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Development and validation
of a predictive model for
postoperative functional
recovery in patients with
spontaneous intracerebral
hemorrhage

Ziming Jiang, Ruijuan Zhang, Danfeng Weng, Yuhang Lv and
Liang Dong*

Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou,
Zhejiang, China

Background: This study aimed to develop and validate a prognostic nomogram
for predicting 3-month functional recovery in patients undergoing surgery for
spontaneous intracerebral hemorrhage (ICH).

Methods: A retrospective cohort of 289 patients diagnosed with spontaneous
intracerebral hemorrhage (ICH) underwent surgical management at the
Intensive Care Unit of Taizhou Central Hospital between January 2021 and
December 2024 was enrolled. Patients were randomly allocated into a training
set (n =203, 70%) and validation set (n =86, 30%). A prognostic nomogram
integrating imaging characteristics and clinical parameters was developed to
predict 90-day functional recovery (modified Rankin Scale <2). Feature
selection employed the Boruta algorithm, followed by multivariable logistic
regression. Model discrimination was quantified by area under the ROC curve
(AUC), while calibration curve was performed to evaluate model performance.
Clinical utility was evaluated through decision curve analysis (DCA).

Results: The multivariable model retained six significant predictors: midline shift
(OR:2.09, 95%Cl: 1.56-2.79), hematoma volume (OR:1.10, 95%Cl: 1.05-1.15),
age (OR:1.03, 95%Cl: 1.01-1.05), mean arterial pressure (OR:0.93, 95%ClI:
0.89-0.98), body mass index (OR:0.78, 95%Cl: 0.66-0.92), and Glasgow
Coma Scale (GCS) score (OR:0.92, 95%Cl: 0.79-1.06). Discriminative
performance was robust, with area under the receiver operating characteristic
curve (AUC) of 0.90 (95% Cl: 0.85-0.96) in the training set and 0.83 (95% ClI:
0.73-0.93) in the validation set. Calibration plots demonstrated excellent
agreement between predicted and observed probabilities. DCA confirmed the
clinical value of the model and its good impact on actual decision-making.
Conclusion: This study developed and validated a pragmatic prognostic
nomogram for spontaneous ICH patients undergoing surgical intervention,
integrating six clinically actionable predictors: midline shift, hematoma
volume, age, MAP, BMI, and GCS. The model demonstrated robust
discriminative capacity, calibration and clinical applicability, which provides
evidence-based support for the formulation of individualized rehabilitation
programs and the optimization of medical resources.
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Introduction

Spontaneous intracerebral hemorrhage (ICH), defined as acute
extravasation of blood into the brain parenchyma secondary to
cerebrovascular rupture, is recognized as the most lethal form of
acute stroke (1), carrying an early mortality rate of 30%-40%
(2). In the United States, ICH accounts for approximately 10%
of the estimated 795,000 annual stroke cases (3). Despite
significant advancements in minimally invasive surgical
techniques in recent years, postoperative functional recovery in
patients demonstrates marked heterogeneity. Notably, no clinical
outcome improvement was observed in preoperatively comatose
patients undergoing surgical intervention (4). This prognostic
uncertainty poses substantial challenges for clinical decision-
making, rehabilitation resource allocation, and physician-patient
communication. Current prognostic scoring systems (e.g., ICH
Score, FUNC Score) incorporating parameters such as age,
hematoma volume, and Glasgow Coma Scale (GCS) (5, 6),
demonstrate  significant  limitations when applied to
postoperative functional recovery prediction. Most existing
models were developed using Western population datasets and
have demonstrated suboptimal performance during external
validation in Asian cohorts (7).

Prediction models are designed to forecast future outcomes
based on a set of baseline predictors, thereby facilitating medical
decision-making and improving patient prognostication (8),
These models are increasingly employed in contemporary
practice to assess and predict clinical endpoints. The publication
of transparent reporting guidelines for prediction model studies
[TRIPOD (Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis) Statement] (9),
has established a standardized framework for developing
prediction models with enhanced methodological rigor and
clinical utility.

