
EDITED BY  

Roberto Colasanti,  

Maurizio Bufalini Hospital, Italy

REVIEWED BY  

Carlos Makoto Miyauchi,  

Tohoku University, Japan  

Ziyad Makoshi,  

El Paso Children’s Hospital, United States  

Maximilian-Niklas Bonk,  

Technical University of Munich, Germany

*CORRESPONDENCE  

Liang Dong  

dongliang@tzc.edu.cn

RECEIVED 23 April 2025 

ACCEPTED 01 October 2025 

PUBLISHED 17 October 2025

CITATION 

Jiang Z, Zhang R, Weng D, Lv Y and Dong L 

(2025) Development and validation of a 

predictive model for postoperative functional 

recovery in patients with spontaneous 

intracerebral hemorrhage.  

Front. Surg. 12:1589876. 

doi: 10.3389/fsurg.2025.1589876

COPYRIGHT 

© 2025 Jiang, Zhang, Weng, Lv and Dong. 

This is an open-access article distributed 

under the terms of the Creative Commons 

Attribution License (CC BY). The use, 

distribution or reproduction in other forums is 

permitted, provided the original author(s) and 

the copyright owner(s) are credited and that 

the original publication in this journal is cited, 

in accordance with accepted academic 

practice. No use, distribution or reproduction 

is permitted which does not comply with 

these terms.

Development and validation 
of a predictive model for 
postoperative functional 
recovery in patients with 
spontaneous intracerebral 
hemorrhage

Ziming Jiang, Ruijuan Zhang, Danfeng Weng, Yuhang Lv and  

Liang Dong*
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Background: This study aimed to develop and validate a prognostic nomogram 

for predicting 3-month functional recovery in patients undergoing surgery for 

spontaneous intracerebral hemorrhage (ICH).

Methods: A retrospective cohort of 289 patients diagnosed with spontaneous 

intracerebral hemorrhage (ICH) underwent surgical management at the 

Intensive Care Unit of Taizhou Central Hospital between January 2021 and 

December 2024 was enrolled. Patients were randomly allocated into a training 

set (n = 203, 70%) and validation set (n = 86, 30%). A prognostic nomogram 

integrating imaging characteristics and clinical parameters was developed to 

predict 90-day functional recovery (modified Rankin Scale ≤2). Feature 

selection employed the Boruta algorithm, followed by multivariable logistic 

regression. Model discrimination was quantified by area under the ROC curve 

(AUC), while calibration curve was performed to evaluate model performance. 

Clinical utility was evaluated through decision curve analysis (DCA).

Results: The multivariable model retained six significant predictors: midline shift 

(OR:2.09, 95%CI: 1.56–2.79), hematoma volume (OR:1.10, 95%CI: 1.05–1.15), 

age (OR:1.03, 95%CI: 1.01–1.05), mean arterial pressure (OR:0.93, 95%CI: 

0.89–0.98), body mass index (OR:0.78, 95%CI: 0.66–0.92), and Glasgow 

Coma Scale (GCS) score (OR:0.92, 95%CI: 0.79–1.06). Discriminative 

performance was robust, with area under the receiver operating characteristic 

curve (AUC) of 0.90 (95% CI: 0.85–0.96) in the training set and 0.83 (95% CI: 

0.73–0.93) in the validation set. Calibration plots demonstrated excellent 

agreement between predicted and observed probabilities. DCA confirmed the 

clinical value of the model and its good impact on actual decision-making.

Conclusion: This study developed and validated a pragmatic prognostic 

nomogram for spontaneous ICH patients undergoing surgical intervention, 

integrating six clinically actionable predictors: midline shift, hematoma 

volume, age, MAP, BMI, and GCS. The model demonstrated robust 

discriminative capacity, calibration and clinical applicability, which provides 

evidence-based support for the formulation of individualized rehabilitation 

programs and the optimization of medical resources.
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Introduction

