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Stroke is a leading cause of disability and death worldwide, with acute ischemic

stroke accounting for most cases. Mechanical thrombectomy is a widely

accepted treatment modality in appropriately selected patients, demonstrating

improved functional outcomes through safe and effective recanalization.

However, traditional trials have focused on a narrow subset of patients,

limiting its applicability to diverse populations who would otherwise benefit

from thrombectomy. Advances in neurovascular imaging, device innovation,

and procedural techniques are driving a paradigm shift toward personalized

stroke thrombectomy. This review explores personalization strategies across

various domains, including lesion-specific considerations such as medium

vessel occlusions (MeVOs), basilar artery occlusions (BAOs), and tandem

lesions, as well as patient-specific factors like infarct size, low NIHSS scores,

advanced age, and unique biomarkers. Additionally, we discuss procedural

innovations, such as tailored device use and alternative access strategies to

address anatomical and clinical complexities. While substantial progress has

been made, challenges remain in refining patient selection criteria, mitigating

procedural risks, and ensuring equitable access to thrombectomy. Future

directions include taking full advantage of advanced imaging modalities,

incorporating biomarkers for personalized care, and optimizing thrombectomy

devices to support the use of thrombectomy in underrepresented populations.

Precision thrombectomy has the potential to be adapted to a broader

spectrum of patients, improving outcomes and ultimately reducing the global

burden of stroke.
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1 Introduction

Stroke is a leading cause of permanent disability and death worldwide, representing a

global health concern (1). Accounting for approximately 87% of all strokes (2), acute

ischemic stroke (AIS) occurs secondarily to thrombosis, embolism, or systemic

hypoperfusion, of which approximately 40% are large vessel occlusions (LVOs) (3).

Mechanical thrombectomy has emerged as the gold standard for AIS treatment,

restoring cerebral perfusion and improving functional outcomes through complete

recanalization of occluded intracranial arteries. While landmark studies validated the

safety and efficacy of thrombectomy in acute ischemic stroke, these studies selected

patients according to stringent inclusion criteria, such as early presentation and small

core infarcts (4–8). However, many patients affected by stroke deviate from this

phenotype, presenting new challenges and opportunities for personalized approaches.
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Advances in neurovascular imaging and iterative

thrombectomy device development have improved patient

selection and procedural safety. The evolution of stroke

thrombectomy is shifting towards precision medicine, optimizing

treatment strategies to patient- and lesion-specific factors,

including vessel occlusion type, infarct size, collateralization

status, patient age, comorbidities, and individual biomarkers.

This review explores this paradigm with the aim to guide

clinicians and researchers in advancing personalized approaches

to thrombectomy to expand its eligibility to traditionally

excluded patient groups.

2 Personalization by occluded vessel
type

2.1 Large vessel occlusion

Personalized stroke thrombectomy in large vessel occlusion

(LVO) focuses on tailoring treatment strategies based on patient-

specific and stroke-specific factors to maximize outcomes, with

initial trials focusing on patients in early time windows

(≤6–≤12 h from last known well, LKW) (Table 1). The MR

CLEAN trial first demonstrated the superiority of thrombectomy

using second-generation stent retrievers, such as Solitaire® and

Trevo®, over standard medical management, including

intravenous thrombolysis (IVT) (4). Patients treated with

thrombectomy showed significantly higher rates of functional

independence (mRS 0–2 at 90 days: 32.6% vs. 19.1%) and

smaller infarct volumes. These findings were corroborated by

subsequent trials, which included LKW times of ≤6 h (SWIFT

PRIME and EXTEND-IA) (5, 6), extending to ≤8 h

(REVASCAT) (7), and finally ≤12 h (ESCAPE) (8), collectively

leading to the HERMES meta-analysis (9). Time from LKW

status was 6 h in SWIFT This analysis confirmed that

thrombectomy nearly doubled the odds of achieving good

functional outcomes (adjusted OR 2.49), emphasizing the

importance of rapid intervention in a specific subgroup of

patients. Following these results, thrombectomy was

recommended as the preferred treatment for LVOs in the

anterior circulation. The American Heart Association/American

Stroke Association (AHA/ASA) provided a Class IA

recommendation for patient inclusion criteria for thrombectomy,

including baseline functional status (mRS 0–1), high ASPECTS

(≥6), and NIHSS ≥6 for strokes in the anterior circulation

(internal carotid artery and M1 segment of the middle cerebral

artery) who present within 6 h of onset (10).

Personalized thrombectomy in the late time windows (6–24 h

from LKW) represents a paradigm shift from time-based to

tissue-based patient selection, driven by advanced imaging

techniques (Table 2). Landmark trials such as DAWN and

DEFUSE−3 demonstrated the efficacy of thrombectomy in

patients with anterior circulation LVOs who had a small

ischemic core but significant salvageable penumbra. The DAWN

trial, which included patients up to 24 h post-stroke onset,

showed a nearly fourfold increase in functional independence at

90 days (mRS 0–2 in 49% vs. 13% of the control group) (11),

while DEFUSE-3 reported similar benefits for patients treated

within 6–16 h (12). The results were transformative, with a

number needed to treat (NNT) of just 3 to achieve improved

TABLE 1 Characteristics of RCTs investigating mechanical thrombectomy in large vessel occlusion in the early window.

Trial MR CLEAN (4) SWIFT PRIME (5) EXTEND-IA (6) REVASCAT (7) ESCAPE (8)

Study characteristics

Publication year 2015 2015 2015 2015 2015

Enrolment years 2010–2014 2012–2014 2012–2014 2012–2014 2013–2014

Country Netherlands Multi-national Australia, New Zealand Spain Multi-national

Sample 500 196 70 206 315

Inclusion criteria

Age ≥18 18–85, later changed to 18–80 ≥18 18–80, later changed to 81–85 if

ASPECTS >8

≥18

Time 0–6 h 0–6 0–6 0–8 0–12

Vessels ICA, M1, M2, A1, A2 ICA, M1 ICA, M1, M2 ICA, M1 ICA, M1, M2

ASPECTS/Lesion

volume

0–10 ASPECTS ≥6; volume <50 ml with

mismatch

Volume <70 ml with

mismatch

ASPECTS ≥7 (≥8 if age 81–85) ASPECTS ≥6

NIHSS ≥2 8–29 – ≥6 ≥5

Baseline mRS – ≤1 ≤1 ≤1 –

TPA eligibility Not required Required Required Not required Not required

Outcomes

mTICI 2b, 3 75.4% 88.0% 86.2% 66.0% 72.4%

mRS 0–2 32.6% vs. 19.1% 60.2% vs. 35.5% 71% vs. 40% 43.7% vs. 28.2% 53% vs. 29.3%

Mortality 21% vs. 22% 12% vs. 9% 9% vs. 20% 18% vs. 15% 10% vs. 19%

sICH 7.7% vs. 6.4% 0% vs. 3% 0% vs. 6% 1.9% vs. 1.9% 3.6% vs. 2.7%

NNT 7.1 4 3.2 6.5 4.2

A1, A1 segment of the anterior cerebral artery (ACA); A2, A2 segment of the ACA; ASPECTS, Alberta Stroke Program Early CT Score; ICA, internal carotid artery; M1, M1 segment of the

middle cerebral artery (MCA); M2, M2 segment of the MCA; mRS, modified Rankin score; mTICI, modified thrombolysis in cerebral infarction score; NIHSS, National Institutes of Stroke

Scale; NNT, number needed to treat; sICH, symptomatic intracranial bleeding; TPA, tissue plasminogen activator.
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functional outcomes. These findings led to revised guidelines

supporting thrombectomy for selected late-window patients,

emphasizing the importance of advanced imaging, such as CT

perfusion or MRI, to identify ischemic core-penumbra mismatch.

