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A novel grid-assisted pie-crusting
technique for achieving soft
tissue balance in total knee
arthroplasty
Qisheng Cheng1, Yang Wang2, Yi Liu1, Jie Mu1, Zhenyan Wang1,
Xu Lin1, Guanchen Yin1 and Shuqiang Li1*
1Department of Orthopedic Center, The First Hospital of Jilin University, Changchun, China, 2The First
Operation Room, The First Hospital of Jilin University, Changchun, China
Background: To evaluate the effectiveness of a novel grid-based pie-crusting
technique for soft tissue release at different locations of the medial collateral
ligament (MCL) during total knee arthroplasty (TKA).
Methods: Twelve fresh-frozen cadaveric knee joints were dissected. A novel grid
was designed to cover the entire surface of the MCL. The specimens were
divided into two groups: Group A, where only the central portion of the
ligament underwent pie-crusting release, and Group B, where selective release
targeted the femoral and tibial attachment points of the MCL. Mechanical
testing was conducted via a Shimadzu AG-X precision instrument. Each group
underwent twelve punctures, and data were collected to calculate
deformation and stiffness metrics. The mean elongation and stiffness values
were analyzed, and regression analysis was performed to evaluate correlations
between the number of punctures and changes in elongation and stiffness.
Results: No significant differences in initial stiffness were observed between the
two groups (P=0.42). Following 12 punctures, the stiffness decreased by
6.47 ± 4.06 N/mm in Group A and 1.08 ± 1.32 N/mm in Group B (P= 0.006).
Despite this disparity in stiffness reduction, no significant differences in MCL
elongation were observed between the groups. Group A demonstrated an
elongation of 0.171 ± 0.180 mm, whereas Group B exhibited an elongation of
0.164 ± 0.123 mm (P=0.47). A linear relationship was identified between
stiffness reduction and the number of punctures (R2 = 0.61 ± 0.29), as well as
between ligament elongation and the number of punctures (R2 = 0.89 ± 0.09).
Conclusion: The grid-assisted pie-crusting technique, which uniformly covers the
MCL, enables precise and controlled soft tissue release. This approach provides
valuable insights for clinicians performing MCL release during TKA, facilitating
improved soft tissue balance and potentially enhancing surgical outcomes.
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Introduction

Osteoarthritis (OA) is a prevalent degenerative joint disease worldwide. It is

characterized by cartilage degradation, subchondral bone remodeling, and synovitis,

primarily affecting the hip, knee, and hand joints, often resulting in pain and restricted

mobility (1, 2). Among these conditions, knee osteoarthritis (KOA) is the leading cause

of disability associated with OA globally (3). To address this condition, total knee

arthroplasty (TKA) has become an increasingly common surgical intervention. In the
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FIGURE 1

The custom-made fixtures secured the specimens in place and
adequately aligned the knees for vertical tension.
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United States alone, projections estimate that over 1 million TKA

procedures will be performed annually within the next decade

(4). The success of TKA depends significantly on achieving

proper soft tissue balance during surgery. Alarmingly, some

studies predict that the revision rate for TKA could increase to

as high as 78%–182% by 2030 (5). Notably, complications arising

from knee imbalance and instability constitute a substantial

portion of revision cases (6).

Achieving appropriate soft tissue balance is critical for reducing

the risk of early surgical failure, enhancing postoperative mobility

and function, and improving functional scores within six months

postoperatively (4, 7). Conversely, excessive soft tissue release may

result in joint stiffness, prosthetic instability, persistent pain, and

effusion (8). Intraoperatively, optimal knee balance is defined as an

internal‒external load difference of less than 15 pounds, ensuring

symmetric tension between the medial and lateral compartments

and achieving balance in the flexion‒extension gap (9).

In TKA, common knee deformities include valgus and varus

alignment, with varus deformity being the most prevalent,

accounting for 68%–80% of cases (9–11). Despite thorough

osteophyte removal and initial soft tissue release during

conventional osteotomies, medial tension imbalances often

persist, necessitating further medial soft tissue release to achieve

precise alignment and balance. This process frequently involves

stepwise release of the superficial medial collateral ligament

(sMCL), deep medial collateral ligament (dMCL), semimembranosus

tendon, posterior medial capsule, and pes anserinus tendon (12, 13).