The primary objective of this retrospective study was to
develop a predictive model for postoperative functional recovery
in patients with spontaneous intracerebral hemorrhage (ICH).
We sought to identify critical risk factors potentially influencing
clinical outcomes. Utilizing clinical characteristics of ICH
patients as predictors, a prognostic nomogram was constructed

to facilitate individualized outcome assessment.

Methods
Data source

Patient data were retrospectively extracted from the electronic
medical records of Taizhou Central Hospital. This study was
approved by the Institutional Review Board (IRB) of Taizhou
No.: 20251-03-054).
consent was waived by the IRB due to the retrospective nature
of the study.

We  included
following criteria:

Central Hospital (Approval Informed

consecutive  patients  meeting  the
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1. Diagnosis: Spontaneous intracerebral hemorrhage (ICH)
confirmed by non-contrast CT or MRI within 24h of
symptom onset.

2. Intervention: Underwent surgical management (hematoma
evacuation or decompressive craniectomy) within 24h of
symptom onset.

3. Timeframe: Admitted between January 2021 and December
2024.

Exclusion criteria were:

Age <18 years

Delayed diagnosis (>24 h from symptom onset to imaging)
Secondary hemorrhage due to trauma, tumor

Palliative care-only approach per family request

Missing data exceeding 20% of key variables

A

Active malignancy or severe hepatic/renal insufficiency

The study flowchart detailing enrollment is provided in Figure 1.

Data collection

Data:
alcohol consumption

1. Demographic Age, sex, BMI, Smoking,
2. Medical history: hypertension, diabetes, anticoagulant use

3. Neuroimaging Assessment: Hemorrhage location

(supratentorial yes/no), Hematoma volume calculated via

ABC/2 formula (10), Midline (the

greatest degree of shift, millimeters) on axial CT

Glasgow Coma Scale (GCS),
temperature, SBP, DBP, MAP, heart rate, respiratory rate,
SpO2

5. Laboratory Profiling: pH, PaO2, PaCO2, white blood cell,

hemoglobin,

shift measurement

4. Physiological Parameters:

platelet, potassium, sodium, blood urea

nitrogen, creatinine, international normalized ratio,

prothrombin time

Outcome assessment

Functional outcomes were evaluated using the modified
Rankin Scale (mRS) through structured telephone interviews at
3-month follow-up. Outcomes were dichotomized as favorable
(mRS score <2) or poor (mRS score >2).

Statistical analysis

Given the retrospective design of this study, a priori sample
size calculation was not performed. Continuous variables were
expressed as mean * standard deviation (SD) when normally
distributed (assessed by Shapiro-Wilk test), or median with
interquartile range (IQR, 25th-75th percentiles) for skewed
distributions. Categorical variables were reported as percentages
(counts/total counts). For continuous variables, we perform a
t-test or a Mann-Whitney U-test to compare between groups.
For categorical variables, we use the chi-square test or Fisher’s
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372 Patients with ICH derived
from retrospective cohort
Excluded:
0Age <18
17 ICH confirmed by CT/MRI exceeded 24 hours
32 Secondary intracerebral hemorrhage caused by trauma
[ ortumor
22 Refuse or request palliative treatment.
8 Missing variables > 20%
4 Malignancies, severe impairment of liver or kidney
function
289 Patients with ICH included in
the analysis
65 Favorable 224 Poor
prognosis group prognosis group
FIGURE 1
Flowchart of the study

exact test. Variables with >20% missing data were excluded
with  <20%
missingness, multiple imputation was implemented via the
MICE package by Chained
(11). predictors  was
systematically evaluated visualized in a correlation heatmap

from multivariable analysis. For variables

(Multivariate Imputation

Equations) Collinearity ~among

(Figure 2). All analyses were performed using R Statistical
Software (v4.4.2) and Python (v3.9).