Recent meta-analyses, including the Analysis of Pooled Data

from Randomized Studies of Thrombectomy More Than 6

Hours After Last Known Well (AURORA) collaboration, further

solidified the benefit of thrombectomy across diverse subgroups,

including older patients (age≥80 years) and those with wake-up

strokes (13). An illustrative case of an 89-year-old male

presenting with National Institutes of Stroke Scale (NIHSS) score

of 16 due to a left distal M1 occlusion, successfully recanalized

using aspiration thrombectomy, is shown in Figure 1.

Collateralization status is the underlying phenomenon for this

tissue-based approach, as it influences infarct progression and

treatment outcomes. Collateral vessels provide alternative

pathways for blood flow, sustaining ischemic penumbra and

delaying core infarct expansion (14). Studies have shown that

patients with robust collaterals, termed “slow progressors,” lose

neurons at significantly lower rates compared to those with poor

collaterals, or “fast progressors,” who experience rapid infarct

growth (15, 16). The MR CLEAN-LATE trial demonstrated that

thrombectomy for anterior circulation ischemic stroke is effective

in the late window (6–24 h from LKW) when patients are

selected based on collateral flow assessment via CTA. At 90 days,

thrombectomy was associated with significantly better functional

outcomes compared to best medical management alone, with a

shift towards lower modified Rankin Scale (mRS) scores

[adjusted common odds ratio (OR) 1.67; 95% CI 1.20–2.32] (17).

These benefits persisted at 2 years, with the thrombectomy group

maintaining improved functional outcomes (adjusted OR 1.41;

95% CI 1.00–1.99) (18). Importantly, all patients included had

confirmed collateral flow, emphasizing its pivotal role in

identifying viable ischemic penumbra and guiding late-window

thrombectomy. While symptomatic intracranial hemorrhage

(sICH) was more frequent in the thrombectomy group, all-cause

mortality was not significantly different, and thrombectomy

proved safe and effective for improving long-term outcomes.

2.2 Medium vessel occlusions

Medium vessel occlusion refers to distal intracranial arterial

occlusions, typically 0.75–2 mm in diameter (19). These

occlusions occur in M2, M3, or M4 branches of the MCA, A2 or

A3 branches of the ACA, and P2 or P3 branches of the PCA

(20). Additionally, some authors consider occlusions of the A1

and P1 segments as MeVOs (21). Occlusions of the M2 segment

of the MCA may also be considered an LVO or MeVO

depending on the dominance of the M2 branch, with dominant

M2 branch occlusions categorized as LVOs and co-dominant or

non-dominant M2 branch occlusions categorized as MeVOs (22).

MeVOs, arising as either primary occlusions or secondarily to

previous angiographic or thrombectomy procedures, are

responsible for 25%–40% of all acute ischemic strokes (19, 23).

Given the high risk of long-term disability associated with

MeVOs in up to 50% of patients (24), mechanical thrombectomy

should be offered to appropriately selected patients. However,

several challenges to the use of mechanical thrombectomy for

these lesions exist. By categorization, MeVOs represent a

heterogenous group of conditions as characterized by the

variability in occlusion sites and neurological deficits. These

occluded vessels are also smaller, with thinner and more fragile

walls, and are more prone to dissection, rupture, and vasospasm.

The tortuosity of these distal vessels also impede navigation

during mechanical thrombectomy (25–27). Despite the

challenges, development of smaller mechanical thrombectomy

devices, along with the effectiveness of intra-arterial fibrinolysis

in just a third of these cases (19, 28), and reported efficacy of

thrombectomy for MeVOs in retrospective studies (29),

thrombectomy represents a valuable treatment modality for

patients with MeVOs. As such, the 2019 AHA/ASA and Society

for Neuro-interventional Surgery guidelines recommend

TABLE 2 Characteristics of RCTs investigating mechanical thrombectomy
in large vessel occlusion in the late window.

Trial DAWN (11) DEFUSE-3 (12) MR
CLEAN-
LATE (17)

Study characteristics

Publication

year

2017 2018 2023

Enrolment

years

2014–2017 2016–2017 2018–2022

Sample 206 182 502

Inclusion criteria

Age ≥18 18–90 ≥18

Time 6–24 h 6–16 h 6–24 h

Vessels ICA, M1 ICA, M1 ICA, M1,

proximal M2

ASPECTS ≥10 ≥6

Lesion/Infarct

volume

<21 ml for age

≥80 and NIHSS

≥10

<31 ml for age

<80 and NIHSS

≥10

31–51 ml for age

(<80 and NIHSS

≥20

<70 ml, mismatch

penumbra/core ratio ≥1.8

and absolute penumbra vol

≥15 ml

–

NIHSS ≥10 and ≥20 ≥6 ≥2

Baseline mRS ≤1 ≤2 ≤2

TPA eligibility Ineligible for, or

failed, IV tPA

Not required Not required

Outcomes

mTICI 2b or

3

72% (90%) 76% 73%

mRS 0–2 49% vs. 13% 45% vs. 17% 39% vs. 34%

Mortality 19% vs. 18% 14% vs. 26% 24% vs. 30%

sICH 6% vs. 3% 7% vs. 4% 7% vs 2%

NNT 2.8 3.6 –

ASPECTS, Alberta Stroke Program Early CT Score; ICA, internal carotid artery; M1, M1

segment of the middle cerebral artery (MCA); M2, M2 segment of the MCA; mRS,

modified Rankin score; mTICI, modified thrombolysis in cerebral infarction score; NIHSS,

National Institutes of Stroke Scale; NNT, number needed to treat; sICH, symptomatic

intracranial bleeding; TPA, tissue plasminogen activator.
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thrombectomy for patients with M2 or M3 occlusions (class IIB)

and M2 occlusions, respectively (10, 30).

