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Deep learning signature to
predict postoperative anxiety in
patients receiving lung cancer
surgery
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This study aims on establishing and validate a deep learning signature based on
magnetic resonance imaging (MRI) to predict postoperative anxiety in patients
receiving lung cancer surgery. In the current study, 202 patients receiving lung
cancer surgery were included. Preoperative MRI-T1WI images were collected
to train the deep learning signature utilized the ResNet-152 algorithm. The
relationships between clinical variables and postoperative anxiety were
explored via Logistic regression and the predictive performances of the
developed deep learning signature were evaluated via receiver operating
characteristic analysis. Larger tumor size [odds ratio (OR), 2.044; 95%
confidence interval (CI), 1.736–3.276; p= 0.002] and occurrence of lymph
node metastasis (OR, 2.078; 95% CI, 1.023–3.221; p= 0.043) were revealed as
independent predictors for postoperative anxiety. With the increase of deep
learning scores, more patients experiencing postoperative anxiety were
identified. Moreover, our deep learning signature yielded areas under the
curve of 0.865 (95% CI, 0.800–0.930) and 0.822 (95% CI, 0.695–0.950) to
predict postoperative anxiety. Therefore, our deep learning signature could
help identify lung cancer patients with high risks of postoperative anxiety.
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Introduction

Globally, lung cancer ranks among the most common solid tumors and is a leading

cause of cancer mortality. Its development is strongly associated with various risk

factors, such as tobacco use, chronic obstructive pulmonary disease, and genetic

predisposition (1–3). While advancements in radiotherapy, targeted treatments, and

immunotherapy have partially enhanced clinical outcomes for lung cancer patients

(4–6), mental health challenges remain a significant concern, adversely impacting their

quality of life and survival rates (7, 8). Consequently, investigating the psychological

issues faced by these patients is essential for optimizing their care.

Anxiety is a widespread mental health condition that negatively influence lung cancer

patient outcomes. These disorders affect between 20.9% and 57.1% of individuals with

lung cancer (9–11) and have been identified as indicators of poorer survival (12).

Research indicates that post-surgical lung cancer patients experience anxiety influenced

by factors like gender, marital status, complications, and aggressive tumor

characteristics, all of which correlate with worse prognoses. Hence, precise recognition
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of patients who have the risk to experience anxiety after surgery is

crucial for personalized management of lung cancer.

Deep learning-based radiomics, which extracts detailed features

from medical images, offers a promising tool for tumor diagnosis,

prognosis, and treatment planning (13–16). We hypothesized that

the deep learning technique could capture features associated with

postoperative anxiety from medical imaging, and further quantify

the risks of postoperative anxiety to optimize the management of

lung cancer. Therefore, this study purposes to develop and

validate an imaging signature to predict anxiety based on the

deep learning algorithm in patients after lung cancer surgery.
Materials and methods

Study population and data collection

The study obtained approval from the institutional review

boards and ethics committees at Ningbox First Hospital. Patients

undergoing lung cancer surgery between January 2024 and

December 2024 were consecutively recruited. Clinicopathological

information was extracted from electronic medical records.

Anxiety was evaluated 3 days post-surgery using the Hospital

Anxiety and Depression Scale-Anxiety (HADS-A), where scores

range from 0 to 21, and a score≥ 8 signifies anxiety (17).

Preoperative brain magnetic resonance imaging (MRI) scans,

conducted within 1 week before surgery, were obtained from the
FIGURE 1

Flow chart illustrating study design. HADS-A, Hospital Anxiety and Depressi
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picture archiving and communication system. The study’s design

is depicted in Figure 1.
Deep learning procedures

All MRI-T1WI scans were download as DCM format. The

personal information of patients in MRI images including name,

medical number and hospital name were eliminated and images

were transformed into NIfTI format by using an in-house

software. In order to analyze images in an isotropic voxel size, all

images were resampled to the voxel size of 1 mm× 1 mm× 1 mm.

Brain MRI NII format images were segmented using the

MedSAM2 algorithm (18) and the segmented data were reviewed

by a senior radiologist to ensure the accuracy of segmentation.

Each segmented MRI was annotated by a specific anxiety label.

Our deep learning model was developed using ResNet-152

(Figure 2). The input consisted of segmented MRI scan data, and the

algorithm generated probability outputs for various categories. The

entire cohort was divided in to a training and validation set at the

ratio of 7:3. The Softmax cross-entropy loss between predictions and

ground truth labels was minimized using a momentum optimizer,

with a batch size of 64 and an initial learning rate of 0.01. The

learning rate was reduced every 300 iterations using an exponential

decay rate of 0.99. Data augmentation techniques included random

rotations (0°, 90°, 180°, 270°) along the Z-axis and random flips

across the X, Y, and Z axes. L2 regularization was applied to mitigate
on Scale-Anxiety.
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FIGURE 2

Architecture of the deep learning algorithm.
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overfitting. Training concluded after 3,000 iterations, with the model

exhibiting the lowest loss being selected. This AI model was

specifically designed to classify anxiety vs. non-anxiety cases.

