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With advancements in computer vision, artificial intelligence, and other cutting-

edge science and technologies, the focus of modern surgical technology has

increasingly shifted towards intelligent, digital, minimally invasive, and precision

approaches. Augmented reality (AR) technology and surgical robotics have

emerged as significant research areas in total hip and knee replacement.

Navigation systems, which are pivotal in both AR and robotic surgery, play a

crucial role in guiding surgical operations using shared techniques. Recent

developments in navigation systems for hip and knee replacement have

focused on more natural, intelligent, and efficient methodologies. The use of

AR and surgical robots for navigation has significantly enhanced the safety and

accuracy of these procedures. Importantly, these technologies eliminate the

need to implant positioning screws or other reference objects into the bone

structure, thereby markedly reducing the risk of severe complications, such as

lower limb pain and fractures. This study reviews the current applications,

main challenges, and solutions associated with AR and surgical robot

navigation systems for total hip and knee replacements.
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1 Introduction

With the rapid advancement of artificial intelligence, precision instruments, computer

vision, and other sophisticated technologies, robot-assisted surgery offers significant

benefits, including minimal trauma, reduced risk of postoperative infections, and faster

recovery. Currently, this technology is extensively applied in total hip and knee

replacements (1–3). The primary advantage of surgical robots is their ability to combine

the precision and dexterity of machines with the expertise of surgeons (4). The surgical

robotic system incorporates multidisciplinary technologies, providing surgeons with

capabilities for surgical planning, positioning, measurement, and enhanced visualization.

These functions significantly improve the accuracy, safety, and reproducibility of

surgical operations (5–8). Moreover, as medical imaging and computer technologies

continue to advance, the concept of robot-assisted surgery has gained acceptance and

recognition in the medical community. This concept encompasses various critical

components, such as virtual surgical systems and surgical navigation systems (9). The

fluency and precision of the surgical robot navigation system are crucial; for instance,

the system involves the preoperative measurement of 3D data and intraoperative real-

time registration of anatomical structures. Using an optical positioning device at the
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robot’s end, it visualizes the patient’s operative field, surgical

instruments, and surgeon’s posture in real-time using the

visualization software, enabling precise navigation (10).

Augmented reality (AR) supplements real-world environments

with computer-generated elements such as sound, video, and

images, creating an enhanced sense of reality (11). This technology

significantly improves the perception of the surgical environment,

particularly for minimally invasive procedures. It not only helps

doctors accurately position targets and improve patients’

postoperative rehabilitation outcomes and quality of life but also

provides a rich visualization of anatomical structures. This

expansion of surgical visibility simplifies complex operations (12).

In surgical applications, AR offers several main advantages: ① It

seamlessly integrates real and virtual scenes, displaying them in

real-time within the surgeon’s field of view, which enhances the

intuitiveness and locality of visual information. The system serves

as an intraoperative navigational aid; ② A three-dimensional virtual

model, reconstructed from two-dimensional tomographic imaging,

compensates for limitations such as restricted visual space, poor

image quality, and lack of depth perception; ③ When preoperative

planning is conducted using a 3D virtual model, more precise and

detailed surgical routes and areas can be designed. This approach

also vividly portrays the spatial relationships among human tissues,

surgical paths, and areas, reducing dependence on the surgeon’s

experience and imagination (13). During surgery, the AR surgical

navigation (ARSN) system visually displays a translucent three-

dimensional model of the target organ within the surgical field,

aiding the surgeon in understanding the anatomy of the area (14).

The application of AR technology in the surgical navigation of total

hip and knee replacements is not constrained by factors such as

cost, space, or equipment maintenance, thereby making clinical

deployment more feasible.

In robotic surgical systems, the integration of AR technology

enhances the system by compensating for reduced sensory

perception, simplifying the surgical process, and enhancing both

the safety and accuracy of operations (11). Currently, the surgical

robot is equipped with a comprehensive human-computer

interaction system that adequately supports the software and

hardware requirements of the augmented reality navigation

system through its own hardware and visualization capabilities.

