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Background: Persistent pain is a common complication following percutaneous

transforaminal endoscopic discectomy (PTED) for lumbar disc herniation.

Identifying associated risk factors and developing a predictive model are

crucial for guiding clinical decisions. This study aims to utilize machine

learning models to predict persistent pain, identify key influencing factors, and

construct a risk model to assess the likelihood of persistent pain.

Methods: We first compared baseline characteristics and pathological indicators

between patients who developed persistent pain and those who did not after

PTED. Significant factors were used as input features in four machine learning

models: Logistic Regression (LR), Support Vector Machine (SVM), XGBoost, and

Multilayer Perceptron (MLP). Each model was optimized through grid search

and 10-fold cross-validation. Performance was evaluated using ROC curves, F1

score, accuracy, recall, and precision. Models with AUC values exceeding 0.9,

specifically XGBoost and MLP, were selected for SHAP visualization and risk

prediction model construction.

Results: Among the fourmachine learningmodels, XGBoost andMLPachieved the

best performance, with AUC values of 0.907 and 0.916, respectively. SHAP analysis

identified a history of lumbar spine trauma and herniation calcification as key

features positively influencing persistent pain risk. Elevated inflammatory markers

(e.g., CRP, ESR, and WBC) and older age also significantly impacted predictions.

Using the most important features from XGBoost and MLP, a risk prediction

model was constructed and externally validated, achieving an AUC of 0.798,

indicating good predictive accuracy.

Conclusion: History of lumbar spine trauma, herniation calcification, and

inflammatory markers are important predictors of persistent pain after PTED.

The risk prediction model based on XGBoost and MLP shows high predictive

accuracy and can serve as a valuable tool for clinical decision-making.
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1 Introduction

Lumbar disc herniation is a leading cause of lower back and leg

pain, significantly affecting patients’ quality of life and imposing

substantial burdens on both society and families (1–3). With

advancements in minimally invasive techniques, percutaneous

transforaminal endoscopic discectomy (PTED) has emerged as a

key treatment for lumbar disc herniation (4–6). This approach

minimizes surgical incisions and reduces damage to surrounding

tissues, offering benefits such as faster recovery and fewer

complications, which has led to its widespread adoption in

clinical practice (7). However, despite the overall success of the

procedure, some patients continue to experience persistent

postoperative pain, which extends the recovery period and

adversely impacts their quality of life (8). The mechanisms

behind this persistent pain are not yet fully understood, and

accurately identifying high-risk patients before surgery remains

challenging, complicating clinical management.

In recent years, machine learning has become increasingly

prominent in medical research and clinical applications (9).

Through training and optimization with large datasets, machine

learning models can identify hidden patterns within complex

data, significantly improving the accuracy and stability of disease

prediction, especially for complex phenomena such as

postoperative persistent pain (10). In this study, we applied four

machine learning models—Logistic Regression (LR), Support

Vector Machine (SVM) (11), XGBoost (12), and Multilayer

Perceptron (MLP) (13)—to explore the effects of various features

on persistent pain following PTED. By comparing the

performance of these models, we selected the optimal model and

used SHAP (Shapley Additive Explanations) values to interpret

the impact of each feature on the prediction outcome, clarifying

the role of key risk factors in persistent pain.

Through this research, we aim to identify the key factors

contributing to persistent pain following lumbar disc herniation

surgery and develop an effective risk prediction model. This

model is intended to support clinical decision-making by helping

clinicians identify high-risk patients prior to surgery, tailor

individualized rehabilitation plans, and ultimately improve

postoperative quality of life. We hope that the findings from this

study will not only deepen the understanding of persistent pain

after PTED but also provide valuable insights for managing other

types of postoperative pain.

2 Materials and methods

2.1 Patient selection

Patients with lumbar disc herniation who underwent

percutaneous transforaminal endoscopic discectomy at our

hospital were retrospectively collected between May 2021 and

May 2023 for the training cohort, and between June 2023 and

June 2024 for the validation set. The former served as the

training set, while the latter was used as the external validation

set. Inclusion criteria were as follows: (1) age between 18 and 75;

(2) grade of spinal spondylolisthesis≤Grade I; (3) Pfirrmann

Grading of Grade II or Grade III; (4) lumbar segments involved

were L3–L4, L4–L5, or L5–S1. Patients were divided into a

persistent pain group and a non-persistent pain group based

on the presence of persistent pain postoperatively. Exclusion

criteria included: (1) presence of other diseases affecting the

structure or function of the lumbar spine; (2) undergoing other

interventions during follow-up that may influence lumbar pain

(such as spinal fusion surgery or nerve block therapy); (3) severe

hepatic or renal dysfunction; (4) serious systemic diseases such

as malignancies; (5) severe mental or psychological disorders

(e.g., major depression or severe anxiety) or poor treatment

compliance; and (6) missing key data. Persistent pain was

defined as a VAS score≥ 4 and SF-36 scores < 50 in the pain and

physical function domains at the 1-month postoperative follow-

up. In the training set of 450 cases, 54 experienced postoperative

persistent pain.

