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Background and objectives: Objectively studying patient outcomes following

surgery has been an important aspect of evidence-based medicine. The

current gold-standard—patient reported outcomes measures—provides

valuable information but have subjective biases. Smartphones, which passively

collect data on physical activity such as daily steps, may provide objective and

valuable insight into patient recovery and functional status. This study aims to

provide a methodological guide for data collection and analysis of smartphone

accelerometer data to assess clinical outcomes following surgery.

Methods: Patient health metrics—namely daily steps, distance travelled, and

flights climbed—were extracted from patient smartphones using easy-to-

download applications. These applications upload the data that smartphone

accelerometers passively collect daily to a HIPAA compliant encrypted server

while de-identifying the patient’s personal health information. Patients were

consented in multiple settings—synchronously during clinical visits or

asynchronously over the phone—and could be enrolled during the initial pre-

operative visit or well after the surgery. With the patient data acquired, the

peri-operative window of selection is determined based on the needs to the

study. The timeseries data is then statistically normalized to account for

individual baselines and smoothened over a 14-day moving average to

minimize noise. Mathematical analysis can be harnessed to study quantifiable

recovery and decline periods, which provide continuous and nuanced insight

into patient’s health throughout their spine disease and treatment course.

Additionally, integrating clinical variables permits computational machine

models capable of predicting patient trajectories and guiding

clinical decisioning.

Conclusion: Smartphones offer a new metric for studying patient well-being and

outcomes after surgery. The research with them is in its nascent stages but

further studies can potentially revolutionize our understanding of spinal disease.

KEYWORDS

accelerometer, activity tracking, big data, biometrics, smartphone

TYPE Curriculum, Instruction, and Pedagogy
PUBLISHED 12 August 2025
DOI 10.3389/fsurg.2025.1613915

Frontiers in Surgery 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fsurg.2025.1613915&domain=pdf&date_stamp=2020-03-12
mailto:jang.yoon@pennmedicine.upenn.edu
https://doi.org/10.3389/fsurg.2025.1613915
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsurg.2025.1613915/full
https://www.frontiersin.org/articles/10.3389/fsurg.2025.1613915/full
https://www.frontiersin.org/articles/10.3389/fsurg.2025.1613915/full
https://www.frontiersin.org/journals/Surgery
https://doi.org/10.3389/fsurg.2025.1613915
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


1 Introduction

Objectively studying patient well-being and perioperative

outcomes has been the cornerstone of evidence-based medicine

that has guided policy making and standard of care for the past

few decades (1). Neurosurgeons, especially spine specialists, have

harnessed patient-reported outcome measures (PROMs) such as

EQ-5D, a measure of quality of living, and Oswestry Disability

Index (ODI), a measure of disability, to understand patient well-

being (2, 3). However, these survey-based metrics have certain

disadvantages such as their discrete nature, subjectivity, patient

recall bias, and the intra-administration variability (4, 5). These

drawbacks make PROMs suboptimal for capturing the varied

clinical progress that patients with complex neurological

conditions, such as vestibular schwannomas, demonstrate over

the course of their recovery (6, 7). Similarly, in multi-level

spondylolisthesis, functional gains may continue despite PROMs

reaching a ceiling, missing important aspects of recovery (8).

There is a need for new metrics that capture patient well-being

more objectively and on a more minute scale.

Smartphones can capture patient daily activity with high-

fidelity accelerometers. Physicians and scientists have investigated

this new modality to decode a patient’s physical activity

outcomes over the past decade (9, 10). Recent literature

harnessing smartphone-captured steps and mobility datapoints

have demonstrated that these up-and-coming mobility variables

can quantify and describe patient well-being following surgery

(11–14). For instance, Ahmad et al. have highlighted how patient

declines and recoveries can be studied in a data-driven manner

and quantified in discrete epochs correlating with clinical

worsening or improvement of pathologies (15). Other papers

have further validated smartphone-based metrics by

demonstrating their correlation with pain-related PROMs such as

VAS Pain and PROMIS Pain Interference scores (16). Chauhan

et al. also highlighted the value of smartphone-captured steps for

differentiating recovery trajectories between lumbar fusion and

lumbar decompression patients—a step toward identifying

distinct recovery phenotypes, or patterns of functional

improvement (17).