The incorporation of an augmented reality navigation system in

robotic surgery not only facilitates easier operation but also offers

greater cost-effectiveness (15). This paper reviews the current use

of AR and surgical robot navigation systems for total hip and

knee replacement, addressing the major challenges and solutions

related to the deployment of ARSN systems in these procedures.

2 Augmented surgical navigation
system

2.1 Navigation system based on touch
control equipment

The touch control device operates in the manual input mode,

requiring direct contact during use. Navigation systems that

utilize touch control are exemplified by hand touch screens,

which can function both as input devices to capture surgeons’

movements and output devices to provide tactile feedback (16).

The leading touch interaction technologies include 3D tactile

feedback touchscreens and touch-sense tactile feedback

technology (17–19). However, touch-based navigation systems

present significant challenges in clinical surgery. Surgeons must

often move away from the operation site to interact with the

touchscreen, which disrupts the surgical workflow. This

movement can lead to issues such as hand-eye coordination

disruption and can compromise the surgical procedure.

Consequently, AR navigation systems that rely on touch devices

are seldom used in surgical settings.

2.2 Navigation system based on voice
interaction

Speech recognition technology has evolved into a robust human-

computer interaction method within AR systems, making voice the

preferred mode of interaction in scenarios where traditional modes

(such as hardware devices or touch control) are impractical (20).

In AR settings, direct voice or voice-assisted interactions are

possible. The focus is on the voice recognition engine, with major

engines in the market including Speech API, Via Voice, and

iFlytek (21). Voice interaction navigation systems in surgery offer

several advantages: ① Voice interaction represents a novel, more

convenient, and natural form of interactive control; ② As a close-

range, non-contact type of control, it allows physicians to perform

all control actions from a distance, thereby reducing

contamination risks; ③ Recent studies have shown that integrating

preset voice interaction commands can seamlessly connect the

visualization system of surgery with the motion control system of

the surgical robot. This integration enhances the cohesion of the

robotic surgical system, simplifies the management of multiple

subsystems, and ensures synchronization between visual

information and robot motion (22–24).

2.3 Navigation system based on
somatosensory interaction

A navigation system based on motion-sensing interaction

technology utilizes optical capture principles and sensors or

computer vision equipment to facilitate intraoperative navigation

via the surgeon’s gestures, eye movements, and other physical

activities (25). For example, Ortega et al. used a micro-optical

head-mounted display to show intraoperative perspective images

in spinal fracture internal fixation surgeries. This system allows

surgeons to use gestures to enlarge, shrink, and rotate images,

thereby aiding in understanding the characteristics of the surgical

site. Clinical trials involving 50 cases demonstrated that the

micro-optical system significantly reduced the time surgeons

spent looking at the image displays (26). Real-time position

information of the identified surgical instruments is transmitted

to the HoloLens device, enabling synchronous display of medical
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images, such as surgical instruments and lesion models. This

provides visual displays of lesion images for doctors during

surgery and facilitates lesion positioning and surgical instrument

navigation through gesture interactions (27).

Owing to their convenience and robust interaction,

somatosensory-interaction-based surgical navigation systems are

becoming the primary development direction for total hip and

knee replacement augmented reality navigation systems. Fotouhi

et al. (2018) proposed an AR solution for positioning the

acetabular cup in total hip arthroplasty. This system plans the

placement of an acetabular cup using two-dimensional x-ray

images taken after acetabular reaming combined with three-

dimensional AR visualization technology. It aligns point-cloud

data with the planned path to accurately position the cup (28).