2.2 Data collection

We collected baseline characteristics and pathological

indicators for each patient, including age, gender, BMI, history of

lumbar spine trauma, duration of disease (whether more than

6 months), herniation calcification, spondylolisthesis grade,

Pfirrmann Grading (14), lumbar segments (L3–L4, L4–L5, L5–

S1), sagittal range of motion (sROM), and inflammatory

indicators [C-Reactive Protein [CRP], Erythrocyte Sedimentation

Rate [ESR], and White Blood Cell Count [WBC]]. These data

were obtained from patient medical records and preoperative

imaging results.

2.3 Machine learning model construction

To predict the occurrence of persistent postoperative pain, we

selected four commonly used machine learning models for

analysis: Logistic Regression (LR), Support Vector Machine

(SVM), XGBoost, and Multilayer Perceptron (MLP). All input

features were normalized before training to ensure consistency

across different feature scales during model training. The DeLong

test was used to perform pairwise comparisons of AUC values

between models, with a P-value < 0.05 indicating a statistically

significant difference in AUC.

2.4 Model tuning and validation

To optimize model performance, we employed grid search

combined with 10-fold cross-validation to fine-tune the

parameters of each model. In this process, the dataset was split

into 10 subsets, with 9 subsets used for training and 1 subset for

validation in each iteration. After completing all 10 iterations, the

average performance metrics were calculated. The evaluation

metrics included the area under the ROC curve (AUC), F1 Score,

Accuracy, Recall, and Precision.
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2.5 SHAP value analysis

To understand the prediction mechanism of the machine

learning models, we used SHAP (Shapley Additive Explanations)

values to explain the contribution of each feature to the

prediction results (15). SHAP values quantify both the positive

and negative impacts, as well as the importance of each feature

on the prediction outcome, by assessing each feature’s influence

on the model output across different scenarios. We used SHAP

values to analyze the direction and magnitude of each feature’s

effect on predicting persistent pain.

2.6 Risk model construction and validation

Based on the most important features identified through SHAP

analysis, we constructed a simplified risk model to predict the risk

of persistent postoperative pain. The primary formula was:

Risk Index ¼ SHAP�Feature[1] þ SHAP�Feature[2]

þ SHAP�Feature[3]

The SHAP values represent the average SHAP values from our

chosen machine learning model. The top three important

features were selected as input variables, and the model

performance was validated on an external validation set. Model

performance was evaluated using the AUC to assess its

predictive capability.

2.7 Statistical analysis

All statistical analyses were conducted using R software,

primarily utilizing the caret (16), iml, and shapviz packages.

A P-value less than 0.05 was considered statistically significant.

Continuous variables were presented as median (range) and

compared using the Mann–Whitney U-test, while categorical

variables were expressed as frequency (percentage) and analyzed

with the Chi-square test or Fisher’s exact test, as appropriate.

3 Results

3.1 Differences in baseline characteristics
and pathological indicators between
patients with and without persistent pain

The results showed that patients with persistent pain were

older, had a higher proportion of lumbar spine trauma history,

and a significantly higher percentage of disease duration

exceeding 6 months. These patients also had higher rates of

herniation calcification, mild spondylolisthesis (Grade I), and

Pfirrmann Grade III, with a significant increase in L4-L5

segment involvement. Additionally, levels of inflammatory

markers, including C-reactive protein (CRP), erythrocyte

sedimentation rate (ESR), and white blood cell count (WBC),

were higher in patients with persistent pain compared to those

without (Table 1). The training set (n = 316) and external

validation set (n = 134) showed a balanced distribution across

multiple demographic characteristics such as age and BMI, as

well as clinical indicators including disease duration and lumbar

spondylolisthesis. There were no significant statistical differences

between the two cohorts, indicating good comparability

(Supplementary Table S1).