Mobility measures are particularly useful to measure in patients

presenting with spine pathologies and movement disorders, which

can present with complex pre-operative and post-operative courses.

For example, while higher physical activity following lumbar spine

surgery is associated with improved outcomes (18), it is also

associated with increased pain (19, 20), something that data-

driven phenotyping may potentially explain. This nuanced

picture of patient activity provided by smartphones, when used

simultaneously with the existing PROMs, provides a promising

avenue to elucidate what contributes to desirable outcomes

following surgery.

Most neurosurgical research harnessing smartphone-captured

metrics so far has been spine-focused. Future work should

expand not only to include broader patient populations but also

to capture patients of other subspecialties within and outside of

neurosurgery. Our group initiated the work on smartphone-

captured accelerometry at a large academic center in 2020 and

has since executed multiple studies and analyses. In this

manuscript, we aim to share our experience and the

methodologic steps for executing the studies harnessing patient

smartphone-captured physical activity metrics.

2 Methods

This manuscript is structured as a descriptive methods paper

intended to guide researchers in implementing smartphone-based

accelerometry for clinical outcomes research.

2.1 Institutional approval and informed
consent

Acquisition of patient smartphone accelerometer data and

informed consent was approved by the Institutional Review

Board (IRB #843229) on 12/02/2021. Data collection began in

December 2021 and is ongoing as part of an active, longitudinal

research initiative.

2.2 Data acquisition

2.2.1 Patient populations
The methodology described in this paper has been applied

across a variety of neurosurgical patient populations, including

individuals undergoing lumbar fusion for degenerative spine

disease, cervical spine procedures, peripheral nerve surgery, and

craniotomies. While most of our prior analyses have focused on

patients with lumbar degeneration, the data acquisition pipeline

and software infrastructure are generalizable across clinical

subspecialties. In individual outcome studies applying this

framework, patients are selected and stratified based on clinical

presentation (e.g., neurogenic claudication, lumbar

radiculopathy), with strict inclusion/exclusion criteria to ensure

comparability across surgical cohorts. In general, eligibility

criteria for participation included patients aged ≥18 years, fluent

in English, in possession of an Apple iPhone, and able to provide

informed consent for data sharing. Specific inclusion or exclusion

criteria may vary slightly by study focus and are defined in

individual project protocols.

2.2.2 Software
Relevant health metrics from each patient’s smartphone were

extracted using an application such as Kinesiometrics

(Kinesiometrics Inc., Miami, FL, USA) or QS Access (Quantified

Self Labs, San Francisco, CA, USA), which accesses stored health

information. Such applications access a smartphone’s integrated

health application programming interface (API) which stores

health metrics. Our studies limited enrollment to patients with

Apple iPhones (Apple Inc., Cupertino, CA, USA) since, unlike

other smartphones, the Apple HealthKit API retrospectively
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stores health data, enabling retrospective data collection. For

example, iPhones typically collect health information using

accelerometers starting the day of purchase, yielding substantial

pre-operative and post-operative time points for patients.

Additionally, mobility data, such as steps-per-day, is recorded

hourly, providing highly granular and objective information

pertaining to the patient’s functional recovery. Upon

downloading the application, the patient elects to allow the

health points stored on their smartphone to be shared to an

encrypted HIPAA compliant server that removes identifying

information and assigns a unique identifier number to their

record. Each time a patient signs in to the application thereafter,

updated health information is returned to the server, enabling

prospective study enrollment and data collection.

2.2.3 Asynchronous data collection
Patient consent and data acquisition can be acquired using 2

main methods: asynchronous patient calling and consent, or

synchronous patient enrollment during perioperative clinical

visits. Asynchronous enrollment requires institutionally trained

staff to individually call each eligible patient to receive informed

consent. Research assistants, such as an undergraduate or

medical students, are given a standardized script approved by the

Institutional Review Board, first explaining the study purpose

and aims. After obtaining consent, the patients are guided

through downloading the approved software to their

smartphones, creating a unique account, and enabling transfer of

stored accelerometer data. If a research assistant fails to connect

with the patient upon first calling attempt, a voicemail message

is left with a return number. If the patient cannot be reached on

three different occasions, the patient is excluded from the

study (Figure 1).