However, the study noted that the initial positioning of the pelvis

in total hip replacements often reduces the accuracy of AR

system image registration (29). To address this issue, researchers

have attempted preoperative pelvic radiography before AR system

image registration during THA by adjusting the angle of the

operating table to enhance the accuracy of the AR navigation

system (30). Total hip replacement poses greater challenges in

special cases such as ankylosing spondylitis, where traditional

surgical methods typically require repeated fluoroscopy to

determine the position of the hip prosthesis. Recent studies have

shown that AR can facilitate 3D imaging, enabling surgeons to

observe the hip joint anatomy in real time (31). Although studies

are limited, existing research confirms that AR navigation

technology can achieve more precise tilt and anteversion angles

in total hip arthroplasty, potentially extending the lifespan of the

prosthesis (32–34).

3 Robot navigation system for total hip
and knee replacement surgery

Owing to the rigid nature of bones compared with that of other

body parts, the application of surgical robots in joint surgery

presents challenges, making the joint replacement robot system a

focal point in orthopedics (35). For total knee replacement, the

navigation system acts as a guide, offering preoperative planning

and assisting doctors in precisely locating the implant position

(36). The primary purpose of the navigation system is to

facilitate operations and enhance surgical safety, making it a

crucial component of robotic surgical systems.

The Mako knee joint replacement surgical robot system,

developed by Stryker, pioneered the integration of an optical

external tracker into the surgical tool navigation system,

accurately facilitating surgical navigation during operations (37).

In 2016, Bell successfully performed a total knee replacement

surgery with the assistance of the Mako surgical robot. The

experimental results indicated that compared with traditional

methods, the installation error in robot-assisted total knee

replacement was maintained within 2° in patients (38). The

French company Medtech introduced the ROSA surgical robot,

which consists of a mechanical arm and navigation system

featuring a 6-DOF robotic arm with tactile sensors and a touch-

screen system workstation integrated into a single platform. The

navigation system utilizes touch interaction technology for robot

registration, target trajectory planning, and intraoperative image

guidance, all of which are completed by the platform (39).

Several studies confirmed that the precision of joint prosthesis

placement in robot-assisted total knee replacement exceeds that

in traditional surgery. Rossi et al. reported that the average error

for the femoral inversion angle and femoral inclination angle in

robot-assisted procedures was 0.5 ± 0.6°, better than the AR

navigation system group’s 0.59 ± 0.55° and 0.7 ± 0.75° (40).

Hampp et al. found that the mean error value for the femoral

inversion angle in robot-assisted total knee arthroplasty

(0.6 ± 0.3°) was significantly lower than in the conventional

surgery group (1.1 ± 1.6°) (41).

In recent years, China has made significant advancements in

the development of joint-replacement surgical robots. Several

domestic models such as HURWA, ARTHROBOT, Bone, and

Honghu have been introduced into the market, showing

promising medium- and long-term clinical outcomes. Specifically,

in the HURWA robotic surgery system, the accuracy of the lower

limb force line reconstruction in total knee arthroplasty patients

reached 81.2%, compared with only 63.5% in the traditional

surgery group. This system can safely and reliably support the

execution of robot-assisted total knee replacements. The robot

integrates cutting-edge technologies such as virtual fixtures and

shared control, enabling precise surgical operations (42).

4 Clinical outcomes from AR and robot
navigation systems

4.1 Clinical outcomes from AR in total hip
and knee replacement

The effect of AR in knee replacement surgery is influenced by

the early negative effect of cutting errors. Some researchers have

attempted a volume-subtraction technique to decrease cutting

error (43). The results showed a significant improvement in

alignment accuracy from 0.55–0.64 to 0.40–0.55 mm, while the

processing time decreased from 12–13 fs/s to 9–10 fs/s (43).

Valenti (44) developed an automatic method for recovering the

pose of the knee in 3D and ensured the implantation of the

prosthesis in the correct pose. The proposed system allows

successful placement of the prosthesis within the planned

coordinates, with minor errors of 2 cm and 2°. In THA, the

differences in radiographic inclination were significantly smaller

in the AR-based portable navigation system than in the

accelerometer-based portable navigation system (2.5 ± 1.7 vs.