Training was conducted on a system equipped with an NVIDIA

GTX 4070 GPU (NVIDIA, Santa Clara, CA) and leveraged the

TensorFlow framework (Google, Mountain View, CA). Python 3.6.4

was used for all programming tasks.
Statistical analysis

Baseline data were summarized as frequencies (percentages) for

categorical variables and means ± standard deviations for numerical

variables. Comparisons were made using the Chi-square test for

categorical data and the t-test for numerical data. Model

performance was evaluated using receiver operating characteristic

(ROC) curves, with areas under the curve (AUCs) calculated for

further analysis. Univariate and multivariate logistic regression

analyses were performed to identify clinical predictors for anxiety,

with a clinical model constructed using backward elimination. The

performance metrics including sensitivity, specificity, positive

predictive value (PPV), negative predictive value (NPV), and

accuracy were determined by the maximum Youden index in the

training set. All statistical analyses were conducted using R

(version 4.3.1) and Python (version 3.6.4), with a p-value <0.05

considered statistically significant.
Results

Clinicopathologic characteristics

Table 1 summarizes the clinicopathological characteristics of the

study population. The cohort comprised 94 males (46.5%) and 108
Frontiers in Surgery 03
females (53.5%), with an average age of 59.4 years. A history of

smoking was reported in 30 patients (14.8%). Adenocarcinoma was

the most common histological type, representing 81.2% (n = 164)

of cases. Tumors were predominantly located on the right side

(57.9%, n = 117), with an average size of 1.8 cm. Lymph node

metastasis was detected in 22 patients (10.9%). Based on the

HADS-A scale, 80 individuals (39.6%) were categorized as having

anxiety. Subgroup analysis comparing the training (n = 141) and

the validation groups (n = 61) revealed no statistically significant

differences between the two groups.
Variables associated with postoperative
anxiety

In the univariable analyses (Table 2), larger tumor size [odds

ratio (OR), 2.334; 95% confidence interval (CI), 1.546–3.479;

p = 0.003] and occurrence of lymph node metastasis (OR, 1.999;

95% CI, 1.133–3.528; p = 0.017) were significantly associated with

postoperative anxiety. Similarly, in the multivariable analyses, larger

tumor size (OR, 2.044; 95% CI, 1.736–3.276; p = 0.002) and

occurrence of lymph node metastasis (OR, 2.078; 95% CI, 1.023–

3.221; p = 0.043) independently predicted postoperative anxiety.
Predictive performance of deep learning
signature

The distributions of the deep learning score were illustrated in

Figure 3, with the increase of deep learning scores, more patients

experiencing postoperative anxiety were observed in the training

and validation sets. As displayed in Figure 4, in the training set,

the ability of the deep learning signature for predicting

postoperative anxiety yielded an AUC of 0.865 (95% CI, 0.800–
frontiersin.org
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TABLE 1 Baseline characteristics of included patients.

Characteristics Entire cohort (n = 202) Training (n = 141) Validation (n= 61) p value
Age (years), mean ± SD 59.1 ± 11.0 58.9 ± 11.8 59.6 ± 9.2 0.696

Sex, n (%) 0.298
Male 94 (46.5) 69 (48.9) 25 (41.0)

Female 108 (53.5) 72 (51.1) 36 (59.0)

Smoking, n (%) 1.000
Ever 30 (14.8) 21 (14.9) 9 (14.7)

Never 172 (85.2) 120 (85.1) 52 (85.3)

Histology, n (%) 0.395
Squamous cell carcinoma 24 (11.6) 19 (13.5) 5 (8.2)

Adenocarcinoma 164 (81.2) 111 (78.7) 53 (86.9)

Others 14 (6.9) 11 (7.8) 3 (4.9)

Location, n (%) 0.147
Left 85 (42.1) 61 (45.4) 21 (34.4)

Right 117 (57.9) 77 (54.6) 40 (65.6)

Tumor size, mean ± SD 1.8 ± 0.7 1.8 ± 0.7 1.9 ± 0.7 0.293

Lymph node metastasis, n (%) 0.867
No 180 (89.1) 125 (88.7) 55 (90.2)

Yes 22 (10.9) 16 (11.3) 6 (9.8)

Anxiety assessed by HADS-A, n (%) 0.960
Yes 80 (39.6) 56 (39.7) 24 (39.3)

No 122 (60.4) 85 (60.3) 37 (60.7)

Surgical approach, n (%) 0.865
Thoracoscopic 196 (97.0) 137 (97.2) 59 (96.7)

Thoracotomy 6 (3.0) 4 (2.8) 2 (3.3)

HADS-A, Hospital Anxiety and Depression Scale-Anxiety; SD, standard deviation.