In a typical recruitment cycle, all neurosurgical patients who

were at least one-year post-operative were eligible for outreach.

Of the eligible pool, 10%–20% of patients who were contacted

were both successfully reached and consented, which is in

accordance with previous studies (15, 21). Reasons for exclusion

included inability to reach the patient after three call attempts,

patient refusal to consent to data transfer, or lack of usable

smartphone accelerometer data (e.g., insufficient historical data

or HealthKit not enabled).

2.2.4 Synchronous data collection
Patients can also be consented to participate prospectively or

retrospectively in the study through synchronous enrollment

during clinical encounters. For retrospective enrollment, when a

patient is returning for a post-operative visit, a research assistant

can accompany the physician conducting the visit and aid the

patient in downloading the application and transferring health

data at the conclusion of the clinical visit. A QR code is used to

easily direct the patient’s smartphone to the application

download on the app store. Depending on the length of time

since surgery, this step alone can yield adequate post-operative

time points for further analyses. For patients undergoing surgical

intervention, enrollment can be done prospectively prior to their

surgery, and the application, once downloaded on patient

smartphones, can continue to upload data to the institutional

serve post-operatively.

FIGURE 1

Synthesis of data collection workflow.
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2.3 Post-acquisition pre-processing

Once patient data is acquired, researchers can evaluate key

mobility metrics such as daily steps, flights of stairs climbed, and

total distance traveled, typically from an exported spreadsheet.

These metrics are considered in relation to the surgery date, so

defining the peri-operative window is essential and should align

with the study’s aims. While most studies examine a period of at

least one year before and one year after surgery, this timeframe

may be adjusted based on the specific project requirements. After

selecting the analysis window, patient data is statistically

normalized to account for individual baselines and smoothed

over a 14-day moving average to minimize noise and identify

true trends. For higher-resolution studies, a shorter smoothing

window may be used, though this can introduce additional noise.

This moving average technique attempts to detect short-term

signal artifacts, reduce outliers, and remove erroneous

measurements, and it has been well-described in similar

applications across various medical specialties (22–24). This

normalization is critical for cross-patient comparisons, as it

adjusts for natural baseline differences. For instance, a sedentary

patient averaging 4,000 steps daily would experience a more

significant impact from a 1,000-step increase post-surgery than a

highly active patient averaging 12,000 steps. Employing

normalized data frames that highlight mobility changes in terms

of standard deviations allows researchers to mitigate baseline

discrepancies and better compare outcomes. To ensure adequate

data quality, we included only patients with at least one year of

pre-operative and one year of post-operative activity data.

Furthermore, any patient-months with more than 20% missing

or zero-activity days were excluded from analysis to minimize

bias from incomplete data capture.

2.4 Analytics pipeline

Following acquisition and preprocessing, the analytical

potential of the data is vast and adaptable to the study’s

objectives. Even a single patient with a year’s worth of pre- and

post-surgical activity data yields 730 data points, forming a rich,

longitudinal mobility profile. Analyzing such extensive datasets

requires robust computational tools and programming to derive

insights efficiently.

In our analytical workflows, we have utilized both quantitative

and qualitative methods. For example, in Ahmad et al., we used

pooled, data-driven approaches to segment perioperative mobility

into five distinct “epochs”: preoperative baseline, acute

preoperative decline, immediate postoperative recovery, full

recovery, and secondary decline (15). Thresholds for activity

changes—measured in standard deviations—were established to

quantify recovery and decline periods, which were then mapped

alongside clinical symptom timelines to provide a detailed view

of patient trajectories. These stages were validated against clinical

documentation in 92% of patients, demonstrating a strong

correlation between mobility-derived and clinician-documented

recovery trajectories. Notably, 79% of patients ultimately achieved

full recovery, defined as a sustained 80% improvement in activity

above their preoperative baseline (P = .002). Similarly, in

Chauhan et al., we compared two surgical approaches—lumbar

fusion and lumbar decompression—by examining the duration

and rate of activity changes within these epochs (17). Activity

data revealed significant differences in both recovery duration

and total improvement between the groups, highlighting how

continuous mobility metrics can capture nuanced differences in

real-world functional outcomes. For example, decompression

patients tended to show faster return to baseline activity, while

fusion patients had a slower but more sustained increase in steps

over time.