Spontaneous intracerebral hemorrhage (ICH), defined as acute 

extravasation of blood into the brain parenchyma secondary to 

cerebrovascular rupture, is recognized as the most lethal form of 

acute stroke (1), carrying an early mortality rate of 30%–40% 

(2). In the United States, ICH accounts for approximately 10% 

of the estimated 795,000 annual stroke cases (3). Despite 

significant advancements in minimally invasive surgical 

techniques in recent years, postoperative functional recovery in 

patients demonstrates marked heterogeneity. Notably, no clinical 

outcome improvement was observed in preoperatively comatose 

patients undergoing surgical intervention (4). This prognostic 

uncertainty poses substantial challenges for clinical decision- 

making, rehabilitation resource allocation, and physician-patient 

communication. Current prognostic scoring systems (e.g., ICH 

Score, FUNC Score) incorporating parameters such as age, 

hematoma volume, and Glasgow Coma Scale (GCS) (5, 6), 

demonstrate significant limitations when applied to 

postoperative functional recovery prediction. Most existing 

models were developed using Western population datasets and 

have demonstrated suboptimal performance during external 

validation in Asian cohorts (7).

Prediction models are designed to forecast future outcomes 

based on a set of baseline predictors, thereby facilitating medical 

decision-making and improving patient prognostication (8), 

These models are increasingly employed in contemporary 

practice to assess and predict clinical endpoints. The publication 

of transparent reporting guidelines for prediction model studies 

[TRIPOD (Transparent Reporting of a Multivariable Prediction 

Model for Individual Prognosis or Diagnosis) Statement] (9), 

has established a standardized framework for developing 

prediction models with enhanced methodological rigor and 

clinical utility.

The primary objective of this retrospective study was to 

develop a predictive model for postoperative functional recovery 

in patients with spontaneous intracerebral hemorrhage (ICH). 

We sought to identify critical risk factors potentially in@uencing 

clinical outcomes. Utilizing clinical characteristics of ICH 

patients as predictors, a prognostic nomogram was constructed 

to facilitate individualized outcome assessment.

Methods

Data source

Patient data were retrospectively extracted from the electronic 

medical records of Taizhou Central Hospital. This study was 

approved by the Institutional Review Board (IRB) of Taizhou 

Central Hospital (Approval No.: 2025l-03-054). Informed 

consent was waived by the IRB due to the retrospective nature 

of the study.

We included consecutive patients meeting the 

following criteria: 

1. Diagnosis: Spontaneous intracerebral hemorrhage (ICH) 

confirmed by non-contrast CT or MRI within 24 h of 

symptom onset.

2. Intervention: Underwent surgical management (hematoma 

evacuation or decompressive craniectomy) within 24 h of 

symptom onset.

3. Timeframe: Admitted between January 2021 and December 

2024.

Exclusion criteria were: 

1. Age <18 years

2. Delayed diagnosis (>24 h from symptom onset to imaging)

3. Secondary hemorrhage due to trauma, tumor

4. Palliative care-only approach per family request

5. Missing data exceeding 20% of key variables

6. Active malignancy or severe hepatic/renal insufficiency

The study @owchart detailing enrollment is provided in Figure 1.

Data collection

1. Demographic Data: Age, sex, BMI, Smoking, 

alcohol consumption

2. Medical history: hypertension, diabetes, anticoagulant use

3. Neuroimaging Assessment: Hemorrhage location 

(supratentorial yes/no), Hematoma volume calculated via 

ABC/2 formula (10), Midline shift measurement (the 

greatest degree of shift, millimeters) on axial CT

4. Physiological Parameters: Glasgow Coma Scale (GCS), 

temperature, SBP, DBP, MAP, heart rate, respiratory rate, 

SpO2

5. Laboratory Profiling: pH, PaO2, PaCO2, white blood cell, 

hemoglobin, platelet, potassium, sodium, blood urea 

nitrogen, creatinine, international normalized ratio, 

prothrombin time

Outcome assessment

Functional outcomes were evaluated using the modified 

Rankin Scale (mRS) through structured telephone interviews at 

3-month follow-up. Outcomes were dichotomized as favorable 

(mRS score ≤2) or poor (mRS score >2).

Statistical analysis

Given the retrospective design of this study, a priori sample 

size calculation was not performed. Continuous variables were 

expressed as mean ± standard deviation (SD) when normally 

distributed (assessed by Shapiro–Wilk test), or median with 

interquartile range (IQR, 25th–75th percentiles) for skewed 

distributions. Categorical variables were reported as percentages 

(counts/total counts). For continuous variables, we perform a 

t-test or a Mann–Whitney U-test to compare between groups. 