The safety and efficacy of EVT for MeVOs in the MCA

circulation has been documented. A single center study of 62%

primary and 33% secondary heterogenous MeVO lesions

reported significant reperfusion (mTICI 2b-3 in 83%) with

observed 30% 90–day functional independence and 20%

mortality rates (31). A patient level meta-analysis of M2 MCA

FIGURE 1

An 89-year-old male with a history of paroxysmal atrial fibrillation treated with 15 mg daily rivaroxaban, hypertension, and hyperlipidemia presented

with right-sided weakness and aphasia, with the last known well 12 h prior. He had an NIH Stroke Scale (NIHSS) score of 16 and an ASPECTS score of

10. (A) No hypodense lesion was apparent from initial CT at presentation. (B) MCA dot sign was visible (arrow). (C,D) A computed tomography

angiography (CTA) revealed a left distal M1 occlusion (arrow) with no distal perfusion. (E,F) Anteroposterior (E) and lateral (F) views of the digital

subtraction angiography (DSA) illustrates the occlusion site at the left distal M1 (Arrow). (G,H) Post-thrombectomy, a TICI 3 recanalization was

achieved using the ADAPT technique in anteroposterior (G) and lateral (H) views of the angiogram. (I) A post-thrombectomy MRI diffusion-

weighted imaging (DWI) series revealed multiple punctate areas of restricted diffusion in the left insular and temporal regions, representing acute

infarcts.
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occlusions from data in the HERMES Collaboration demonstrated

superior outcomes in thrombectomy-treated patients (mRS 0–2 in

58.2%) compared to controls (39.7%), with maximal benefit in

proximal and dominant M2 occlusions (32). A case of a 32-year-

old female with NIHSS 6 due to a left M2 occlusion, treated

successfully with the ADAPT technique achieving TICI 2C

recanalization, is shown in Figure 2. For non-M2 MCA MeVOs,

a recent meta-analysis showed limited benefit for thrombectomy

over control in A2, M3, P2, P3, and P4 lesions, with good

outcomes in 54.7% vs. 54.5% respectively, although not

statistically significant (33).

In the posterior circulation, the TOPMOST trial demonstrated

efficacy and safety of thrombectomy in P2 and P3 occlusions

among IVT-ineligible patients with admission NIHSS ≥10 (34).

Similarly, thrombectomy was shown to be feasible for A2 to A4

occlusions, primarily due to large artery atherosclerosis, with a

low sICH rate of 2% (35). The PLATO study, which focused on

posterior circulation MeVOs, observed greater NIHSS

improvement and earlier clinical benefit in the thrombectomy

group, despite no significant shift in 90-day mRS. However, this

group also experienced higher rates of sICH and mortality,

emphasizing the need to balance functional benefit with

procedural risk. Stratified analysis suggested thrombectomy

benefit among patients with baseline NIHSS >6 and no increase

in adverse events. The limited value of mRS and NIHSS scores in

posterior circulation strokes has also been reported, necessitating

holistic assessments in functional status following treatment of

these MeVOs (36).

Notably, two recent RCTs provide further clarity. The

ESCAPE-MeVO trial, enrolling 530 patients with acute MeVOs

(predominantly MCA branch occlusions), found no significant

difference in 90-day functional independence (mRS 0–1 in 41.6%

EVT vs. 43.1% control, p = 0.61) and reported higher mortality

and sICH rates in the EVT group (37). Likewise, the DISTAL

trial, evaluating EVT in distal ACA, MCA, and PCA occlusions,

showed no significant improvement in mRS at 90 days with EVT

over best medical therapy (common OR 0.9, p = 0.50), with

comparable mortality and sICH rates between groups (38). As

future trials continue to refine treatment indications, especially

for patients with mild symptoms or distal occlusions,

personalization will remain central to expanding the therapeutic

frontier for MeVOs.

FIGURE 2

A 32-year-old obese male with a history of obesity and heart failure presented with aphasia, dysarthria, and right arm numbness, having been last

known normal 1 h prior to presentation. His NIHSS score was 6. (A) Non-contrast brain CT showed an ASPECTS score of 10. (B) Brain CTA

revealed an occluded left M2 vessel (arrow). (C,D) MRI DWI series revealed focal restrictions at left insular and parietal regions. Anterior-posterior

(E) and lateral views (F) of DSA (left ICA injection) illustrated the site of occlusion as the M2 segment (arrow). (G,H) DSA after thrombectomy using

the ADAPT technique demonstrated a TICI 2C recanalization. Distal occlusion at M3 segment was not pursued further.
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2.3 Basilar artery occlusions

Basilar artery occlusions are associated with high mortality

rates despite treatment (39). Patients with these strokes have a

varied presentation, with clinical symptoms including cranial

nerve defects, dysarthria, dysphagia, gait ataxia, and hemiplegia

that progresses to locked-in syndrome (39). These signs and

symptoms are typically not accurately captured with the NIHSS

score, requiring more appropriate endpoints for assessing

patient functional status. To mitigate this, scoring systems like

the POST-NIHSS score have been proposed. Imaging-based

markers, like the pons-midbrain index, have also been

explored, though they are not validated clinical severity scores

(40, 41). Factors associated with favorable outcomes post-

thrombectomy for BAOs include a low pretreatment NIHSS

score, duration of symptom (<6 h), good collateralization

status, the absence of an early pontine infarct, and

thrombectomy technique. Proper identification of appropriate

patients with BAO for thrombectomy is strongly supported by

current guidelines (36, 42).

Data from the BASILAR registry, including 1,254 patients, was

the first to support the efficacy of thrombectomy within 24 h for

BAO, demonstrating significantly better treatment safety and

efficacy (43). Two subsequent trials, the BASICS (BASilar artery

International Cooperation Study) and the BEST (Endovascular

Treatment vs. Standard Medical Treatment for Vertebrobasilar

Artery Occlusion) investigated thrombectomy for BAOs in

patients presenting within 6 h and 8 h of stroke, respectively

(Table 3) (44, 45). BASICS randomized patients into the

thrombectomy and best medical therapy arms, with slightly

better functional outcomes seen in the thrombectomy group

(44.2% vs. 37.7%) and lower mortality rates (38.4% vs. 43.2%),

but with higher sICH rates (4.5% vs. 0.7%). Patients who

demonstrated higher rates of actual or potential favorable 90-day

mRS scores (mRS 0–3) after thrombectomy were those who

presented with moderate (NIHSS 10–19) and severe

(NIHSS≥20) neurological deficit. A case of a 78-year-old female

with NIHSS score of 28 due to an upper basilar occlusion,

successfully treated with the SOLUMBRA technique achieving

TICI 3 recanalization, is presented in Figure 3. Similarly, BEST

compared thrombectomy to best medical therapy but was

terminated early due to poor recruitment and high treatment

crossover rates (22% from best medical therapy to

thrombectomy). 47% of patients treated with thrombectomy

reported higher favorable 90-day mRS scores (mRS 0–3),

compared to 24% of control. Overall, BASICS and BEST did not

demonstrate superiority of thrombectomy over best medical

treatment, which were addressed by subsequent trials.