3.2 Selection of machine learning models

These significant factors were then input as independent

variables into four machine learning models. The results showed

that the ROC values for these four models were 0.867, 0.888,

0.907, and 0.916, respectively (Table 2) (Figure 1). Among them,

the AUC values of the XGBoost and MLP models were both

above 0.9, and these models also performed excellently in terms

of F1 Score, Accuracy, Recall, and Precision. The DeLong test

showed that the AUC values of the XGBoost and MLP models

were significantly higher than those of the LR and SVM models

(P < 0.05). Therefore, XGBoost and MLP were selected for

visualization analysis (Table 3).

3.3 SHAP value explanation of model results

For each machine learning model, a sample with persistent

pain and a sample without persistent pain were randomly

selected for analysis. The x-axis represents the direction of the

change in the prediction value, with movement to the left

indicating a negative influence and movement to the right

indicating a positive influence. In Figure 2A, an age of 46 and

CRP (C-Reactive Protein) level of 6.91 had a strong negative

impact on the likelihood of persistent pain (−2.3 and −1.88,

respectively), while certain lumbar segments and joint

degeneration had a positive impact. The final expected prediction

value was −2.99, indicating that the model predicts this patient is

more likely not to experience persistent pain. In Figure 2B, a

history of lumbar spine trauma (value of 1) and herniation

calcification (value of 1) had a large positive impact on the

prediction, significantly increasing the likelihood of persistent

pain, with contributions of +4.68 and +3.3, respectively.

Additionally, higher ESR (18.8) and WBC (7.56) levels had a

negative impact on the prediction, reducing the risk of

persistent pain.

In the MLP visualization results, in Figure 2C, for patients

without persistent pain, herniation calcification and no history of

lumbar spine trauma had a strong negative impact on the

prediction. For patients with persistent pain, lumbar segment

L5.S1 and herniation calcification had a significant positive

impact on the prediction. In Figure 2D, a history of lumbar

spine trauma had a strong positive impact on the prediction

of persistent pain, while it showed a negative impact on

the prediction of non-persistent pain, indicating that patients
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with a history of lumbar spine trauma are more likely to be

predicted to experience persistent pain. Additionally, younger age

also played a negative role in predicting the absence of

persistent pain.

The feature value analysis for all samples in Figure 3A shows

that the x-axis represents SHAP values, indicating the direction

and magnitude of each feature’s impact on the prediction. The

color gradient from purple to yellow represents the change in

TABLE 1 Differences in basic characteristics and pathological indicators between patients with persistent postoperative pain and those without
persistent postoperative pain.

Variables All patients (n = 450) No persistent pain (n = 396) Persistent pain (n = 54) P-value

Age (years) 43 (20–66) 42 (20–66) 50 (24–65) 0.0051

BMI (kg/m²) 26.89 (17.02–34.98) 26.89 (17.02–34.94) 27.16 (18.09–34.98) 0.815

Gender 0.2160683

Male 308 (68.44%) 275 (69.44%) 33 (61.11%)

Female 142 (31.56%) 121 (30.56%) 21 (38.89%)

Smoking 0.2513807

Yes 76 (16.89%) 64 (16.16%) 12 (22.22%)

No 374 (83.11%) 332 (83.84%) 42 (77.78%)

Drinking 0.2702325

Yes 87 (19.33%) 80 (20.2%) 7 (12.96%)

No 363 (80.67%) 316 (79.8%) 47 (87.04%)

History of lumbar spine trauma 1.90E-41

Yes 54 (12%) 10 (2.53%) 44 (81.48%)

No 396 (88%) 386 (97.47%) 10 (18.52%)

Course of Disease 0.001176945

≤6 Months 153 (34%) 145 (36.62%) 8 (14.81%)

>6 Months 297 (66%) 251 (63.38%) 46 (85.19%)

Herniation calcification 9.13E-21

Yes 57 (12.67%) 24 (6.06%) 33 (61.11%)

No 393 (87.33%) 372 (93.94%) 21 (38.89%)

Lumbar Spondylolisthesis 6.64E-18

Grade I 129 (28.67%) 85 (21.46%) 44 (81.48%)

No 321 (71.33%) 311 (78.54%) 10 (18.52%)

Spinal Canal Morphology 0.09771195

Cloverleaf Shape 65 (14.44%) 53 (13.38%) 12 (22.22%)

Non-Cloverleaf Shape 385 (85.56%) 343 (86.62%) 42 (77.78%)

Facet joint degeneration 0.06434208

Yes 431 (95.78%) 382 (96.46%) 49 (90.74%)

No 19 (4.22%) 14 (3.54%) 5 (9.26%)

Pfirrmann Grading 0.03438494

Grade II 158 (35.11%) 146 (36.87%) 12 (22.22%)