Results
Baseline characteristics
This study ultimately included 289 patients with spontaneous

intracerebral hemorrhage (ICH), among whom 65 patients
achieved favorable outcomes (mRS <2), and 224 patients had

poor outcomes (mRS>2). Baseline characteristics such as
alcohol  consumption  history  (p=0.069), hypertension
(p=0.051), diabetes (p=0.091), supratentorial hemorrhage

location (p=0.57), and anticoagulant use (p=0.69) showed no

significant  differences between the
parameters, including SBP (p=0.723), heart rate (p=0.38),
respiratory rate (p=0.086), pH (p=0.765), PaCO, (p=0.297),
PaO; (p=0.329), and laboratory markers such as white blood
cell count (p=0.219), hemoglobin (p=0.235), and serum

sodium (p =0.065), also demonstrated no significant intergroup

groups. Physiological

differences. However, the poor prognosis group exhibited
statistically significant differences (p <0.05) in multiple critical
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predictors compared to the favorable prognosis group. The poor
prognosis group was older, had a higher proportion of females,
and showed elevated smoking history prevalence; larger
hematoma volume and greater midline shift; lower BMI and
GCS scores, higher body temperature, and reduced mean
arterial pressure, diastolic blood pressure, and oxygen saturation;
lower platelet counts, elevated potassium, blood urea nitrogen,
creatinine, international normalized ratio, and prothrombin

time (Table 1).

Feature selection

The cohort was randomly stratified into training (70%) and
validation (30%) sets. Feature selection was performed in the
training set using the Boruta algorithm, a robust wrapper
Unlike
conventional feature selection approaches that optimize for

method based on random forest classification.
model-specific performance, Boruta identifies features with
intrinsic relevance to the outcome variable by iteratively
comparing original attributes to shadow features (random
permutations) (12). From 31 candidate predictors, Boruta
selected five features with permutation importance: midline
shift, hematoma volume, age, MAP, BMI (Figure 3). It is well
established that the GCS is a classical tool for assessing the level
of consciousness in patients with brain injury and is widely used
for prognostic evaluation in neurological disorders such as
(13-15).
clinical studies have demonstrated a close association between

spontaneous intracerebral hemorrhage Numerous
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Correlation heatmap of variables.
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GCS scores and adverse outcomes in patients with cerebral
hemorrhage (16-18). In clinical practice, GCS also serves as a
critical reference for physicians in evaluating the severity of a
patient’s condition and guiding clinical decision-making. The
ultimate goal of predictive modeling is not only to achieve
statistical significance but also to ensure clinical interpretability
and applicability (19). Therefore, despite the lack of statistical
significance between GCS and prognosis in our multivariate
regression analysis (p =0.25), we have included GCS in the final
model, acknowledging its established clinical relevance. In the
further
performance between versions incorporating and excluding the

Supplementary =~ Material, we compared model

GCS. The final multivariable logistic regression model included
these six predictors.

Nomogram

In the training cohort (n =202), the six selected predictors:
midline shift, hematoma volume, age, MAP, BMI, and GCS,

Frontiers in Surgery

were incorporated into a multivariable logistic regression
model. The final model demonstrated the following adjusted
odds ratios (aORs) with 95% confidence intervals (Table 2):
BMI (OR: 0.78; 95%CI 0.66-0.92), midline shift (OR: 2.09;
95%CI 1.56-2.79), hematoma volume (OR: 1.10; 95%CI 1.05-
1.15), age (OR: 1.03; 95%CI 1.01-1.05), MAP (OR: 0.93; 95%
CI 0.89-0.98), GCS (OR: 0.92; 95%CI 0.79-1.06). A clinical
nomogram integrating these predictors was constructed,
assigning weighted points proportional to each variable’s B-
coefficient (Figure 4).

Model performance evaluation
Discrimination

The prognostic model derived from multivariable logistic
regression was rigorously evaluated using receiver operating
characteristic (ROC) curve analysis. In the training cohort, the
model demonstrated exceptional discriminative ability with an

04 frontiersin.org
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TABLE 1 Baseline characteristics.