Ranawat et al. proposed the use of a scalpel to incrementally

puncture the taut sites of the MCL until the desired correction is

achieved in full knee extension (3). However, this method demands a

high level of technical expertise to achieve accurate gap balancing

while avoiding the overrelease of soft tissues.

Over the past fifteen years, the pie-crusting technique has been

widely adopted for lateral soft tissue release in TKA (14). This

method involves creating a series of horizontal incisions or

punctures in the lateral collateral ligament (LCL) to gradually

lengthen and adjust ligament tension. Pie crushing has since

gained popularity for its efficacy in addressing soft tissue

imbalance (15). Recently, its application has been extended to the

medial collateral ligament (MCL), offering the advantage of

preserving the structural integrity of the ligament (16). Previous

studies have validated the safety and efficacy of pie-crusting via

16-gauge and 18-gauge spinal needles (15). Notably, Kwak et al.

reported that 18-gauge spinal needles are safer than scalpels for

this procedure (17), and that the optimal spacing between

punctures should range from 3 to 5 mm (18, 19). Nevertheless,

there remains a lack of definitive research regarding the precise

puncture sites used during pie-crusting.

To address this gap, researchers developed a grid measuring

3 mm × 3 mm, designed to cover the entire surface of the MCL

uniformly. Using an 18-gauge spinal needle, this grid facilitates

precise and evenly distributed punctures. The present study aims

to evaluate the safety and effectiveness of this novel grid-based

pie-crusting technique at different sites of the medial collateral

ligament, providing a more systematic and controlled approach

to soft tissue release.
Frontiers in Surgery 02
Materials and methods

Knee joints from twelve fresh frozen cadavers were obtained

from 6 donors, with an average age of 68 years (range, 61–75).

All the samples were wrapped in gauze, stored in a −80 °C
freezer, and then thawed for 24 h at 20 °C before testing. The

knees from twelve cadaver samples were dissected, limbs showing

history of knee surgery or clinical deformity were excluded, and

median parapatellar arthrotomy along with tibial and femoral

bone cuts were performed by experienced surgeons from our

institution. The femur and tibia tissues were separated, and the

MCL was carefully dissected to ensure that the femur and tibia

were connected by independent MCL ligaments. The left and

right knee joints from the same cadaver were assigned to

different groups. We divided the knee joint samples into two

groups: Group A, which released only the central portion of the

ligament during pie-crusting, and Group B, which released only

the femoral and tibial beginning points of the MCL.

In the experimental phase, tibial and femoral distal cuts similar

to those performed in TKA were made. From thawing to

mechanical testing, all the knee joint samples were kept moist

with saline. As shown in Figure 1, the femoral and tibial distal

ends were fixed via a customized fixture attached to an Instron

AG-X precision universal testing machine. The knee joint was

aligned to achieve vertical tension.

Initially, a preloading force of 25–50 N was applied to the samples

five times. On the basis of previous studies, a force of 80 N was chosen

for this experiment (20). Moreover, a custom-made grid was used to

cover the entire surface of the ligament. The grid served as a

reference during the entire puncture process. The puncture needle

was inserted perpendicularly to the MCL fibers from the outside to

the inside. A total of twelve punctures were performed, with 4 holes

in each row and 3 holes in each column. The distance between each

hole was 3 mm, which also corresponded to the distance between

the points on the grid (Figure 2).
frontiersin.org

https://doi.org/10.3389/fsurg.2025.1566642
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Cheng et al. 10.3389/fsurg.2025.1566642
After each puncture, software was used to collect data on

ligament elongation, and the resulting deformation and stiffness

were calculated. All the data were compared to the initial length

and stiffness of the MCL. The average elongation and stiffness of

the MCL were calculated, and regression analysis was performed

to determine the correlation between the number of punctures

and the elongation rate and stiffness of the MCL. These

comparisons were performed via an independent samples t test.

The linear relationship between the number of punctures and the

elongation rate and stiffness of each sample was tested, and the

R2 value was calculated.
Results

There were no statistically significant differences in the initial

stiffness of the ligaments between the two groups (Group A:

35.71 ± 2.87 N/mm; Group B: 36.17 ± 4.96 N/mm, P = 0.42). After

the first puncture, the stiffness of the ligaments was as follows:
FIGURE 2

For accurate perforation via an 18-gauge needle, a grid covers the
surface of the MCL.