For categorical variables, we use the chi-square test or Fisher’s 
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exact test. Variables with >20% missing data were excluded 

from multivariable analysis. For variables with ≤20% 

missingness, multiple imputation was implemented via the 

MICE package (Multivariate Imputation by Chained 

Equations) (11). Collinearity among predictors was 

systematically evaluated visualized in a correlation heatmap 

(Figure 2). All analyses were performed using R Statistical 

Software (v4.4.2) and Python (v3.9).

Results

Baseline characteristics

This study ultimately included 289 patients with spontaneous 

intracerebral hemorrhage (ICH), among whom 65 patients 

achieved favorable outcomes (mRS ≤ 2), and 224 patients had 

poor outcomes (mRS > 2). Baseline characteristics such as 

alcohol consumption history (p = 0.069), hypertension 

(p = 0.051), diabetes (p = 0.091), supratentorial hemorrhage 

location (p = 0.57), and anticoagulant use (p = 0.69) showed no 

significant differences between the groups. Physiological 

parameters, including SBP (p = 0.723), heart rate (p = 0.38), 

respiratory rate (p = 0.086), pH (p = 0.765), PaCO2 (p = 0.297), 

PaO2 (p = 0.329), and laboratory markers such as white blood 

cell count (p = 0.219), hemoglobin (p = 0.235), and serum 

sodium (p = 0.065), also demonstrated no significant intergroup 

differences. However, the poor prognosis group exhibited 

statistically significant differences (p < 0.05) in multiple critical 

predictors compared to the favorable prognosis group. The poor 

prognosis group was older, had a higher proportion of females, 

and showed elevated smoking history prevalence; larger 

hematoma volume and greater midline shift; lower BMI and 

GCS scores, higher body temperature, and reduced mean 

arterial pressure, diastolic blood pressure, and oxygen saturation; 

lower platelet counts, elevated potassium, blood urea nitrogen, 

creatinine, international normalized ratio, and prothrombin 

time (Table 1).

Feature selection

The cohort was randomly stratified into training (70%) and 

validation (30%) sets. Feature selection was performed in the 

training set using the Boruta algorithm, a robust wrapper 

method based on random forest classification. Unlike 

conventional feature selection approaches that optimize for 

model-specific performance, Boruta identifies features with 

intrinsic relevance to the outcome variable by iteratively 

comparing original attributes to shadow features (random 

permutations) (12). From 31 candidate predictors, Boruta 

selected five features with permutation importance: midline 

shift, hematoma volume, age, MAP, BMI (Figure 3). It is well 

established that the GCS is a classical tool for assessing the level 

of consciousness in patients with brain injury and is widely used 

for prognostic evaluation in neurological disorders such as 

spontaneous intracerebral hemorrhage (13–15). Numerous 

clinical studies have demonstrated a close association between 

FIGURE 1 

Flowchart of the study.
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GCS scores and adverse outcomes in patients with cerebral 

hemorrhage (16–18). In clinical practice, GCS also serves as a 

critical reference for physicians in evaluating the severity of a 

patient’s condition and guiding clinical decision-making. The 

ultimate goal of predictive modeling is not only to achieve 

statistical significance but also to ensure clinical interpretability 

and applicability (19). Therefore, despite the lack of statistical 

significance between GCS and prognosis in our multivariate 

regression analysis (p = 0.25), we have included GCS in the final 

model, acknowledging its established clinical relevance. In the 

Supplementary Material, we further compared model 

performance between versions incorporating and excluding the 

GCS. The final multivariable logistic regression model included 

these six predictors.

Nomogram

In the training cohort (n = 202), the six selected predictors: 

midline shift, hematoma volume, age, MAP, BMI, and GCS, 

were incorporated into a multivariable logistic regression 

model. The final model demonstrated the following adjusted 

odds ratios (aORs) with 95% confidence intervals (Table 2): 

BMI (OR: 0.78; 95%CI 0.66–0.92), midline shift (OR: 2.09; 

95%CI 1.56–2.79), hematoma volume (OR: 1.10; 95%CI 1.05– 

1.15), age (OR: 1.03; 95%CI 1.01–1.05), MAP (OR: 0.93; 95% 

CI 0.89–0.98), GCS (OR: 0.92; 95%CI 0.79–1.06). A clinical 

nomogram integrating these predictors was constructed, 

assigning weighted points proportional to each variable’s β- 

coefficient (Figure 4).