TABLE 2 Logistic analyses for postoperative anxiety.

Variables Anxiety

Univariable Multivariable

OR (95% CI) p
value

OR (95% CI) p
value

Age 0.994 (0.969–1.020) 0.625

Sex (Male) 1.108 (0.629–1.951) 0.723

Smoking history
(Ever)

0.813 (0.367–1.803) 0.611

Histology
(Adenocarcinoma)

0.539 (0.141–2.033) 0.359

Location (Left) 1.058 (0.597–1.874) 0.847

Tumor size 2.334 (1.546–3.479) 0.003 2.044 (1.734–3.276) 0.002

Lymph node
metastasis (Yes)

1.999 (1.133–3.528) 0.017 2.078 (1.023–3.221) 0.043

Surgical approach
(Thoracoscopic)

0.943 (0.903–1.102) 0.878

OR, odds ratio; CI, confidence interval.
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0.930). In addition, in the validation set, the deep learning

signature achieved an AUC of 0.822 (95% CI, 0.695–0.950). The

performance metrics were detailed in Table 3, the sensitivity,

specificity, PPV, NPV, and accuracy of the deep learning

signature was 82.1%, 85.6%, 79.3%, 88.0%, and 84.4% in the

training set, and 83.3%, 83.8%, 76.9%, 88.6%, and 83.6% in the

validation set. Moreover, as shown in Figure 5, the calibration

curve and decision curve analyses indicated that the developed
Frontiers in Surgery 04
deep learning signature yielded satisfactory clinical usefulness in

both training and validation set.
Discussion

Research indicates that anxiety is more common among lung

cancer patients compared to healthy individuals (8, 11, 19). This

trend persists even after surgery, with postoperative lung cancer

patients showing higher anxiety levels than their healthy

counterparts (20). In this investigation, the HADS-A scale was

employed to assess anxiety in postoperative lung cancer patients.

Additionally, a deep learning model was developed using brain

MRI data, demonstrating that patients with higher deep learning

scores exhibited elevated anxiety rates based on HADS-A. The

model achieved an AUC of 0.822 in the validation set for

predicting postoperative anxiety.

Given the significant proportion of anxiety in patients suffered

from lung cancer, identifying risk factors is crucial for improving

clinical management (9, 11). Prior studies have suggested that

younger, non-surgical lung cancer patients are more prone to

anxiety (11), while others have linked anxiety to dyspnea, severe

pain, and diabetes (21). However, these studies often lacked

comprehensive parameters, such as surgical details and tumor

stage. To address this gap, our study incorporated a broader

range of variables and found that tumor size and lymph node

metastasis were independently associated with increased anxiety
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FIGURE 3

The distribution of the deep learning score and anxiety in the (A) training and (B) validation sets.

FIGURE 4

The ROC curves of the deep learning signature for predicting anxiety in the training and validation sets.
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TABLE 3 Performance metrics of the deep learning signature.

Data set Sensitivity Specificity PPV NPV Accuracy
Training set 82.1% 85.6% 79.3% 88.0% 84.4%

Validation set 83.3% 83.8% 76.9% 88.6% 83.6%

PPV, positive predictive value; NPV, negative predictive value.

FIGURE 5

The (A) calibration curves and (B) decision curves of the deep learning signature.

Ji et al. 10.3389/fsurg.2025.1573370
risk in postoperative patients. This may be attributed to pain and

discomfort from advanced disease.

Anxiety adversely affects cancer prognosis, with studies linking

it to higher mortality in breast and gastric cancer patients (22).

Similarly, lung cancer patients with anxiety experience reduced

survival rates (8, 12). Early identification of postoperative anxiety

is therefore vital for optimizing treatment outcomes. Radiomics,

which extracts detailed features from medical images, offers a

promising tool for tumor diagnosis, prognosis, and treatment

planning (13–16). However, this study has limitations. First, its

single-center design limits the generalizability of the deep

learning model, as external validation is lacking. Second, the

dataset may introduce selection bias and confounding factors.

Although multivariable regression was used to adjust for

predictors, some variables’ impacts remain unaddressed. Future

studies with larger, more diverse cohorts are needed to confirm

these findings and enhance the model’s robustness.
Conclusion

Our deep learning signature harbor the potential to serve as an

effective biomarker to predict postoperative anxiety in patients

receiving lung cancer surgery.
Frontiers in Surgery 06
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