Additionally, we integrated clinical variables such as age, BMI,

and Charlson Comorbidity Index with quantitative mobility data to

create supervised machine learning models—including logistic

regression, random forest, and XGBoost—capable of predicting

the likelihood of a patient experiencing decline after an initial

recovery phase (25). These models incorporated features such as

recovery duration, activity trends, age, and BMI, with the

random forest model achieving the highest predictive accuracy

(86.7%). While defining recovery and decline in discrete epochs

provides a useful framework for assessing patient outcomes,

treating activity data as a continuous stream has distinct

advantages. Continuous metrics, such as the proportion of the

post-operative period during which a patient exceeds pre-

operative baseline activity levels, offer a less biased and more

comprehensive view of recovery compared to epoch-based

methods. This continuous approach is particularly valuable for

comparing multiple patient cohorts, such as socioeconomic

quintiles (26), in studies focused on healthcare disparities, as it

captures subtle shifts and patterns in patient mobility without

being limited by arbitrary categorizations (Figure 2).

3 Discussion

The present methodological manuscript examines the utility

and potential of smartphone accelerometer data in assessing

mobility outcomes for spine surgery patients. By leveraging

routinely collected, passively monitored data such as daily step

counts, our methodology seeks to address some limitations

inherent in traditional PROMs, including subjectivity, recall bias,

and discrete data collection intervals (27). The use of continuous,

clinically meaningful mobility metrics presents a promising path

forward for understanding post-surgical recovery trajectories,

with the potential to refine patient phenotyping and

treatment personalization.

Prior work has attempted to categorize patient outcomes

according to PROMs following spine surgery (28, 29), but our

experience aligns with emerging efforts to expand beyond

conventional PROMs. Previous studies have demonstrated that

significant events in a patient’s recovery can be identified

through activity data (9–11, 30). These studies reveal patterns of

decline and recovery that align with clinical symptoms,

supporting the idea that smartphone-based metrics can serve as
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reliable proxies for assessing patient progress. Further work

validates the approach by illustrating that recovery trends differ

between surgical procedures, such as lumbar fusion vs. lumbar

decompression, showcasing the granularity that smartphone data

can provide for comparative effectiveness research (17). Future

efforts will focus on validating smartphone-derived activity

metrics against conventional recovery endpoints such as PROMs,

timed functional tests, and return-to-activity milestones to

further establish their clinical utility.

While our methodology harnessed passively collected health

data that is stored retrospectively, other groups have analyzed

biometric information through wearable devices. One group used

Apple Watches (Apple Inc., Cupertino, CA) on 30 cervical

spondylosis patients to compare their functional activity before

and after surgical intervention (30). The same team used the

Apple Watch to estimate physical activity leading up to elective

surgery for degenerative spine disease (31). Another group used a

smartphone application to automate PROMs collection post-

operatively to actively track outcomes and reduce additional

visits (32). Although wearables may be even more accurate at

measuring patient physical activity than smartphones, they are

costlier to harness and post a greater barrier to entry than using

smartphones, which are more widely used.

3.1 Unlocking the future of mobility metrics
and big data in medicine

Smartphone accelerometry data is emerging as a valuable tool

for uncovering associations between surgical procedures and their

outcomes. The extensive, longitudinal activity data captured by

smart devices enables the creation of statistical and predictive

models by leveraging high-fidelity data across substantial time

periods. The concept of “big data”—utilizing large datasets to

identify meaningful mathematical patterns—is rapidly becoming

a powerful approach for clinical prognostication and decision-

making (33). Unlike traditional measures that provide infrequent

snapshots of a patient’s recovery stages, objective activity data

provides significantly finer temporal resolution.