Characteristics Favorable Poor P-value
prognosis prognosis
group (N = 65) group
(N =224)
Age (years) 51.90 [31.66, 79.56] | 69.80 [51.33, 83.27] 0.002
Male (%) 50 (76.92) 138 (61.61) 0.023
BMI (kg/m?) 27.18 +3.36 25.27 +2.44 <0.001
Alcohol (%) 34 (52.31) 145 (64.73) 0.069
Cigarette (%) 33 (50.77) 160 (71.43) 0.002
Hypertension (%) 55 (84.62) 163 (72.77) 0.051
Diabetes (%) 55 (84.62) 167 (74.55) 0.091
Supratentorial (%) 54 (83.08) 179 (79.91) 0.570
Anticoagulation (%) 13 (20.00) 50 (22.32) 0.690
Hematoma volume 36.54 [33.45, 41.82] | 45.68 [39.27, 52.08] |  <0.001
(mL)
Midline shift (mm) 3.29 [1.97, 5.35] 5.09 [4.25, 6.35] <0.001
GCS 11.00 [7.00, 13.00] | 8.50 [7.00, 11.00] 0.011
Temperature (°C) 37.23 [36.86, 37.57] | 36.92 [36.43, 37.58] 0.008
SBP (mmHg) 119.11 [113.03, 121.07 [108.58, 0.723
127.77] 131.69]
MAP (mmHg) 80.69 [75.83, 87.05] | 78.67 [71.65, 84.53] 0.017
DBP (mmHg) 64.87 +9.65 60.94+10.76 0.006
HR (/min) 82.21 [73.83, 96.29] | 87.46 [74.76,102.61] |  0.380
RR (/min) 18.44 [16.50, 20.90] | 19.07 [16.87, 22.50] 0.086
Spo2 (%) 99.12 [98.25, 99.82] | 98.63 [96.84, 99.63] 0.013
Ph 7.38 [7.32, 7.44] 7.38 [7.30, 7.44] 0.765
PaCO, (mmHg) 41.00 [35.50, 45.00] | 38.00 [34.00, 44.62] 0.297
PaO, (mmHg) 190.00 [144.50, 187.00 [129.25, 0.329
260.00] 262.62]
Whbe (*10°/L) 11.95 [9.05, 15.30] | 12.86 [9.39, 16.08) 0.219
Hb (g/L) 11.36 + 1.86 11.04 £2.18 0.235
Plt (*10°/L) 192.50 [161.50, 169.50 [134.50, 0.037
227.50] 227.50]
K (mmol/L) 4.00 [3.65, 4.40] 4.20 [3.80, 4.55) 0.044
Na (mmol/L) 140.00 [138.00, 141.00 [138.00, 0.065
142.00] 144.00]
Bun (mg/dL) 14.00 [11.50, 19.00] | 18.50 [14.00, 26.00] | <0.001
Cr (mg/dL) 0.90 [0.75, 1.10] 1.10 [0.80, 1.45) 0.006
INR 1.20 [1.10, 1.35) 1.25 [1.15, 1.55) 0.002
PT (s) 12.85 [12.10, 14.45] | 13.97 [12.60, 17.11] 0.003

BMI, body mass index; GCS, Glasgow Coma Scale; SBP, systolic blood pressure; MAP, mean
arterial pressure; DBP, diastolic blood pressure; HR, heart rate; RR, respiratory rate; Hb,
hemoglobin; Plt, platelet; INR, international normalized ratio; PT, prothrombin time.

area under the curve (AUC) of 0.90 (95% CI: 0.85-0.96). When
applied to the validation set, the AUC remained clinically
significant at 0.83 (95% CI: 0.73-0.93), showing a moderate yet
meaningful predictive capacity despite expected performance
attenuation (Figure 5).

Calibration

Calibration performance was rigorously evaluated using
calibration plots with 95% confidence intervals, comparing
predicted probabilities of poor outcome against observed
frequencies. Perfect calibration aligns with the 45-degree
reference line (intercept=0, slope=1). Visual inspection
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revealed satisfactory agreement between predictions and
observations in both sets (Figure 6).