ATTENTION (Endovascular Treatment for Acute Basilar

Artery Occlusion) is a Chinese trial that that randomized

thrombectomy and medical treatment for patients with BAO

presenting within 12 h of stroke, with baseline NIHSS score > 10,

TABLE 3 Characteristics of RCTs investigating mechanical thrombectomy in basilar artery occlusion.

Trial BASICS (42) BEST
(43)

ATTENTION (44) BAOCHE (45)

Study characteristics

Publication year 2021 2020 2022 2022

Enrolment period 2011–2019 2015–2017 2021–2022 2016–2022

Country Multi-national (7 countries) China China China

Patients 300 131 340 217

Inclusion criteria

Age Initially 18–85, later expanded to ≥18 ≥18 ≥18 18–80

Time 0–6 h 0–8 h 0–12 h 6–24

Vessels BA (proximal, middle, and distal) VA (V4),

BA

VA (V4), BA (proximal, middle, and

distal)

BA (Proximal, middle, and distal)

pc-ASPECTS ≥10, later expanded to <10 – ≥6 for age <80

≥8 for age ≥80

≥10, later expanded to ≥6 and pons-

midbrain index ≤2

NIHSS Initially ≥10 but removed after 91

patients enrolled

None ≥10 ≥10 initially, changed to ≥6 after 84 patients

enrolled

Baseline mRS 0–2 0–2 0–2 (age ≤80); 0 (mRS >80) 0–1

IV tPA eligibility Not required Not

required

Not required Not required

Outcomes

mTICI 2b, 3 72% 71% 93.3% 88.1%

mRS 0–2 35% vs. 30% 33% vs. 28% 33.2% vs. 10.5% 39% vs 14%

mRS 0–3 44% vs. 37.7% 47% vs. 24% 46 vs. 22.8% 46.4% vs. 24.3%

Mortality 38.3% vs. 43.2% 33% vs. 38% 36.7% vs. 55.3% 30.9% vs. 42.1%

sICH 3.9% vs. 0.7% 8% vs. 0% 5.3% vs. 0% 5.9% vs. 1.1%

Procedure-related

complications

3% – 14% 11%

ASPECTS, Alberta Stroke Program Early CT Score; BA, basilar artery; mRS, modified Rankin score; mTICI, modified thrombolysis in cerebral infarction score; NIHSS, National Institutes of

Stroke Scale; NNT, number needed to treat; sICH, symptomatic intracranial bleeding; TPA, tissue plasminogen activator; V4, V4 segment of the vertebral artery.
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and age-adjusted pc–ASPECTS (>6 points for patients aged <80;

> 8 points for those aged > 80 (46). Additionally, 40% of patients

in the thrombectomy group underwent angioplasty and stenting.

A significantly higher proportion of patients in the

thrombectomy demonstrated good functional outcome (mRS

0–3) compared to control (46% vs. 23%). The Basilar Artery

Chinese Endovascular Trial (BAOCHE) is another RCT that

investigated the safety and efficacy of thrombectomy in the late

time window (6–24 h), with NIHSS≥ 6, and pc–ASPECTS <6,

and pons-midbrain index ≤2 (47). Like ATTENTION, additional

angioplasty or stenting was performed in 55% of thrombectomy-

treated patients. The thrombectomy group demonstrated higher

rates of favorable functional outcomes (46.4% mRS 0–3 vs.

24.3%), lower mortality rates (31% vs. 42%), but with increased

rates of sICH (6% vs. 1%). The etiology of BAO is also

important given the Chinese population recruited in both studies,

who are likely to have a significant intracranial atherosclerosis

burden (26).

2.4 Tandem occlusions

Tandem occlusions are defined as concurrent intracranial

LVOs and extracranial internal carotid artery (ICA) occlusion or

severe stenosis. With an incidence of 10%–20% of anterior

circulation LVO strokes (48), endovascular treatment of tandem

FIGURE 3

This 78-year-old female with a history of coronary heart disease, atrial fibrillation, hypertension, and hyperlipidemia experienced acute dizziness, gaze

palsy, aphasia, and right-sided weakness, presenting with an NIHSS score of 28 and last known well 3.5 h prior to presentation. (A,B) Brain CT

demonstrated possible hypodense over the bilateral midbrain and pons, with <50% involvement and the left cerebellum. Sagittal (C) and axial (D)

views of brain CTA MIP images demonstrated an upper basilar occlusion (arrow). (E,F) Right vertebral artery injection DSA showed restriction of

contrast flow at the vertebrobasilar junction (arrow) in both anterior-posterior (E) and lateral views (F) before mechanical thrombectomy.

(G,H) A TICI 3 recanalization was achieved after two passes using the SOLUMBRA technique. (I) Unsubtracted x-ray illustrates the stent retriever,

as delineated by arrows. (J–L) A follow-up MRI showed areas of restricted diffusion over the cerebellum, left occipital lobe, and brainstem.
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occlusions is clinically and technically challenging, requiring strict

management of blood pressure, balancing thrombotic and bleeding

risks, and treatment of both extracranial and intracranial lesions.

Tandem occlusions are primarily caused by carotid artery

atherosclerosis or, less commonly, acute dissection (49). The lack

of efficacy of IVT in tandem occlusions has shifted treatment

focus to thrombectomy to achieve sufficient recanalization in

these patients (50).

Various thrombectomy strategies have been proposed for

tandem occlusions, including antegrade approaches (treating the

extracranial lesion first), retrograde approaches (treating the

intracranial LVO first), balloon angioplasty, and conservative

thrombectomy without extracranial intervention. Meta-analyses

and registry data indicate no significant differences in outcomes

between antegrade and retrograde approaches, though the

retrograde method may offer faster recanalization (51, 52). Acute

carotid stenting, while effective in restoring blood flow and

reducing stroke recurrence, requires immediate initiation of

antiplatelet therapy, increasing the risk of hemorrhagic

complications. Despite these risks, stenting has demonstrated

improved odds of functional independence and successful

reperfusion in multiple studies, and patient selection should

consider factors like underlying etiology, core infarct volume, and

patient anatomy (53). A case of a 75-year-old male with NIHSS

score of 14 and severe stenosis within left ICA bifurcation,

treated with angioplasty and aspiration achieving TICI 3

reperfusion, is illustrated in Figure 4.