Grade III 292 (64.89%) 250 (63.13%) 42 (77.78%)

Lumbar Segments 0.04992969

L3–L4 47 (10.44%) 46 (11.62%) 1 (1.85%)

L4–L5 210 (46.67%) 180 (45.45%) 30 (55.56%)

L5–S1 193 (42.89%) 170 (42.93%) 23 (42.59%)

C-Reactive Protein (mg/L) 11.88 (5.62–18.31) 11.68 (5.62–18.31) 13.88 (6.47–18.27) 0.00227

Erythrocyte Sedimentation Rate (mm/h) 19.07 (12.62–25.40) 18.90 (12.62–25.40) 20.60 (12.93–25.27) 0.00213

White Blood Cell Count (10−9/L) 7.10 (4.92–9.60) 6.99 (4.92–9.53) 8.13 (5.01–9.60) 0.000538

Sagittal Range of Motion (sROM) 0.4703628

<30° 246 (54.67%) 219 (55.3%) 27 (50%)

≥30° 204 (45.33%) 177 (44.7%) 27 (50%)

TABLE 2 ROC curve parameters of four machine learning models and risk indicators in the test Set and external validation Set.

Model AUC AUC_CI_Lower AUC_CI_Upper Best_Threshold youden Sensitivity Specificity

LR 0.867 0.717 1.000 0.525 0.804 0.813 0.992

SVM 0.888 0.803 0.973 0.005 0.649 0.938 0.712

XGBoost 0.907 0.808 1.000 0.426 0.787 0.813 0.975

MLP 0.916 0.800 1.000 0.713 0.867 0.875 0.992

Risk Index 0.798 0.685 0.912 31.109 0.504 0.750 0.754

Yuan and Fu 10.3389/fsurg.2025.1631651

Frontiers in Surgery 04 frontiersin.org

https://doi.org/10.3389/fsurg.2025.1631651
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


feature values from low to high. In the figure, a history of lumbar

spine trauma (yellow for high values) and older age have a

significant positive impact on the risk of persistent pain,

indicating that higher values for these features increase the risk

of persistent pain. High values for inflammatory indicators (e.g.,

CRP, ESR, and WBC) also have varying degrees of impact on the

prediction. The MLP model results indicate that a history of

lumbar spine trauma and herniation calcification are the most

important features affecting the prediction outcome, contributing

the most to the prediction of persistent pain, followed by

spondylolisthesis, ESR, Pfirrmann Grading, and CRP (Figure 3B).

We summarized the SHAP visualization results of the XGBoost

and MLP models in Supplementary Table S2 to enhance clarity

and interpretability. We also conducted visualization analysis in

the external validation cohort, and the results showed that the

feature rankings in the external validation set were similar to

those in the training set, especially the top three most important

features remained consistent. This further supports the stability

and generalizability of the model (Supplementary Figure S1).

3.4 Construction and validation of the risk
model

We constructed a risk model to predict the likelihood of

persistent pain based on the top three important features from

these two machine learning models, and validated it in an

external validation set. The results showed an AUC value of

FIGURE 1

Four machine learning models’ ROC curves on the external validation set.

TABLE 3 Comparison of performance evaluation metrics for four machine
learning models.

Model F1 Score Accuracy Recall Precision

LR 86.67 97.01 81.25 92.86

SVM 62.50 91.04 62.50 62.50

XGBoost 75.86 94.78 68.75 84.62

MLP 82.35 95.52 87.50 77.78
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0.798, indicating that the model has good predictive capability

(Figure 4) (Table 2).

4 Discussion

This study is the first to apply machine learning techniques to

identify multiple key risk factors for persistent pain following

PTED surgery and successfully develop a machine learning-based

risk prediction model to estimate the likelihood of persistent pain

in patients. The findings highlight that a history of lumbar spine

trauma and herniation calcification were the most influential

features in both the XGBoost and MLP models, exhibiting

significant positive effects on the risk prediction for persistent

pain. These results suggest that anatomical changes and prior

injury history may play crucial roles in the persistence of

postoperative pain, while age and inflammatory status also

appear to be important predictors.

We employed four machine learning models—Logistic

Regression, Support Vector Machine, XGBoost, and Multilayer

Perceptron—to compare their performance in predicting

postoperative persistent pain and to identify the optimal model.

FIGURE 2

Model interpretation based on SHAP values. (A) A sample predicted by the XGBoost model not to experience persistent pain. (B) A sample predicted by

the XGBoost model to experience persistent pain. (C) A sample predicted by the MLP model not to experience persistent pain. (D) A sample predicted

by the MLP model to experience persistent pain.