Decision curve analysis

To evaluate the model’s clinical practicality, decision curve
analysis (DCA) was conducted by quantifying the net benefit
across varying threshold probabilities, the minimum predicted
risk at which deemed justified. Unlike
conventional metrics (e.g., AUC), DCA directly reflects

intervening is

clinical utility by weighing benefits (true positives) against
harms (false positives) through the formula. By plotting
clinical decision curves, we found that the model exhibited a
higher net benefit within threshold probability ranges of 4%-
95% and 5%-94% for the training and validation sets,
respectively (Figure 7). Decision curve analysis demonstrates
that the use of this nomogram provides a higher net benefit
than treating all or no patients, across a range of clinically
relevant threshold probabilities. For example, if a clinician
wishes to intensify rehabilitation for patients with a predicted
risk above 30%, the nomogram can identify appropriate
candidates, allocation and

thereby optimizing resource

improving patient outcomes.

Discussion

In this study, poor functional outcome was defined as mRS
score >2, while favorable outcome was defined as mRS score <2.
Our final model identified six robust predictors of postoperative
functional recovery: midline shift, hematoma volume, age,
MAP, BMI, and GCS score. Notably, this prognostic tool

shift,
clinical

integrating both neuroimaging features (midline
and MAP with

variables in spontaneous ICH surgical cohorts. This provides

hematoma volume) traditional
clinicians with a valuable tool for prognostic assessment in
such patients, enhancing the precision of postoperative
outcome prediction.

According to the Monro-Kellie doctrine (20), the total volume
of intracranial contents (brain tissue, blood, and cerebrospinal
fluid) remains constant. An increase in hematoma volume or
elevated intracranial pressure may lead to brain tissue
displacement (such as midline shift) and impaired neurological
function (e.g., decreased GCS score). Midline shift, hematoma
volume, and age have been consistently identified as key
with
hemorrhage (5, 21, 22), primarily mediated through the mass

prognostic  determinants in patients intracerebral
effect resulting from the combined impact of parenchymal
destruction and mechanical compression by the hematoma (4,
23). Yang et al. (24) demonstrated that a midline shift >4 mm
represents the optimal cutoff value significantly associated with
poor outcomes in ICH patients. Hematoma volumes exceeding
30 ml showed statistically significant correlation with adverse
outcomes, while the combination of hematoma volume >60 ml

and GCS score <8 predicted 30-day mortality rates exceeding
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TABLE 2 Multivariable logistic regression model.

Variables Multivariable logistic model
95%Cl P-value

BMI 0.78 0.66-0.92 0.003
Midline shift 2.09 1.56-2.79 <0.001
Hematoma volume 1.10 1.05-1.15 <0.001
Age 1.03 1.01-1.05 0.003
MAP 0.93 0.89-0.98 0.004
GCS 0.92 0.79-1.06 0.25

BMI, body mass index; MAP, mean arterial pressure; GCS, Glasgow Coma Scale; OR, odds ratio; CI, confidence interval.

90% (5). Early-stage blood pressure control emerges as a critical
therapeutic intervention to prevent hematoma expansion, with
acute-phase antihypertensive therapy showing a modest but
significant effect in reducing hematoma growth (25). Recent
evidence (26) confirms that achieving and maintaining systolic
blood pressure (SBP) within 120-130 mmHg during the initial
24-hour window demonstrates optimal safety and potential
benefits.
predominant etiological factor in ICH pathogenesis, our findings

functional Given hypertension’s status as a
revealing the association between MAP and postoperative
functional recovery. Notably, higher MAP levels demonstrated a
significant protective correlation, aligning with conventional