Emerging evidence supports the overall benefit of

thrombectomy for tandem occlusions. A meta-analysis of 1,373

patients demonstrated improved functional outcomes at 90 days

(OR 1.43) (54), while pooled data from the ETIS and TITAN

registries highlighted better reperfusion and favorable outcomes

with stenting, although with higher rates of non-symptomatic

intracranial hemorrhage (55). However, clinical benefit was less

pronounced in tandem occlusions secondary to dissection,

emphasizing the need for personalized decision-making based on

etiology. Ongoing randomized trials, such as DST-TANDEM,

EASI-TOC, and TITAN, aim to provide more definitive guidance

on optimal management strategies for tandem occlusions

(56–58). These studies are expected to clarify the benefits of

acute stenting and refine patient selection criteria.

3 Personalization by lesion core and
infarct size

3.1 Large core infarcts

Large core infarcts are strokes identified through neuroimaging

as those with extensive areas of brain tissue injury. The Alberta

Stroke Program Early CT (ASPECTS) score characterizes stroke

infarct burden, with earlier stroke trials focusing on small

preprocedural infarct sizes, defined as ASPECTS 6–10 (9, 11).

The stroke core volume on CT perfusion (CTP) or MRI also

defines infarct burden, with the DAWN and DIFUSE-3 trials

selecting patients with median core volumes of 7.6 and 9.4 ml,

respectively (11, 59). Infarct burden is associated with outcomes

after thrombectomy, with a favorable likelihood significantly

decreasing with each ASPECT score (60). Accordingly, upper

limits of 50–70 ml core volume or ASPECTS of 6 were set in

earlier trials to reflect this (28).

The RESCUE-Japan LIMIT was the first trial to randomize

patients with large core infarcts for mechanical thrombectomy

and best medical treatment (Table 4) (61). Selecting patients with

ASPECTS 3–5, thrombectomy significantly improved functional

independence, with 31% of patients achieving 90-day mRS 0–3

scores compared to 12.7% in the best medical treatment group.

Similarly, the SELECT 2 trial defined large infarcts as ASPECTS

3–5 and stroke volume ≥50 ml, with 20.7% of thrombectomy-

treated patients achieving an mRS score of 0–2 compared to 7%

in the medical treatment group (62). The ANGEL-ASPECT trial

also supported these findings, with large infarcts defined as

ASPECTS 3–5 and ASPECTS 0–2 or ≥5 with infarct volumes

70–100 ml (63). This trial showed that 30% of thrombectomy

patients achieved mRS 0–2 compared to 11.6% in the medical

group. National stroke guidelines now support thrombectomy for

select patients with ASPECTS 3–5, recognizing the potential for

improved outcomes and cost-effectiveness in this population

(64). While these trials confirmed the benefits of thrombectomy,

the challenges in treating large infarct strokes with

thrombectomy are well recognized. These patients are at

increased risk for hemorrhagic transformation, cerebral edema,

prolonged hospitalization, and mortality (53). In contrast,

thrombectomy may reduce the need for decompressive

hemicraniectomy by preventing malignant cerebral edema,

potentially improving both survival and quality of life (65).

The Thrombectomy in Stroke with Extended Lesion and

Extended Time Window (TENSION) trial, randomizing patients

with ASPECTS 3–5 within 12 h of onset, was halted early due to

significantly better mRS scores and lower mortality rates in the

thrombectomy group, with comparable sICH rates between the

two treatment arms (66). Recently, the TESLA and LASTE trials

have demonstrated a holistic approach in thrombectomy that

considers salvageable penumbra, infarct location, and patient-

specific factors, in addition to lesion volume. TESLA evaluated

thrombectomy in patients with ASPECTS 2–5 within 24 h of

stroke onset (67). While the 90-day mean-utility mRS score

favored thrombectomy (2.93 vs. 2.27 in the control group), the

adjusted difference did not meet statistical significance. Mortality

rates were similar between groups (35.3% vs. 33.35%), but higher

rates of sICH (4.0% vs. 1.3%) and other hemorrhagic

complications were noted in the thrombectomy group. LASTE

demonstrated that thrombectomy benefits patients with large

infarcts regardless of size, including patients with ASPECTS ≤5

and no minimum ASPECTS limit (68). Among patients with a

median ASPECTS of 2, thrombectomy improved 90-day

functional outcomes (OR 1.63; 95% CI 1.29–2.06; NNT = 4) and

reduced all-cause mortality (36.1% vs. 55.5%). Benefits extended

to quality of life at 90 and 180 days and reduced the rate of

decompressive craniectomy. Like TESTLA, thrombectomy was

associated with higher rates of sICH (9.6% vs. 5.7%) and

procedural complications (6.9%).
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With some patients with large infarcts achieving favorable

recovery, while others with smaller infarcts may have poor

prognoses, careful patient selection based on holistic

considerations rather than infarct size alone is pertinent to

guide therapy (69). The ratio of salvageable penumbra to

infarct core size is critical in determining patient eligibility

and potential benefit. Infarct location also plays a role,

with the involvement of eloquent brain tissue potentially

impacting outcomes significantly (70). Younger patients often

also show better recovery potential, making them more

likely to benefit from thrombectomy even with larger

infarct burdens.

FIGURE 4

A 75-year-old male a history of hypertension presented with altered mental status and aphasia, with NIHSS 14 and last known well 2 h prior to

presentation. (A) Brain CT revealed no apparent hypodensity of the brain parenchymal. (B,C) CTA revealed atherosclerotic plaque resulting in

severe stenosis within the left carotid bifurcation. AP view of digital subtraction angiography (DSA) revealed severe stenosis at the origin of the left

ICA following a left CCA injection before (D) and after angioplasty (E), with improved caliber of the ICA (arrow). (F) AP view of unsubtracted x-ray

illustrates the balloon used for angioplasty (arrows). (G) AP view angiography of the left CCA injection demonstrated an occlusion over the left M2

(arrow). (H) Following mechanical thrombectomy with aspiration technique, a TICI 3 reperfusion was achieved. (I) Despite successful

recanalization, post-procedural MRI confirmed a small left posterior insular cortex infarct.
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3.2 Small core infarcts

Small core infarcts, characterized by minimal established

ischemic damage, offer a larger penumbral region for potential

salvage, making them prime candidates for thrombectomy

(71). The ESCAPE, REVASCAT, SWIFT PRIME, and

EXTEND-IA trials, combined in the HERMES meta-analysis,

demonstrated the significant benefit of thrombectomy in

patients with small core infarcts, as identified by high

ASPECTS scores on non-contrast CT or favorable perfusion

imaging using software like RAPID (5–9). Across these

studies, thrombectomy significantly improved functional

outcomes, with a strikingly low NNT of 2.6 for one-point mRS

improvement and 5 for achieving functional independence

(mRS 0–2). In extended time windows (>6 h), trials like

DAWN and DEFUSE 3 reaffirmed the efficacy of

thrombectomy in late presenters with small core infarcts and

favorable penumbral patterns, selected through advanced

neuroimaging (11, 12). Remarkably, these trials showed no

significant increase in sICH between thrombectomy and

control groups, reinforcing the safety of thrombectomy when

patient selection is rigorously guided by imaging. Retrospective

studies have also shown that simplified imaging strategies,

such as multiphase CTA, can reliably identify patients with

good collaterals and small infarct volumes eligible for

thrombectomy beyond 6 h, with comparable outcomes to more

advanced imaging modalities (72, 73).