TABLE 1 MCL stiffness with an increasing number of perforations during pie-

Group A: Stiffness (N/mm)

Number of Holes 0 4 8 12
KNEE 1 32.85 25.78 25.36 25.60

KNEE 2 29.59 18.95 17.55 18.65

KNEE 3 37.72 28.87 29.36 27.87

KNEE 4 40.34 40.03 39.50 38.80

KNEE 5 33.76 25.58 25.78 26.02

KNEE 6 42.74 41.74 41.60 41.24
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Group A: 30.16 ± 8.93 N/mm; Group B: 35.33 ± 2.83 N/mm

(P = 0.20), indicating no difference in stiffness after the first

puncture. After the second puncture, there were also no differences

between the two groups: Group A: 29.86 ± 9.16 N/mm; Group B:

34.47 ± 2.77 N/mm (P = 0.26). After the third puncture, Group

A had 29.70 ± 8.61 N/mm, and Group B had 34.63 ± 2.75 N/mm

(P = 0.21), with no significant difference. However, after 12

punctures, the change in stiffness relative to the initial stiffness

significantly differed: Group A: 6.47 ± 4.06 N/mm; Group B:

1.08 ± 1.32 N/mm (P = 0.006). Table 1 shows the postpie-crusting

data for both groups. Furthermore, the average stiffness of the

ligaments in both groups decreased with increasing number of

pie-crusting punctures (Figure 3).

After the first puncture, the ligament elongation was as follows:

Group A: 0.040 ± 0.018 mm; Group B: 0.076 ± 0.114 mm (P = 0.23).

After the second puncture, Group A: 0.028 ± 0.021 mm; Group B:

0.037 ± 0.013 mm (P = 0.38). After the third puncture, Group A:

0.096 ± 0.102 mm; Group B: 0.058 ± 0.068 mm (P = 0.46). There

were no significant differences in elongation rates among the

groups after each puncture. After all the punctures, the average

elongation for Group A was 0.171 ± 0.180 mm, and for Group B, it

was 0.164 ± 0.123 mm (P = 0.47). Table 2 shows the elongation

data after pie-crusting for both groups. The average elongation

rates of the MCL in Group A and Group B were linearly related

to the number of punctures (Figure 4).

These results suggest that puncturing at different regions of the

MCL does not affect the rate of ligament elongation. However,

differences were found in the stiffness reduction after puncturing

at different locations. In addition, the number of punctures was

linearly correlated with elongation (R2= 0.89 ± 0.09) and stiffness

reduction (R2 = 0.61 ± 0.29).
Discussion

Achieving optimal soft tissue balance in total knee arthroplasty

(TKA) remains a complex and subjective challenge, yet it is crucial

for preventing early failure of the procedure (21). Preoperative

radiological assessment included standing hip-knee-ankle true

antero-posterior and true lateral radiographs, and varus/valgus

stress radiographs of the knee joint in full extension. Postoperative

evaluation is usually performed by MRI of the knee joint. The

adequacy of soft tissue release depends heavily on the surgeon’s

skill, experience, and tactile feedback. But the advent of sensor

technology has enabled surgeons to utilise real-time data, thereby
crusting.

Group B: Stiffness (N/mm)

Number of Holes 0 4 8 12
KNEE 7 37.54 36.43 33.48 34.65

KNEE 8 36.38 35.41 33.76 33.81

KNEE 9 32.35 32.35 32.24 32.58

KNEE 10 31.88 31.57 31.58 31.10

KNEE 11 37.64 37.88 37.64 37.49

KNEE 12 38.50 38.39 38.15 38.15
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FIGURE 3

Change in MCL elongation with increasing number of perforations during pie-crusting.

TABLE 2 MCL elongation with an increasing number of perforations during pie-crusting.