Model performance evaluation

Discrimination

The prognostic model derived from multivariable logistic 

regression was rigorously evaluated using receiver operating 

characteristic (ROC) curve analysis. In the training cohort, the 

model demonstrated exceptional discriminative ability with an 

FIGURE 2 

Correlation heatmap of variables.
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area under the curve (AUC) of 0.90 (95% CI: 0.85–0.96). When 

applied to the validation set, the AUC remained clinically 

significant at 0.83 (95% CI: 0.73–0.93), showing a moderate yet 

meaningful predictive capacity despite expected performance 

attenuation (Figure 5).

Calibration

Calibration performance was rigorously evaluated using 

calibration plots with 95% confidence intervals, comparing 

predicted probabilities of poor outcome against observed 

frequencies. Perfect calibration aligns with the 45-degree 

reference line (intercept = 0, slope = 1). Visual inspection 

revealed satisfactory agreement between predictions and 

observations in both sets (Figure 6).

Decision curve analysis

To evaluate the model’s clinical practicality, decision curve 

analysis (DCA) was conducted by quantifying the net benefit 

across varying threshold probabilities, the minimum predicted 

risk at which intervening is deemed justified. Unlike 

conventional metrics (e.g., AUC), DCA directly re@ects 

clinical utility by weighing benefits (true positives) against 

harms (false positives) through the formula. By plotting 

clinical decision curves, we found that the model exhibited a 

higher net benefit within threshold probability ranges of 4%– 

95% and 5%–94% for the training and validation sets, 

respectively (Figure 7). Decision curve analysis demonstrates 

that the use of this nomogram provides a higher net benefit 

than treating all or no patients, across a range of clinically 

relevant threshold probabilities. For example, if a clinician 

wishes to intensify rehabilitation for patients with a predicted 

risk above 30%, the nomogram can identify appropriate 

candidates, thereby optimizing resource allocation and 

improving patient outcomes.

Discussion

In this study, poor functional outcome was defined as mRS 

score >2, while favorable outcome was defined as mRS score ≤2. 

Our final model identified six robust predictors of postoperative 

functional recovery: midline shift, hematoma volume, age, 

MAP, BMI, and GCS score. Notably, this prognostic tool 

integrating both neuroimaging features (midline shift, 

hematoma volume) and MAP with traditional clinical 

variables in spontaneous ICH surgical cohorts. This provides 

clinicians with a valuable tool for prognostic assessment in 

such patients, enhancing the precision of postoperative 

outcome prediction.

According to the Monro-Kellie doctrine (20), the total volume 

of intracranial contents (brain tissue, blood, and cerebrospinal 

@uid) remains constant. An increase in hematoma volume or 

elevated intracranial pressure may lead to brain tissue 

displacement (such as midline shift) and impaired neurological 

function (e.g., decreased GCS score). Midline shift, hematoma 

volume, and age have been consistently identified as key 

prognostic determinants in patients with intracerebral 

hemorrhage (5, 21, 22), primarily mediated through the mass 

effect resulting from the combined impact of parenchymal 

destruction and mechanical compression by the hematoma (4, 

23). Yang et al. (24) demonstrated that a midline shift >4 mm 

represents the optimal cutoff value significantly associated with 

poor outcomes in ICH patients. Hematoma volumes exceeding 

30 ml showed statistically significant correlation with adverse 

outcomes, while the combination of hematoma volume >60 ml 

and GCS score <8 predicted 30-day mortality rates exceeding 

TABLE 1 Baseline characteristics.