4 Personalization by patient-specific
characteristics

4.1 Patients with low NIHSS scores

The National Institutes of Health Stroke Scale (NIHSS) is an

11-category tool designed to quantify neurological deficits in

stroke patients (74). While and NIHSS score ≥6 is typically

associated with more severe strokes and is often an inclusion

criterion for mechanical thrombectomy trials, patients with

NIHSS scores 0–5 comprise a unique subset with distinct

challenges and opportunities for treatment personalization (75).

Low NIHSS scores are observed in 4%–8% of patients with

minor neurological deficits despite harboring an LVO, with these

patients making up 10% of all LVO strokes undergoing

thrombectomy (76, 77). Importantly, ≥50% of these patients

present beyond six hours from symptom onset and up to 35% of

these patients may have unfavorable outcomes at 90 days,

complicating treatment decisions (28). A key challenge in

managing low NIHSS stroke patients it the risk of neurologic

deterioration, defined as an NIHSS increase in ≥2 points (78).

Proximal occlusions, larger thrombus burdens, and failure of

collateral blood flow are predictors of this decline, which is

associated with poor patient outcomes (79).

As low NIHSS patients have been historically excluded from

most thrombectomy trials, evidence for mechanical

thrombectomy in this group is limited to observational studies

TABLE 4 Characteristics of RCTs investigating mechanical thrombectomy in large core infarcts.

Trial RESCUE-
JAPAN LIMIT

(59)

SELECT 2 (60) ANGEL-ASPECT (61) TENSION
(64)

TESLA
(65)

LASTE (66)

Study characteristics

Publication year 2022 2023 2023 2023 2024 2024

Enrolment year 2018–2020 2019–2022 2020–2022 2018–2023 2019–2022 2019–2022

Country Japan Multi-national China Europe and

Canada

USA France and Spain

Patients 203 352 456 253 300 333

Inclusion criteria

Age ≥18 18–85 18–80 ≥18 18–85 ≥18

Time 0–24 h 0–24 h 0–24 h 0–11 h 0–24 h 0–6.5 h

Vessels ICA, M1 ICA, M1 ICA, M1 ICA, M1 ICA, M1 ICA, M1

ASPECTS/

Lesion volume

ASPECTS 3–5 ASPECTS 3–5; infarct

core volume ≥50 ml

ASPECTS 3–5; ASPECTS < 3 with infarct core

70–100 ml; ASPECTS >5 with volume 70–

100 ml

3–5 2–5 0–5 (4–5 for

patients ≥80

years)

NIHSS ≥6 ≥6 6–30 <26 ≥6 ≥6

Baseline mRS 0–1 0–1 0–1 0–2 0–1 0–1

TPA eligibility Not required Not required Not required Not required Not

required

Not required

Outcomes

mRS 0–2 14% vs. 7.8% 20% vs. 7% 30% vs. 12% 17% vs. 2% 14.6% vs.

8.9%

13.3% vs. 4.9

mRS 0–3 31% vs. 12.7% 38% vs. 19% 47% vs. 33% 31% vs. 13% 29.8% vs.

19.9%

–

Mortality 18% vs. 23.5% 38% vs. 42% 22% vs. 20% 40% vs. 51% 35% vs. 33% 36.1% vs. 55.5%

sICH 9% vs. 4.9% 0.6% vs. 1.1% 6.1% vs. 2.6% 5% vs. 5% 4% vs 1.3% 9.6% vs. 5.7%

ASPECTS, Alberta Stroke Program Early CT Score; ICA, internal carotid artery; M1, M1 segment of the middle cerebral artery (MCA); mRS, modified Rankin score; mTICI, modified

thrombolysis in cerebral infarction score; NIHSS, National Institutes of Stroke Scale; NNT, number needed to treat; sICH, symptomatic intracranial bleeding; TPA, tissue plasminogen activator.
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and case series, with no RCTs definitively establishing efficacy.

Retrospective analyses and meta-analyses have yielded mixed

results. While some studies suggest thrombectomy may confer

benefits in select low NIHSS patients, others report no significant

differences compared to best medical therapy, with

thrombectomy associated with higher risks of sICH in some

cases (80–83). Personalization of treatment for low NIHSS

patients involve appropriate patients, which may comprise

higher-risk subgroups like those with proximal occlusions, larger

perfusion deficits, or symptoms affecting motor or language

function (28).

While some retrospective studies suggest that immediate

thrombectomy may lead to better outcomes than rescue therapy

following neurological deterioration in this subgroup of patients,

the heterogeneity of low NIHSS stroke patients necessitates

further research to define optimal selection criteria. Current

guidelines recommend enrolling low NIHSS patients with LVO

into RCTs (25), which ongoing trials like ENDOLOW

(Endovascular Therapy for Low NIHSS Ischemic Strokes) and

MOSTE (Minor Stroke Therapy Evaluation) aim to address the

knowledge gaps in this area (84).

4.2 Older patients—octogenarians and
nonagenarians

The role of patient age in stroke thrombectomy is a critical area

for personalization, particularly in older populations such as

octogenarians and nonagenarians. These groups often present

unique challenges due to a higher prevalence of comorbidities,

disabilities, and frailty, as well as lower brain reserve, which can

influence both the risks and benefits of thrombectomy (85).

While most thrombectomy trials have not excluded older

adults, the average age of participants included is 68 years, with

only 15% over the age of 80 (9). Despite these limitations,

growing data suggest that thrombectomy can be both technically

successful and clinically beneficial for select older patients (86).

Furthermore, studies have shown that older patients can achieve

comparable success rates to younger patients, provided that

procedural challenges such as increased vessel tortuosity, which

can complicate arterial access, are effectively managed (87).

An important association with thrombectomy outcomes for

older patients is their baseline functional status. Studies indicate

that nonagenarians with a baseline mRS score ≤2 are more likely

to achieve favorable outcomes after thrombectomy compared to

those with higher mRS scores. For instance, premorbidly

independent nonagenarians have demonstrated favorable

outcomes in up to 39% of cases, with some studies reporting

similar or even better results compared to octogenarians (85, 88).