Furthermore, smartphone-based data collection is inherently

scalable and could be applied across a wide range of patient

populations and clinical contexts. The asynchronous data collection

methods employed in this study streamline patient enrollment and

data acquisition, making it feasible to implement in both high-

resource academic settings and more constrained healthcare

environments. As smartphone ownership is nearly universal and

essential to many people’s lives (34), this approach has the potential

to bridge gaps in patient monitoring, providing a cost-effective,

minimally intrusive means of tracking recovery even for patients in

remote or underserved areas. This accessibility may help address

disparities in healthcare outcomes by enabling continuous,

standardized data collection across diverse demographic groups.

Future directions for this research involve extending this

methodology to broader patient populations, integrating

accelerometer data with other clinically meaningful health metrics,

and incorporating machine learning techniques to enhance

predictive capabilities. For example, applying machine learning

models to these data could help identify patients at higher risk of

postoperative decline, thereby allowing for targeted interventions.

Ultimately, we believe that the future of spine surgery outcomes

will use functional mobility data in tandem with traditional

PROMs, and correlations between smartphone-based mobility and

FIGURE 2

Dashboard integrating PROMs and patient activity data into electronic health record.
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VAS have already been reported (16). Studies involving non-spine

populations, as well as non-surgical cohorts, could also reveal

further applications, such as in chronic pain management or other

movement disorders, broadening the relevance of smartphone-

based metrics in neurosurgery and beyond.

3.2 Barriers to adoption: technological,
logistical, and data integration challenges

Despite its advantages, smartphone-based data collection

presents notable challenges that must be addressed to enable wider

adoption. One limitation of this study is its reliance on Apple

iPhones, which reduces generalizability to patients who use other

devices. However, retrospective data is not stored on the Android

Health Platform API, so Android users can only be enrolled in

prospective studies. This platform-specific approach excludes

Android users and others, potentially creating biases in patient

sampling. Expanding the compatibility of data collection tools

across platforms is necessary to ensure more representative

datasets and scalability. Further, variability in smartphone use and

patient engagement can affect data quality. Patients may alter their

behavior when aware their activity is being monitored, introducing

a potential Hawthorne effect that could skew results for

prospective studies. Additionally, this method relies on consistent

smartphone usage, which may be less applicable for older

populations or individuals unfamiliar with smartphone technology.

Managing a centralized database for smartphone-based mobility

data also comes with institutional, legal, and financial challenges.

From an institutional standpoint, maintaining such a repository

requires significant investment in secure server infrastructure and

skilled personnel to oversee data handling and compliance.

Legally, these systems must adhere to stringent regulations, such as

HIPAA, to protect patient privacy and prevent data breaches. The

encryption and de-identification processes, while necessary, add

layers of complexity to data management. Financially, these efforts

require ongoing funding, not just for infrastructure and staff but

also for licensing software and maintaining interoperability with

evolving smartphone platforms.

Another practical challenge lies in obtaining informed consent

and enrolling patients. This process often involves individualized

outreach, including phone calls to guide patients through the

consent process and app installation. Such methods are labor-

intensive and time-sensitive, particularly in asynchronous

enrollment scenarios, where the inability to connect with patients

may result in incomplete participation. Streamlining this process

through automated or simplified workflows could improve

recruitment rates and reduce resource burdens.

A further consideration is the integration of smartphone

mobility data with clinical data, such as electronic health records

(EHRs). Aligning these disparate datasets to ensure accuracy and

consistency can be time-intensive and logistically complex. The

effort required to synchronize activity metrics with detailed

clinical variables may delay analyses or require substantial

institutional support. However, this integration remains crucial

for contextualizing mobility data within the broader framework

of patient health and surgical outcomes.

4 Conclusion

The present work illustrates a practical framework for conducting

smartphone accelerometer-base mobility research and its power to

complement and even enhance traditional outcome measures. By

leveraging familiar technology in innovative ways, we can advance

our understanding of recovery patterns and improve patient

outcomes. As our understanding of objective patient metrics

expands, integrating such data into routine clinical practice could

transform patient monitoring, providing insights that are both

actionable and personalized. By sharing our methodology and the

insights gained from our experience, we hope to encourage further

research and wider adoption of smartphone-based patient

monitoring, ultimately contributing to a more comprehensive and

individualized approach to patient care in spine surgery.
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