FIGURE 3

Visualization of feature importance and contribution to persistent pain risk based on (A) XGBoost and (B) MLP models.
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These models captured the multi-level relationships between features

and pain risk, with nonlinear models such as XGBoost and MLP

demonstrating particular strength in uncovering complex feature

interactions. Moreover, utilizing multiple models enhanced the

stability and robustness of the predictions, minimizing potential

biases inherent to any single model. Through SHAP value analysis

of feature importance, this study offers clinicians valuable data-

driven insights into the key factors influencing pain risk, thereby

supporting more personalized treatment decisions.

Our study found a significant association between a history of

lumbar spine trauma and the occurrence of persistent

postoperative pain. Previous research has suggested that prior

lumbar injuries may lead to structural and functional alterations

in local nerves, muscles, and soft tissues, resulting in a sustained

state of hypersensitivity (17). This heightened sensitivity makes

these areas more susceptible to surgical stimulation and may lead

to more pronounced postoperative pain responses (18, 19).

Additionally, compensatory movement patterns and muscular

imbalances developed after trauma may persist even after

apparent recovery, potentially affecting spinal biomechanics and

interfering with postoperative rehabilitation, thereby exacerbating

the pain experience. Psychological studies have also indicated

that individuals with a history of trauma are more prone to

anxiety, depression, and other negative emotional states, which

are closely linked to the development of postoperative pain

(20, 21). These psychological factors may amplify pain

perception through central sensitization mechanisms. Therefore,

lumbar trauma may contribute to persistent postoperative pain

through both physiological and psychological pathways.

Herniation calcification has a significant impact on postoperative

pain, possibly because calcification hardens the protruding disc,

increasing its pressure and friction on surrounding tissues (such as

nerve roots, ligaments, and muscles) (22). Calcified tissue is

challenging to remove during surgery, increasing the risk of

damage to surrounding nerves and tissues, thereby intensifying

postoperative pain (23). Calcification complicates surgical

manipulation, particularly in PTED, as the hardness of the calcified

disc limits the maneuverability of surgical instruments, making it

difficult for surgeons to completely remove the herniated portion.

Residual calcified tissue may continue to exert nerve compression

postoperatively, resulting in persistent pain. Moreover, calcified disc

tissue can provoke a more intense inflammatory response, which

may delay tissue healing and contribute to chronic inflammation.

This inflammation activates pain transmission pathways, heightening

the patient’s pain perception and prolonging the duration of

postoperative pain. Elevated levels of CRP and ESR reflect a low-

grade chronic inflammation within the patient’s body (24).

Intraoperative stimuli may promote the release of inflammatory

mediators, thereby exacerbating tissue damage, inducing

postoperative neural sensitization, and leading to postoperative

edema, exudation, or adhesions, which cause persistent postoperative

pain. Moreover, at higher CRP and ESR levels, the ability of soft

tissue repair after surgery is reduced, making scar tissue formation

more likely and aggravating postoperative discomfort.

The AUC value of our risk model was 0.798, indicating that

this simplified model has good predictive ability and can be used

as a quick assessment tool in clinical settings. In the future, it

could be implemented as a mobile application, a risk prediction

calculator, or integrated into electronic health record (EHR)

systems, allowing clinicians to rapidly assess the risk of persistent

postoperative pain before surgery. By identifying high-risk

patients in advance, clinicians can optimize preoperative

preparation and adjust treatment strategies accordingly, thereby

improving surgical safety and patient outcomes.

However, this study has some limitations. The sample size is

limited, which may restrict the model’s generalizability. Future

studies could expand the sample size to improve the model’s

stability and applicability across different populations. Persistent

pain is a subjective experience, and there is currently a lack of a

unified and widely accepted standard for its definition. Therefore,

the generalizability of our study may be limited. Future research

could incorporate more objective indicators to improve the

assessment system for persistent pain and enhance the general

applicability and clinical relevance of the findings.

5 Conclusion

This study identified several factors—including age, history

of lumbar spine trauma, disease duration, and herniation

calcification—that significantly increase the risk of persistent pain

after PTED. The XGBoost and MLP models, built using these

key factors, demonstrated excellent performance in predicting

postoperative pain while offering strong interpretability. SHAP

analysis highlighted lumbar spine trauma history and herniation

calcification as the most influential predictors. The resulting risk

prediction model aids in the preoperative identification of high-

risk patients and supports the development of personalized

intervention strategies.

FIGURE 4

ROC curve for risk Index in external validation set.
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