However, patients with significant pre-stroke disabilities (e.g.,

mRS >2) often experience poorer outcomes, though exceptions

may exist for otherwise healthy individuals with orthopedic or

non-cognitive impairments (89). While overall outcomes for

older patients are generally poorer compared to younger

populations, thrombectomy has been shown to provide

meaningful benefits (90). Nonagenarians who achieve successful

reperfusion demonstrate greater early neurological recovery,

reduced mortality, and improved 90-day functional outcomes

compared to those managed with thrombolytic therapy alone

(89). However, the range of favorable outcomes is wide, with

rates reported between 12% and 31% (91, 92).

The decision to pursue thrombectomy in older patients should

be individualized, considering baseline functional independence,

comorbidities, and patient-specific goals of care. Currently, the

European Stroke Association guidelines recommend thrombectomy

for octogenarians with appropriate imaging characteristics,

although the case for nonagenarians is not specifically addressed

(10, 93). This highlights the importance of a holistic approach to

decision-making, including the evaluating imaging findings, the

risk of procedural complications, and potential benefits in

restoring independence.

4.3 Patient-specific biomarkers

The paradigm of personalization of stroke thrombectomy has

increasingly shifted to understanding the predictive potential of

patient-specific biochemical, inflammatory, and physiological

markers in optimizing outcomes and minimizing risks. High

blood glucose levels, markers of renal health (e.g., low serum uric

acid to creatinine ratio), and high C-reactive protein have been

found to be predictors of hemorrhagic transformation and poor

outcomes post-thrombectomy (94–96). The TICI-ASPECTS–

glucose (TAG) score, representing the combined effects of

moderate to low recanalization, low ASPECTS, and

hyperglycemia has been validated for predicting sICH post-

thrombectomy, with a 50% increased sICH likelihood per-point

increase in TAG score (97). Baseline glucose, in addition to

increasing age, baseline NIHSS, onset to puncture >6 h, sICH,

and pneumonia were also found to be independent predictors of

poor functional outcomes post-thrombectomy in a Chinese

population (98). The role of systemic inflammation in stroke

recovery and thrombectomy outcomes is also well documented.

Inflammatory markers like the blood cell ratios and indices of

systemic inflammation have been linked to functional outcomes,

sICH, stroke-associated pneumonia, and mortality rates post-

thrombectomy. For example, higher platelet-to-neutrophil (PNR)

and lower platelet-to-lymphocyte (PLR) ratios were associated

with favorable 3-month outcomes post-thrombectomy, with

optimal cutoff values of PNR >41 and PLR <145 (99). Similarly,

patients with a high systemic immune-inflammatory index (SII)

were more likely to develop malignant cerebral edema, which

accounted for 40.3% of the poorer prognosis among these

individuals (100), while systemic inflammatory response index

(SIRI) has demonstrated predictive value for stroke-associated

pneumonia post-thrombectomy (101). Blood pressure variability

(BPV) and other hemodynamic factors also impact

thrombectomy outcomes. Increased pulse pressure variability

(PPV), a parameter of BPV, in the first 24 h post-thrombectomy

strongly predicts 90-day functional outcomes, with adjusted ORs

exceeding 40 for the highest PPV ranges. Similarly, deviations

from a linear systolic blood pressure course, such as failing to
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maintain a gradual decline from 130 to 123 mmHg over 24 h, were

associated with a 47% reduced likelihood of functional

independence (102). High-resolution BP monitoring also suggests

that successive variation in systolic BP over 5-minute intervals

better predicts outcomes compared to static BP measures (AUC

0.74, p = 0.031) (103). The DETERMINE trial is exploring

whether personalized BP management, defined as maintaining

MAP within 10% of baseline, leads to better functional outcomes

compared to the standard target range of 140–180 mmHg (104).

Preliminary observational studies support this approach, as

patients who spent more time outside their personalized

autoregulatory BP limits showed worse 90-day outcomes, with

odds of poor outcomes increasing by 1.84 for every 10% of time

spent above the upper autoregulatory limit. Notably, hemorrhagic

transformation was more frequent when mean arterial pressure

exceeded these limits (16.0% vs. 10.9%, p = 0.042) (105).

Patient clinical, demographic, and biomarker data can be

integrated into predictive algorithms to enhance personalized

thrombectomy. Machine learning (ML) algorithms like random

forest (RF), extreme gradient boosting (XGBoost), and neural

networks have demonstrated improved stroke detection,

thrombectomy candidacy, and prognosis. An RF model, using 35

clinical and demographic variables, was able to predict the

presence of LVOs and appropriately thrombectomy candidates

with AUCs of 0.91 and 0.93, respectively, outperforming

conventional stroke scales (106). By integrating preoperative and

postoperative variables, such as NIHSS scores, an XGBoost

model was able to improve predictive ability for unfavorable

3-month outcomes, enabling timely therapeutic adjustments

(107). Additionally, a Back propagation neural network was able

to predict 3-month mRS post-thrombectomy using patient

clinical data, achieving prediction accuracy, sensitivity, and

specificity of 96.1%, 98.3%, and 87.5%, respectively (108). The

utility of ML applications in personalized stroke thrombectomy

has been confirmed by a recent meta-analysis, which pooled five

studies in predicting favorable 90–day functional outcomes (mRS

0–2) (109). With overall AUC of 0.85, sensitivity of 0.80,

specificity of 0.78, and diagnostic odds of 12.6, the efficacy of

ML-based predictive value holds great potential for optimizing

patient identification for thrombectomy.

4.4 Special patient populations

Special populations refer to patient groups who are often

excluded from major clinical trials, including children, patients

with hematologic abnormalities, active cancer, recent surgery,

collagen vascular diseases, or pregnant women. Although case

series have demonstrated the safety and feasibility of

thrombectomy in many of these populations, these cases are rare,

and more studies are necessary to strengthen the evidence base

of precision thrombectomy care (28). Guidelines support

personalized thrombectomy in neonates, infants, children, or

adolescents, recommending standard radiation dose-minimization

techniques for diagnostic and therapeutic procedures, and non-

ionizing imaging for initial stroke evaluation in children under

10 years of age. A thrombocytopenic status should not preclude

thrombectomy, although hematologic consultation and, in some

cases, platelet transfusion may be required for extremely

thrombocytopenic patients (<20,000/mm3 platelet count). Female

patients should be offered thrombectomy regardless of pregnancy

status, with proper focus on appropriate patient selection,

radiation safety protocols, and multidisciplinary team input

where necessary. Personalized thrombectomy should be also

offered in patients at high risk of diagnostic and therapeutic

complications, including those with active endocarditis, collagen

vascular disease, and recent surgical history. These patient groups

will benefit from prioritization of non-invasive imaging where

appropriate, careful procedural planning, and multidisciplinary

input to mitigate risks of procedural planning or hemorrhagic

transformation (110).