Characteristics Favorable 
prognosis 

group (N = 65)

Poor 
prognosis 

group 
(N = 224)

P-value

Age (years) 51.90 [31.66, 79.56] 69.80 [51.33, 83.27] 0.002

Male (%) 50 (76.92) 138 (61.61) 0.023

BMI (kg/m2) 27.18 ± 3.36 25.27 ± 2.44 <0.001

Alcohol (%) 34 (52.31) 145 (64.73) 0.069

Cigarette (%) 33 (50.77) 160 (71.43) 0.002

Hypertension (%) 55 (84.62) 163 (72.77) 0.051

Diabetes (%) 55 (84.62) 167 (74.55) 0.091

Supratentorial (%) 54 (83.08) 179 (79.91) 0.570

Anticoagulation (%) 13 (20.00) 50 (22.32) 0.690

Hematoma volume 

(mL)

36.54 [33.45, 41.82] 45.68 [39.27, 52.08] <0.001

Midline shift (mm) 3.29 [1.97, 5.35] 5.09 [4.25, 6.35] <0.001

GCS 11.00 [7.00, 13.00] 8.50 [7.00, 11.00] 0.011

Temperature (°C) 37.23 [36.86, 37.57] 36.92 [36.43, 37.58] 0.008

SBP (mmHg) 119.11 [113.03, 

127.77]

121.07 [108.58, 

131.69]

0.723

MAP (mmHg) 80.69 [75.83, 87.05] 78.67 [71.65, 84.53] 0.017

DBP (mmHg) 64.87 ± 9.65 60.94 ± 10.76 0.006

HR (/min) 82.21 [73.83, 96.29] 87.46 [74.76, 102.61] 0.380

RR (/min) 18.44 [16.50, 20.90] 19.07 [16.87, 22.50] 0.086

Spo2 (%) 99.12 [98.25, 99.82] 98.63 [96.84, 99.63] 0.013

Ph 7.38 [7.32, 7.44] 7.38 [7.30, 7.44] 0.765

PaCO2 (mmHg) 41.00 [35.50, 45.00] 38.00 [34.00, 44.62] 0.297

PaO2 (mmHg) 190.00 [144.50, 

260.00]

187.00 [129.25, 

262.62]

0.329

Wbc (*109/L) 11.95 [9.05, 15.30] 12.86 [9.39, 16.08] 0.219

Hb (g/L) 11.36 ± 1.86 11.04 ± 2.18 0.235

Plt (*109/L) 192.50 [161.50, 

227.50]

169.50 [134.50, 

227.50]

0.037

K (mmol/L) 4.00 [3.65, 4.40] 4.20 [3.80, 4.55] 0.044

Na (mmol/L) 140.00 [138.00, 

142.00]

141.00 [138.00, 

144.00]

0.065

Bun (mg/dL) 14.00 [11.50, 19.00] 18.50 [14.00, 26.00] <0.001

Cr (mg/dL) 0.90 [0.75, 1.10] 1.10 [0.80, 1.45] 0.006

INR 1.20 [1.10, 1.35] 1.25 [1.15, 1.55] 0.002

PT (s) 12.85 [12.10, 14.45] 13.97 [12.60, 17.11] 0.003

BMI, body mass index; GCS, Glasgow Coma Scale; SBP, systolic blood pressure; MAP, mean 

arterial pressure; DBP, diastolic blood pressure; HR, heart rate; RR, respiratory rate; Hb, 

hemoglobin; Plt, platelet; INR, international normalized ratio; PT, prothrombin time.
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90% (5). Early-stage blood pressure control emerges as a critical 

therapeutic intervention to prevent hematoma expansion, with 

acute-phase antihypertensive therapy showing a modest but 

significant effect in reducing hematoma growth (25). Recent 

evidence (26) confirms that achieving and maintaining systolic 

blood pressure (SBP) within 120–130 mmHg during the initial 

24-hour window demonstrates optimal safety and potential 

functional benefits. Given hypertension’s status as a 

predominant etiological factor in ICH pathogenesis, our findings 

revealing the association between MAP and postoperative 

functional recovery. Notably, higher MAP levels demonstrated a 

significant protective correlation, aligning with conventional 

cerebral perfusion pressure (CPP) maintenance targets (27). 

Specifically, maintaining higher MAP was associated with in 

favorable outcomes. These results underscore the imperative for 

implementing dynamic hemodynamic monitoring protocols 

throughout the perioperative period. In our cohort, elevated 

body mass index (BMI) demonstrated a significant protective 

association with functional outcomes (OR 0.78; 95%CI 0.66– 

0.92). This finding aligns with the emerging concept of the 

“obesity paradox” in neurocritical care, where overweight status 

confers survival advantages in acute brain injury populations 

(28–30). The mechanisms underlying the obesity paradox 

remain incompletely elucidated, but are believed to involve 

multifactorial pathways including increased sympathetic nervous 

system activity, enhanced mitochondrial metabolic capacity, and 

FIGURE 3 

Boruta algorithm for feature importance analysis.