Group A: MCL Elongation (mm) Group B: MCL Elongation (mm)

Number of Holes 0 4 8 12 Number of Holes 0 4 8 12
KNEE 1 3.682 3.975 4.022 4.213 KNEE 7 5.399 5.439 5.492 5.563

KNEE 2 2.829 2.935 2.976 2.990 KNEE 8 5.921 5.984 6.032 6.323

KNEE 3 3.201 3.217 3.256 3.305 KNEE 9 2.845 2.868 2.880 2.998

KNEE 4 3.347 3.370 3.387 3.444 KNEE 10 2.321 2.337 2.359 2.401

KNEE 5 2.984 2.966 3.017 3.042 KNEE 11 3.632 3.674 3.709 3.751

KNEE 6 3.151 3.187 3.215 3.226 KNEE 12 2.172 2.227 2.226 2.239

FIGURE 4

Change in MCL stiffness with increasing number of perforations during pie-crusting.

Cheng et al. 10.3389/fsurg.2025.1566642
circumventing the potential for errors that may arise from subjective

judgement (22). Traditional methods, such as those proposed by

Insall, typically involve elevating the anterior fibers of the

superficial medial collateral ligament (sMCL) while preserving the

integrity of the pes anserinus tendon. However, this approach
Frontiers in Surgery 04
carries the risk of excessive release, potentially leading to medial

collateral ligament (MCL) insufficiency and subsequent joint

instability. Overrelease is a well-documented contributor to varus

or valgus deformities, and it is responsible for approximately 22%

of TKA revisions (23). Rosso et al. conducted a study that yielded
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findings which suggest that the implementation of a liner could serve

as a preventative measure against aseptic postoperative loosening or

surgical failure in cases where loosening occurs during surgery (24).

The pie-crusting technique, which was originally used for

lateral soft tissue release, has gained widespread acceptance for

medial soft tissue release because of its safety and efficacy, as

demonstrated in both clinical and cadaveric studies (15).

Dunbar’s research confirmed that selective lateral structure

release via pie-crusting effectively corrects foot valgus deformities

(25), a principle that has also been successfully applied to

the MCL (8). Consequently, pie-crusting is increasingly

recommended by surgeons for controlled soft tissue release.

Clarke et al. reported favorable outcomes in 24 cases where pie-

crusting was employed during TKA, with no evidence of

prosthetic instability or loosening after a 54-month follow-up

and significant improvements in knee scores (6). Similarly,

Bellemans et al. reported that in 35 patients treated with pie-

crusting, only one patient required a thicker implant due to

excessive release, while knee scores improved significantly from

41 to 93 (26). These findings align with the cautionary remarks

of Kwak et al., who highlighted the potential for early excessive

release during pie-crusting. No sign of unstable knee was

observed during the 1–2 year follow-up of the pie-crusting

technique performed on the MCL (15, 27).

In current study, researchers demonstrated that the grid-

assisted pie-crusting technique, which uses an 18-gauge needle,

effectively induced ligament elongation in a controlled and

reproducible manner. A statistically significant linear relationship

was observed between the number of punctures and ligament

elongation after 12 punctures. Crucially, no significant differences

in elongation were found between punctures performed at the

center of the ligament and those at the femoral and tibial

attachment points. This finding suggests that surgeons can target

the most prominent regions of the ligament during surgery

without the need to focus on a specific anatomical site. Although

this technique is relatively simple to perform, it does require a

certain amount of experience and skill on the part of the

surgeon, particularly in selecting puncture sites and controlling

the number of punctures. Surgeons new to the technique may

require some training to become proficient. Furthermore, the

absence of significant differences in elongation between groups

after each puncture indicates that the location of the pie-crusting

puncture does not have a substantial effect on ligament elongation.

A particularly noteworthy finding from our study was

the linear relationship between the number of punctures and the

degree of ligament elongation. This finding suggests that the

desired degree of elongation can be accurately controlled by

adjusting the number of punctures, making this approach

predictable and reproducible for surgeons. However, it is

important to recognize that individual variations in ligament

stiffness and deformity severity could influence the effectiveness

of this technique. It is also possible that the nature of the fresh

cadaveric MCL in this study differed from that of the

intraoperative patient, because of the low metabolic rate and

well-developed anaerobic energy-generation capacity (28).

Leading a low metabolic rate results in slow healing after injury
Frontiers in Surgery 05
(29). This constitutes one of the rationales for which excessive

ligament release is eschewed in TKA surgery. Therefore, a

preoperative assessment of the ligament’s characteristics is

essential for the successful implementation of this method.

Moreover, both experimental groups showed a progressive

decrease in stiffness with increasing number of punctures;

however, the structural integrity of the ligament was preserved.

