not

only for anatomical structures but also for tools, surgical stages,

and maneuvers. The multiple-annotated datasets provide rich

contextual information for research and help develop more

comprehensive and intelligent algorithms to enhance the

adaptability and accuracy of models in real surgical settings.

Additionally, seven datasets were generated from competitions or

other events organized by MICCAI. These competition datasets

drive the development of technology and innovation in the field

through providing a standardized evaluation platform.

Finally, it is vital to emphasize that more than 60 articles used

private datasets. Their experimental results are difficult to compare

with other methods. More importantly, because private datasets are

difficult to access, this can limit the possibility for other research

groups to carry out further studies on the data, also resulting in

unrepeatable and unvalidated experimental results.

To counter the existing problems, more collaboration and

sharing of resources may be needed to improve the overall

efficiency of research and the credibility of results. Therefore, we

call on future researchers to actively use publicly accessible and

comparable datasets to develop and validate their methods, as

well as to openly collect and self-label their data so that other

studies can access and use these datasets.
5.2 Methodology

Regarding methodology, each category of tasks is characterized

by its own research methods and trends.

Classification tasks are mainly categorized into supervised

learning and unsupervised learning methods. Supervised learning

methods dominate the classification task, usually by fine-tuning the

DL model or utilizing data enhancement techniques to improve the

model performance. Weakly supervised learning and unsupervised

learning methods mainly focus on the CVS prediction task. Multi-

task learning methods are widely applied in surgical action triplet

recognition tasks. These methods perform well when handling

complex tasks, while for some simpler classification tasks, simple

transfer learning has been capable of achieving good results.
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The vast majority of studies in segmentation tasks depend on

manually labeled data, and the use of supervised learning methods

is the most common strategy. In supervised learning, transfer

learning is widely applied. Meanwhile, attention mechanisms have

also become a hot research direction, exhibiting the potential to

improve segmentation accuracy. However, due to the high cost of

manually labeling data, semi-supervised learning, weakly supervised

learning, and unsupervised learning methods are also gradually

gaining attention and application as a trend for future development.

Graph neural networks are beginning to show promising

applications in segmentation tasks, providing novel solutions.

There is relatively little literature related to the target detection

task, and the early research is mainly based on traditional image

processing techniques, while the research in the last five years is

mainly based on DL methods. Most methods directly apply the

existing model or are fine-tuned by transfer learning. However, the

field of target detection has not yet been significantly developed,

and there remains more room for innovation and improvement.

The development of these methods and techniques has brought

significant progress and wide application prospects in the field.

Nevertheless, there are also a lot of challenges and opportunities.

Supervised learning methods, despite their superior performance, rely

on a large amount of manually labeled data, and data acquisition and

labeling are costly. Although research and application of unsupervised

and weakly supervised learning methods can alleviate this problem to

a certain extent, their accuracy and stability still need to be addressed.

Real-time is another vital challenge, especially in high-risk

environments such as surgery, where the inference speed of

algorithms directly influences clinical decisions and patient safety.

However, only a small portion of the literature focuses on inference

speed, and future research needs to focus on the real-time

optimization of algorithms to satisfy the needs of clinical applications.

And with the continuous development of new technologies, including

MTL, attention mechanisms, and GNNs, the performance and

application scope of DL methods will be further improved. Moreover,

this provides researchers with a wealth of research topics and

innovation space, bringing new opportunities for progress in the field.

In addition, large models have achieved introduced attention in

various domains, however, in this particular domain, they are

limited to a few applications in categorization tasks, but all of

them perform well. This demonstrates the great potential and

necessity of exploring VLM. The multimodal fusion capabilities

of VLM are leveraged in order to enhance the understanding of

complex anatomical structures in laparoscopic surgical images. In

addition, their strong generalization capabilities and ability to

handle data scarcity make them ideal for dealing with high

annotation costs and restricted data volumes.
5.3 Evaluation metrics

Evaluation metrics exert a vital role, not only in assessing

algorithm performance, but also in directly influencing the

application and diffusion of algorithms in clinical practice.