4.6 ± 3.1) (45). Even when THA is performed with the patient in

the lateral decubitus position, the AR-HIP system allows the

surgeon to create a 3-dimensional coordinate system for

positional information for formation of the acetabular cup with

the patient in the supine position, which is very convenient for

surgeons (46). One study confirmed that the measurement angle

using AR-HIP was significantly more accurate in terms of

radiographic anteversion than using a goniometer 3 months after
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THA (2.7 vs. 6.8) (47). However, the study showed that the

procedure time was longer in the navigation group (95 min vs.

57 min) (48). In terms of mid-term postoperative outcomes, no

differences were observed between the AR-based portable hip

navigation system and the conventional technique in

improvement in HOOS (27 ± 17 vs. 28 ± 19) at 6 months after

THA (48).

4.2 Clinical outcomes from robot navigation
systems in total hip and knee replacement

A prospective, randomized controlled trial showed that the

operation time in the robot-assisted TKA group was significantly

longer than that in the traditional TKA group, and no significant

difference was observed in intraoperative blood loss between the

two groups (49). Three months after surgery, gait analysis

showed that the flexion and extension angles in the RATKA

group were significantly larger than those in the traditional TKA

group and that the lateral tibial component was significantly

smaller in the RATKA group than in the traditional TKA group,

which was closer to the ideal value (49). Robot-assisted TKA is

associated with reduced postoperative pain, decreased analgesia

requirements, decreased reduction in postoperative hemoglobin

levels, shorter time to straight leg raise, decreased number of

physiotherapy sessions, and improved maximum knee flexion at

discharge compared to those in conventional TKA (50). The

median time to hospital discharge in robot-assisted TKA was

77 h compared with 105 h in conventional TKA (50). Two years

after TKA, the robot-assisted group displayed a trend towards

higher SF-36 QoL scores, with significant differences in SF-36

vitality and role-emotional (51). A systematic review and meta-

analysis showed that RATKA resulted in a better Knee Society

Score than mTKA in short-to mid-term follow-up (52). Compared

with conventional TKA, the RATKA improved component

positioning and alignment (−1.30 to −3.02 degrees) (53).

5 Augmented reality and major
problems facing surgical robot
navigation systems

5.1 Technical challenges

5.1.1 Data transmission delay

The primary purpose of the navigation system is to provide the

surgeon with a three-dimensional model that displays the

anatomical situation and any changes in the patient’s lesions,

thereby facilitating precise pre-surgical planning. Additionally,

the system presents real-time updates on the patient’s surgical

site and ongoing operation, allowing the surgeon to assess the

surgical outcome as it unfolds. During surgery, it is crucial to

ensure that the model is transmitted and accurately projected to

the surgeon-specified location. The hardware must rapidly

process and update the model information in response to the

surgeon’s movements and adjustments, thus demanding high

real-time performance in model transmission and feedback. The

speed of the processor and communication within a computer

system can introduce delays in data transmission, which pose

significant challenges to the clinical implementation of this

technology. A single-center clinical randomized study

demonstrated that using the AR navigation system in total knee

arthroplasty (TKA) added an average of 5 ± 1 min to the

procedure. However, the precision of the surgical incision and

prosthesis placement was superior to that in the traditional

surgery group. These findings underscore the potential benefits

of AR navigation technology in arthroplasty (54).

5.1.2 Information processing capability of the
navigation system

Both AR navigation systems and surgical robot navigation

systems rely on various computer vision technologies to register

the 3-dimensions (3D) model of the patient’s site with real scene

images. During surgery, these systems facilitate surgeon

interactions and guide operations, allowing the real-time

evaluation of surgical outcomes. Consequently, the internal

processor of a surgical robot requires robust information

processing capabilities to ensure that relevant data can be

accessed in real-time. This requirement poses significant

challenges for the processor and memory of surgical robot

systems. As surgical complexity increases, the number of system

model parameters also increases, adding to the computational

load on the internal processor. This escalation demands

enhanced capabilities from graphics processing units (GPUs).