Notably, Group A, which underwent central puncturing,

experienced a significantly greater reduction in stiffness than

Group B did. This finding suggests that puncturing the center of

the ligament may have resulted in a more pronounced impact on

ligament stiffness. In contrast, puncturing near the femoral and

tibial attachment sites seems to achieve elongation with less

disruption to the ligament’s structural integrity. These findings

imply that targeting the peripheral regions of the ligament could

help minimize the risk of postoperative instability. However, as

our study focused solely on the MCL, further research is needed

to assess whether similar results would be observed in clinical

settings involving additional tissues around the knee joint.

Results also highlight the importance of customizing the pie-

crusting technique to individual patient characteristics. Variations

in ligament width and fiber composition may influence both

elongation and stiffness outcomes. Previous studies have shown

that narrower ligaments tend to elongate more and have lower

failure loads than wider ligaments under the same number of

punctures (30). This underscores the necessity of preoperative

evaluation to optimize soft tissue release strategies for each

patient. Clinicians are also required to fully inform patients

about treatments, treatment alternatives and major risks prior to

surgery (31).

Furthermore, advancements in robotic technology not only

offer a useful tool for revising UKA to TKA, but the potential

for more precise ligament release tailored to the individual’s knee

anatomy (32). Preoperative 3D scanning can aid in determining

the optimal implant position and size (33), whereas robotic

systems enable intraoperative, quantitative assessment of soft

tissue balance, allowing for precise adjustments to restore optimal

joint function (34). Early studies have shown promising results in

the use of robotic systems for knee joint gap balancing,

alignment restoration, and postoperative functional improvement

(35–36). A recent study suggests that patients’ range of motion

and subjective and objective scores improved significantly when

advanced robotic systems were used to treat severe knee

deformities (37). However, robotic platforms remain expensive

and require extensive training, making them inaccessible for

many surgeons. Consequently, for those unable to access such

technology, more effective manual methods, such as grid-assisted

pie-crusting, provide a viable and cost-effective alternative for

achieving soft tissue balance (38).

Several limitations of this study should be acknowledged. First,

the use of freshly frozen cadaveric samples introduces potential

variability, as multiple freeze‒thaw cycles at −80 °C could alter

tissue properties. Although only one freeze‒thaw cycle was used

in this study, the impact on the samples is believed to be

minimal, also impossible to study the healing of the ligaments

(39, 40). Additionally, the sample size of 12 knee joints, which
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can be divided into two groups, is relatively small for clinical

studies, although small sample sizes are common in

biomechanical research. The pie-crusting technique in this study

was applied to normal knee joints; thus, its effects on patients

with varus or valgus deformities were not evaluated. Further

research is needed to determine whether similar results would be

obtained in clinical patients. Additionally, the study did not

account for variations in age or sex, which may affect the relative

stiffness of ligaments. Since the MCL was the only structure

preserved in this study, the generalizability of the findings to

patients undergoing total knee arthroplasty with a complete

prosthetic knee structure is limited. And the implementation of

the grid-assisted pie-crusting technique is not without its

challenges. Surgeons must navigate the complexities of tissue,

including tissue thickness, vascularity and surrounding structures.

This can make precise grid placement and uniform puncturing

more difficult compared to cadaveric studies. Finally, all the

experiments were conducted with the knee in a fully extended

position, and the effects of pie-crusting in a flexed knee position

were not explored. Future studies should assess the impact of

pie-crusting on soft tissue release during knee flexion, as this

may further refine intraoperative soft tissue balancing techniques.

In conclusion, present study demonstrated that the grid-

assisted pie-crusting technique for MCL release is both safe and

effective. It offers a controlled method of gradually elongating the

MCL without compromising the structural integrity of the

ligament, thus minimizing the risk of postoperative instability

associated with excessive release. The technique also provides

flexibility, allowing surgeons to select the optimal puncture sites

on the basis of the individual patient’s anatomical features. While

robotic systems offer advanced capabilities for soft tissue

balancing, the grid-assisted pie-crusting technique remains a

cost-effective and accessible alternative with significant clinical

value. Further research is needed to explore its application in

clinical patients, particularly those with knee deformities and

during knee flexion, to better refine and optimize this

promising technique.
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