cerebral perfusion pressure (CPP) maintenance targets (27).
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Specifically, maintaining higher MAP was associated with in
favorable outcomes. These results underscore the imperative for
implementing dynamic hemodynamic monitoring protocols
throughout the perioperative period. In our cohort, elevated
body mass index (BMI) demonstrated a significant protective
association with functional outcomes (OR 0.78; 95%CI 0.66—
0.92). This finding aligns with the emerging concept of the
“obesity paradox” in neurocritical care, where overweight status
confers survival advantages in acute brain injury populations
(28-30). The mechanisms underlying the obesity paradox
remain incompletely elucidated, but are believed to involve
multifactorial pathways including increased sympathetic nervous
system activity, enhanced mitochondrial metabolic capacity, and

frontiersin.org



Jiang et al.

10.3389/fsurg.2025.1589876

Points

Nomogram

GCSs

MAP

Age

Hematoma_volume

Midline_shift

BMI

Total points

36 34 32 30 28

180 200 250 240 260

0
o
=
o

280 300 320 340 360 380

Pr( ) e T
(d57 0.035 0.1 03

FIGURE 4
Nomogram for the final model.

0.998

elevated serum lipoproteins levels (31). Another plausible
explanation for the protective effect of BMI observed in this
study is that it may serve as a proxy for overall nutritional
status. The increased metabolic reserves associated with fat or
muscle mass in individuals with higher BMIs may contribute
to their ability to withstand inflammatory events during the
treatment period (32). Potential inconsistencies concerning
the obesity paradox might stem from the higher incidence of
complications associated with morbid obesity. For instance,
the established link between obesity and insulin resistance
(33), where diabetes can lead to poorer outcomes following
ICH (34), warrants consideration. Further research, involving
large-scale studies and relevant randomized controlled trials
(RCTs), is necessary to elucidate the complex relationship
between obesity and ICH prognosis. Previous studies (35)
have identified INR as an independent risk factor for
3-month mortality in patients with spontaneous intracerebral
hemorrhage, potentially due to its association with the use of
oral anticoagulants such as warfarin. Additionally, early
within the first 24h following
hemorrhage linked
functional outcomes (36). In our cohort, however, when
INR and body
temperature did not demonstrate a strong independent

temperature changes

intracerebral have been to poorer

considered alongside other predictors,

association with postoperative functional recovery. This may

Frontiers in Surgery

be attributed to the limited distribution and variance of INR
and temperature in our sample. For instance, most patients
may have had INR values within the normal range, or
temperature fluctuations may have been minimal. It is
important to emphasize that the exclusion of these variables
from our model does not diminish their clinical significance.
Rather, it reflects the
selection process in our specific cohort. Further studies

data-driven nature of the feature
involving larger and more diverse populations may help to
clarify the prognostic value of these variables.

Despite its clinical utility, this study has limitations
inherent to single-center retrospective designs, including
potential selection bias and lack of a priori sample size
estimation. The sample size was determined by the number of
available cases. Future prospective studies with an adequate
sample size are needed for further validation. External
validation in diverse healthcare settings and integration of
real-time biomarker dynamics could enhance predictive
precision. Future implementation studies should evaluate the
nomogram’s impact on shared decision-making and resource
allocation in neurocritical care units. The study did not
compare the proposed model with existing clinical prediction
models (such as the FUNC score). This limitation should be
addressed in future prospective, multicenter studies through
prospective collection of the necessary data.
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FIGURE 7

Decision curve analysis (DCA) of the nomogram in the training set (A) and the validation set (B) the decision curve analysis demonstrated that the
nomogram provided superior net benefit compared to the “treat-all” and “treat-none” strategies across a threshold probability range of 4%—-95%

(A) and 5%-94% (B).

Conclusions

This study developed and validated a pragmatic prognostic
nomogram for spontaneous ICH patients undergoing surgical
intervention, integrating six clinically actionable predictors:
midline shift, hematoma volume, age, MAP, BMI, and GCS. The
model demonstrated robust discriminative capacity, calibration
and clinical applicability, which provides evidence-based support
for the formulation of individualized rehabilitation programs
and the optimization of medical resources.
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