TABLE 2 Multivariable logistic regression model.

Variables Multivariable logistic model

OR 95%CI P-value

BMI 0.78 0.66–0.92 0.003

Midline shift 2.09 1.56–2.79 <0.001

Hematoma volume 1.10 1.05–1.15 <0.001

Age 1.03 1.01–1.05 0.003

MAP 0.93 0.89–0.98 0.004

GCS 0.92 0.79–1.06 0.25

BMI, body mass index; MAP, mean arterial pressure; GCS, Glasgow Coma Scale; OR, odds ratio; CI, confidence interval.
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elevated serum lipoproteins levels (31). Another plausible 

explanation for the protective effect of BMI observed in this 

study is that it may serve as a proxy for overall nutritional 

status. The increased metabolic reserves associated with fat or 

muscle mass in individuals with higher BMIs may contribute 

to their ability to withstand in@ammatory events during the 

treatment period (32). Potential inconsistencies concerning 

the obesity paradox might stem from the higher incidence of 

complications associated with morbid obesity. For instance, 

the established link between obesity and insulin resistance 

(33), where diabetes can lead to poorer outcomes following 

ICH (34), warrants consideration. Further research, involving 

large-scale studies and relevant randomized controlled trials 

(RCTs), is necessary to elucidate the complex relationship 

between obesity and ICH prognosis. Previous studies (35) 

have identified INR as an independent risk factor for 

3-month mortality in patients with spontaneous intracerebral 

hemorrhage, potentially due to its association with the use of 

oral anticoagulants such as warfarin. Additionally, early 

temperature changes within the first 24 h following 

intracerebral hemorrhage have been linked to poorer 

functional outcomes (36). In our cohort, however, when 

considered alongside other predictors, INR and body 

temperature did not demonstrate a strong independent 

association with postoperative functional recovery. This may 

be attributed to the limited distribution and variance of INR 

and temperature in our sample. For instance, most patients 

may have had INR values within the normal range, or 

temperature @uctuations may have been minimal. It is 

important to emphasize that the exclusion of these variables 

from our model does not diminish their clinical significance. 

Rather, it re@ects the data-driven nature of the feature 

selection process in our specific cohort. Further studies 

involving larger and more diverse populations may help to 

clarify the prognostic value of these variables.

Despite its clinical utility, this study has limitations 

inherent to single-center retrospective designs, including 

potential selection bias and lack of a priori sample size 

estimation. The sample size was determined by the number of 

available cases. Future prospective studies with an adequate 

sample size are needed for further validation. External 

validation in diverse healthcare settings and integration of 

real-time biomarker dynamics could enhance predictive 

precision. Future implementation studies should evaluate the 

nomogram’s impact on shared decision-making and resource 

allocation in neurocritical care units. The study did not 

compare the proposed model with existing clinical prediction 

models (such as the FUNC score). This limitation should be 

addressed in future prospective, multicenter studies through 

prospective collection of the necessary data.

FIGURE 4 

Nomogram for the final model.
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FIGURE 5 

Receiver operating characteristic (ROC) curves of the nomogram model in training (A) and validation sets (B).

FIGURE 6 

Calibration curves of the nomogram in training (A) and validation (B) sets. The x-axis represents the predicted probability of poor prognosis calculated 

by the nomogram. The y-axis indicates the observed probability of adverse outcomes. The 45-degree dashed line (y = x) corresponds to perfect 

prediction alignment.
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Conclusions

This study developed and validated a pragmatic prognostic 

nomogram for spontaneous ICH patients undergoing surgical 

intervention, integrating six clinically actionable predictors: 

midline shift, hematoma volume, age, MAP, BMI, and GCS. The 

model demonstrated robust discriminative capacity, calibration 

and clinical applicability, which provides evidence-based support 

for the formulation of individualized rehabilitation programs 

and the optimization of medical resources.
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