Future research will need to explore various optimization

techniques, such as Bayesian hyperparameter optimization,

integration of the transformer self-attention mechanism, and

gating units, to enhance the efficiency of the internal processor

model and ensure the precision and effectiveness of

intraoperative navigation.

5.1.3 Image registration and tracking
The use of navigation and nail positioning is a prerequisite for

operating navigation systems during joint replacement surgery.

Surgical robot navigation systems typically rely on external

tracking mechanisms that require fixed positioning benchmarks

(navigation and positioning nails) attached to bone and surgical

instruments to identify and guide robotic arm movements (55).

In systems that use reflective balls for optical tracking, a

benchmark must be implanted and secured to the patient’s

tissue, which can be invasive and physically disruptive (56). This

additional step alters the standard surgical workflow, introduces

additional procedural steps, extends the operation time, and

increases surgical risks. Ossendorf and Jung described the world’s

first robot-assisted total procedure in 2006 (57). Bonutti et al.

later confirmed that being overweight and obese are significant

risk factors for positioning needle fractures after robot-assisted

total knee arthroplasty (58). Jung et al. found that repeated

intraoperative implantation of navigation and positioning nails

could lead to abnormal lower limb pain (55).

The static pose needs to be further updated by dynamic target

tracking because the bone inevitably moves during total hip or knee
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replacement. Meanwhile, in a practical setup, such a markerless

tracking and registration algorithm in AR can produce unreliable

registration results, particularly in rotation (59). During tracking,

the initially registered bone pose is continuously updated by

monitoring the optically tracked dynamic reference frame

movement, which results in a long workflow (60) and possible

human-induced errors (61). Markerless tracking and registration

algorithms have been proposed for knee surgery (62). The

segmented femur points were then registered to a pre-scanned

model of the corresponding limb using the iterative closest point

method in real time to obtain the spatial knee pose (63). The

best-reported registration accuracies are 6.66° and 2.74 mm when

the target is held static, which is not acceptable for clinical

applications (64).

5.2 Clinical challenges

Even though the application accuracy can be improved by

different methods to allow for optimized initial patient-to-image

registration, accuracy is constantly decreasing throughout the

surgical procedure and, in the worst case, might even lead to an

unacceptable mismatch in AR or surgical robot navigation

systems (65). Most commercially available navigation systems

enable intraoperative landmark-based registration updates to

overcome alterations in spatial relationships of the reference

array (66). Therefore, readily available and uniquely identifiable

landmarks, such as positioning nails, can be acquired and used at

any time to restore accuracy if a discrepancy is observed in

paired-point registration (66). However, loss of accuracy up to

the point of acquisition (e.g., skin incision, interchange of

reference arrays) cannot be compensated for in this way, and the

same accounts for the effects of knee shift. Moreover, due to the

lack of an intraoperative feedback system, especially fully

automatic robots, any malfunction during the operation has

serious consequences (67). Currently, most joint replacement

surgery robots lack intraoperative sensory feedback systems, such

as touch, toughness, and temperature, which can easily lead to

accidental injuries (68).

5.3 Economic factors

The application of AR and robot assistance comes at an

additional cost compared with that of the conventional

technique. Although a short-term cost analysis on RA-TKA has

been performed, a 90-day episode-of-care cost analysis showed

that reduced costs were possible in robot-assisted TKA compared

with that of the conventional technique because of fewer

readmissions and economically beneficial discharge destinations

(69). Markov decision analysis confirmed that a calculated

surgical volume of at least 253 cases per robot per year is needed

to prove cost-effectiveness, considering predetermined parameter

values (70). At a minimum follow-up of 10 years, the study

found no differences between robot-assisted TKA and

conventional TKA in terms of functional outcome scores, aseptic

loosening, overall survivorship, and complications; however,

considering the additional time and expense associated with

robot-assisted TKA, researchers cannot recommend its

widespread use (71). Meanwhile, another study found that 51%

of robotic UKA manuscripts were industry-funded or had

authors with financial conflicts of interest compared with 29% of

non-robotic UKA papers (72).