5 Personalization by devices and
approaches

5.1 Personalization through thrombectomy
devices

Mechanical thrombectomy restores cerebral blood flow in

patients with acute ischemic stroke using stent retrievers,

aspiration catheters, or a combination of these devices to remove

the thrombus under fluoroscopic guidance. Device selection and

procedural techniques have evolved significantly, driven by

innovations in catheter systems, guidewires, and thrombectomy

devices, which have enhanced safety, efficacy, and

procedural speed.

Stent retrievers are among the earliest and most established

devices for thrombectomy. These devices are introduced through

a microcatheter, deployed at the site of occlusion, and used to

capture and remove the thrombus by retracting it along the

vessel wall. Stent retrievers can be personalized according to

occlusion site and clot characteristics. More recent innovations of

stent retrievers are optimized for distal vessel occlusions with

vessel diameters 0.5–2 mm (111, 112). Stent retrievers are also

preferred for soft, red-blood-cell-rich thrombi, demonstrating

higher recanalization in these lesions (113). While stent retrievers

are effective, challenges such as vessel tortuosity and clot stiffness

can reduce their efficacy. Additionally, dragging the device across

the endothelium may cause vascular damage (114), a limitation

addressed by emerging techniques combining stent retrievers

with aspiration catheters.

Aspiration catheters remove thrombi by creating negative

pressure through a syringe or pump (115). This approach,

typified by the ADAPT technique, is simpler than stent retriever

thrombectomy and often results in less endothelial damage (116).

Larger bore catheters, such as the Trac Star 088 and Millipede

088, have improved the first-pass effect (FPE) and

revascularization rates by maximizing suction force and clot

capture. Small diameter aspiration catheters have also been

developed for distal vessel occlusion (117). Like stent retrievers,

the efficacy of aspiration catheters also depends heavily on clot
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characteristics, demonstrating efficacy in soft, fibrin-rich clots

(118). Aspiration catheters also favor lesions where the angle

between the catheter and the clot is greater than 125.5° (119).

Aspiration is particularly advantageous in reducing procedural

time and complications like embolization to new territories. It is

also associated with less endothelial damage (116).

Combined techniques utilizing both stent retrievers and

aspiration catheters have emerged to address the limitations of

individual devices. Techniques like Solumbra and SAVE (Stent

Retriever Assisted Vacuum-locked Extraction) capture the

thrombus between the stent and catheter, enhancing

recanalization rates (120, 121). The ASTER (Contact Aspiration

vs. Stent Retriever for Successful Revascularization) and

COMPASS (Comparison of Direct Aspiration vs. Stent Retriever

as a First Approach) trials found no significant difference in

outcomes between stent retrievers and aspiration used as

standalone strategies (122, 123). Similarly, the ASTER2 trial did

not show a significant improvement in final near-complete or

complete reperfusion (eTICI 2c/3) with the combined approach

combined to stent retriever alone, though the combination did

result in higher early successful reperfusion after the first device

pass (124). The VECTOR trial further found no significant

advantage of the combined technique over contact aspiration

alone in patients with susceptibility vessel sign-positive

occlusions (125). Finally, the Separator-3D trial demonstrated

noninferiority of a 3D stent retriever with aspiration compared

to aspiration alone, with no significant differences in clinical or

angiographic outcomes (126).

Combined techniques may still offer practical benefits in certain

clinical contexts, such as clot heterogeneity and vessel tortousity

(127). The addition of balloon guide catheters (BGCs) to these

techniques has traditionally been thought to improve procedural

outcomes and reduce embolic complications (128). However,

recent evidence from the PROTECT-MT trial raises concerns

about their use (129). In this large multicenter RCT, BGC use was

associated with significantly worse 90-day functional outcomes

and a higher, though not statistically significant, rate of mortality

compared to conventional guide catheters. These results challenge

previous assumptions and highlight the need for further studies to

clarify the role of BGCs in modern thrombectomy workflows.

5.2 Personalization through thrombectomy
approaches

While transfemoral arterial access (TFA) is the standard

approach, transradial access (TRA) or direct carotid puncture can

be employed in specific cases. TRA is becoming increasingly

popular among neurointerventionalists due to its reduced rate of

access site complications, improved patient satisfaction, earlier

ambulation, and shorter hospitalization (130, 131). However, this

approach is technically difficult, requiring a steeper learning

curve and specific patient anatomical patterns to ensure

procedural success (132, 133). Early case series have

demonstrated the safety and feasibility of TRA for anterior

circulation LVOs, with results comparable to conventional

transfemoral systems (134). A comprehensive meta-analysis

involving 13 studies and 4,759 patients has also confirmed safety

and efficacy of TRA in acute ischemic stroke, revealing

comparable recanalization rates, first pass reperfusion rates, mean

number of passes, mortality and sICH rates, and post-treatment

mRS and NIHSS scores to TFA (135). TRA is particularly suited

for patients with challenging vascular anatomy, including those

with a high B.A.D. (Bovine arch variant, Aortic arch type, and

ICA Dolichoarteriopathy) score (136, 137). The B.A.D. is a

composite score that assigns points based on the presence of a

bovine arch (1 point), aortic arch type II (1 point) or III

(2 points), and ipsilateral ICA tortuosity or coiling (1 point),

with higher scores (≥2) indicating more difficult access (137).

TRA may also benefit patients with complex comorbidities, prior

vascular procedures, and older age (131, 138). While the growing

evidence supports TRA as a viable alternative in appropriate

patient groups, more studies and integrative radial-specific

catheter development are necessary to establish broader

consensus and widespread adoption.

When TFA or TRA fail due to anatomical constraints, direct

carotid puncture serves as a rescue strategy in improving

angiographic and functional outcomes (139). Direct carotid

puncture allows direct access to the occlusion site, bypassing

tortuous or diseased vessels. This technique allows direct access to

the occlusion site, favoring vessels with high B.A.D. scores and

patients with co-existing vascular pathologies (137, 140). Although

this technique can result in complications of the punctured vessel,

thromboembolic events, and airway compromise, only 1%–2% of

affected patients will require re-intervention (141).

6 Conclusions

Through advances in neurovascular imaging and

developments in thrombectomy devices and approaches,

thrombectomy has revolutionized AIS treatment, with current

evidence demonstrating a shift to personalized approaches to

optimize outcomes. Through careful patient selection that

incorporates patient-specific, lesion-specific, and biomarker-

guided strategies, the paradigm shift in stroke thrombectomy

has expanded patient eligibility criteria, allowing safe and

effective interventions for previously excluded groups. The

increase in patient load requires appropriate distribution of the

neurovascular workforce to ensure equitable access to stroke

thrombectomy. However, challenges persist in refining patient

selection, with ongoing trials aiming to inform treatment

decisions whilst balancing treatment-related risks. Further

studies are warranted to refine the role of patient-specific

biomarkers, incorporating emerging tools like artificial

intelligence to enhance stroke management.
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