Current statistics find that classification, segmentation, and

target detection tasks all involve multiple types of evaluation
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metrics. There are fewer cases where the tasks are the same and

the evaluation metrics are also the same, making it difficult to

comprehensively assess and compare the performance of different

algorithms. Secondly, in the target detection domain, the number

of evaluation metrics is comparable to that of the segmentation

task, even though the number of literatures involved is relatively

small. This maysuggest that the target detection domain has not

been well addressed for the harmonization of evaluation metrics.

In summary, we call for the use of more consistent and

comprehensive evaluation metrics, aiming to more intuitively

assess and compare the performance of different algorithms and

to promote further development in the field.

In addition, we note that the target detection task involves

qualitative evaluation. This suggests that in addition to

quantitative evaluation metrics, it is increasingly vital to consider

the actual usage and experience of physicians. Therefore, we

suggest including more qualitative evaluation metrics in order to

comprehensively assess the applicability and usefulness of the

algorithms in a clinical setting. As a result, when selecting

evaluation metrics, their correlation with clinical outcomes

should be considered to ensure that the model can contribute in

practical clinical applications.
5.4 Summary of challenges and potential
future work

According to the literature we have collected, research in this

area has shown a trend of rapid growth from year to year,

showing widespread interest and sustained investment of resources.

In terms of datasets, the large number and diversity of types lead

to problems of fragmentation and duplication in the use of datasets.

While this diversity drives innovation in techniques and methods, it

can also increase research time and costs, making it difficult to

directly compare the results of different studies. In addition,

numerous studies use private datasets, making it difficult to

reproduce and validate results. Future studies should encourage

researchers to use publicly available and comparable datasets, or to

make publicly available self-collected and labeled data, hoping to

increase the transparency and reproducibility of studies.

In terms of methodology, different tasks are characterized by

different research methods and trends. Classification tasks mainly

depend on supervised learning, but weakly supervised learning and

unsupervised learning are also gaining attention, especially in CVS

prediction tasks. Supervised learning methods are most commonly

used in segmentation tasks, but semi-supervised, weakly supervised

and unsupervised learning methods are also trending due to the

high cost of data labeling. There is less literature on target detection

tasks, and not yet significantly developed. Moreover, the application

of VLM is relatively small, and future research should attempt to

combine it with image analysis of laparoscopic surgery, which is

expected to significantly improve the technical level and practical

application in this field.

In terms of evaluation metrics, there is a wide variety of evaluation

metrics involved in classification, segmentation and target detection

tasks. In addition, future research should advocate the use of more
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consistent and comprehensive evaluation metrics to more intuitively

assess and compare the performance of different algorithms.

Meanwhile, qualitative evaluation metrics should be added to take

into account the actual use and experience of physicians and to

establish a correlation with clinical outcomes to ensure the

effectiveness of the model in practical applications.

The continued growth and technological innovations in this

field of research have exerted a profound impact on clinical

practice. As a growing body of studies focus on solving real-

world surgical challenges, we can anticipate the emergence of

more accurate and smarter surgical assistance systems and tools

in future clinical practice. These systems and tools will

significantly improve the precision and safety of surgery, reduce

complications and surgical risks, and therefore, provide better

outcomes and quality of life for patients.
6 Conclusion

This study provided an overview of recent developments in the

field of classification, segmentation and target detection of

anatomical structures in laparoscopic images. The core subtasks

and their applications in real medical scenarios were first

discussed, followed by a statistical analysis of the current state of

use of the dataset. Then, the methods, models, and evaluation

metrics used in the literature were thoroughly analyzed and

discussed, offering insights and reflections on current research.

Finally, directions and strategies for future development were

proposed to address the existing shortcomings and challenges,

hoping to foster further development and innovation in the field.
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