5.4 Surgeon training and cognitive load

A learning curve of operative time has been found with the

introduction of RATKA surgery, which varies based on the

surgeon’s experience and volume (73). Many studies have

reported the learning curves associated with the introduction of a

different number of RATKA cases, ranging from 6–43 cases (36,

74, 75). One study found that the introduction of the RATKA

system was associated with a learning curve for an operative time

of 8.7 cases (76). The operative times were similar between the

RATKA and conventional TKA groups. The short learning curve

implies that the RATKA system can be adopted relatively quickly

by a surgical team with minimal risk to patients (76).

Meanwhile, a study showed that haptic feedback by AR can

guide participants using a tool to submillimeter and subdegree

accuracy with little training (77).

6 Augmented reality-robotic surgical
navigation system solutions

Total hip and knee replacement surgery involves not only bone

tissue but also the surrounding soft tissue. Surgical procedures lead

to shifts in tissue position, which increases the complexity of image

tracking. Researchers have explored various solutions to address

image registration and tracking challenges in navigation systems.

Mur-Artal et al. (78) proposed the ORB-SLAM 2 (Oriented FAST

and Rotated BRIEF Simultaneous Localization and Mapping 2)

method, which effectively eliminates accumulated errors in image

tracking and can automatically relocalize after tracking failures.

Bescos et al. (79) introduced a deep learning-based surgical scene

segmentation method capable of identifying real-time soft tissue

displacement in a dynamic environment, thereby improving

synchronous localization and mapping accuracy.

The AR reality joint replacement surgical robot system

effectively overcomes the reliance on navigation positioning nails

for intraoperative image registration and tracking by utilizing 2D/

3D medical image registration technology. The system accurately

guides the surgical robot during the procedure by aligning

preoperative 3D images with real-time intraoperative 2D images.

Liao et al. (80) leveraged the characteristics of x-ray 2D images.

They employed digitally reconstructed radiographic technology to

directly measure registration errors between 3D CT images and

intraoperative x-ray images, thereby enhancing positioning accuracy.

To address the issues of image transmission delays and

prolonged system feedback processing times caused by the high

computational complexity of the internal model in surgical robot
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navigation systems, researchers have explored lightweight

optimization of deep learning algorithms. These improvements

enhance the model’s information processing capabilities, reduce

system feedback time, and ensure real-time data and image

transmission. Researchers successfully achieved 3D/2D image

registration of spinal joints using a reinforcement learning

algorithm, demonstrating a mean square error of just 0.0858 and

an average processing time of only 6.54 s (81). Additionally,

studies have confirmed that segmenting intraoperative 2D images

using a DeepLabv3+ neural network, enhanced by an attention

mechanism and contour extraction, significantly improves

registration accuracy with preoperative 3D images (82).

7 Future and outlook

The AR–surgical robot navigation system significantly

improves the safety and accuracy of total hip and knee

replacement procedures. Unlike traditional methods, it eliminates

the need for implanting positioning screws or other reference

objects on the bone structure, effectively reducing the risk of

serious complications such as lower limb pain and fractures.

Current research on AR surgical robot navigation systems in

joint surgery primarily remains at the stage of technical

feasibility exploration (83). Considerable heterogeneity exists

among studies. Designing multicenter, randomized controlled

trials in the future should include primary clinical outcomes such

as operation time, intraoperative blood loss, lower limb alignment,

and prosthesis position, as well as secondary clinical outcomes

such as visual analog scale scores, range of motion, function

scores, and gait analysis. Meanwhile, as science and technology

continue to advance, reference should be made to robot safety

standards, such as ISO 13482, to standardize the clinical

application of surgery robots and augmented reality (84, 85).
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