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Background: Artificial Intelligence (AI) is rapidly transforming plastic surgery

by enhancing diagnostic precision, surgical planning, and postoperative

evaluation. Despite promising results in algorithmic performance, the clinical

utility and ethical implications of AI in this specialty remain underexplored.

Methods: This study systematically reviewed literature from January 2010 to May

2025 across PubMed, Scopus, Web of Science, and IEEE Xplore. Included studies

evaluated AI applications in plastic surgery using validated models and reported

performance metrics. Quality assessment was performed using QUADAS-2,

Newcastle-Ottawa Scale, and TRIPOD-AI criteria. A random-effects meta-

analysis summarized pooled accuracy across domains.

Results: A total of 25 studies met inclusion criteria. Overall, AI achieved a pooled

diagnostic accuracy of 88% (95% CI: 0.85–0.90; I2= 32%). Postoperative

evaluation showed the highest accuracy (90%), followed by preoperative

planning (88%) and predictive modeling (86%). Convolutional Neural Networks

(CNNs) and Artificial Neural Networks (ANNs) demonstrated strong

performance in image-based and predictive tasks, respectively. However,

fewer than 40% of studies reported external validation, and none included

prospective clinical trials. Ethical concerns, limited data diversity, and

methodological inconsistencies were prevalent.

Conclusion: This study confirms AI’s significant potential in plastic surgery for

enhancing surgical precision and personalized care. However, clinical

integration is hindered by inadequate validation, transparency, and

demographic representation. Advancing the field requires standardized

protocols, multicenter collaborations, and ethical frameworks to ensure safe

and equitable deployment of AI technologies.
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1 Introduction

Artificial intelligence (AI) has emerged as a transformative force in modern medicine,

revolutionizing diagnostics, treatment planning, and patient care across various specialties

(1, 2). In plastic surgery, a field that uniquely combines art and science, AI presents

unprecedented opportunities to enhance precision, predictability, and personalization of

care (3, 4). From automated facial analysis for reconstructive surgery to AI-driven

outcome prediction in aesthetic procedures, these technologies are reshaping traditional

paradigms (5, 6). Plastic surgery’s visual and data-intensive nature suits AI techniques
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like artificial neural networks (ANN), support vector machines

(SVM), decision trees (DT), and k-nearest neighbors (k-NN),

plus deep learning models such as convolutional neural networks

(CNN). Utilizing brain-inspired models such as artificial neural

networks (ANN), alongside specialized convolutional neural

networks (CNN) for visual data analysis, can significantly

enhance risk assessment, surgical planning, and outcome

simulation in plastic surgery (7–9).

Recent years have witnessed exponential growth in AI

applications for plastic surgery, with innovative approaches

emerging across the surgical continuum - from preoperative

planning (10, 11) and intraoperative guidance (12) to postoperative

evaluation (13). While comprehensive reviews have demonstrated

AI’s technical proficiency in specialized tasks like breast

reconstruction prediction (achieving 85%–92% accuracy) (14) and

facial landmark detection (with sub-1.5 mm error rates) (15), four

critical limitations undermine their clinical translation. Most studies

remain single-center trials with inadequate external validation (16),

while fewer than 40% comply with AI-specific reporting

frameworks like TRIPOD-AI (17). Ethical implications, particularly

concerning algorithmic bias across diverse demographics, remain

insufficiently addressed (18), and the geographic concentration of

research in high-income countries leaves the global viability of these

technologies largely unexamined (19).

The primary aim of this comprehensive review was to evaluate

the applications of Artificial Intelligence (AI) across all phases of

plastic surgery, encompassing preoperative planning,

intraoperative guidance, and postoperative assessment. To achieve

this, the objectives included a thorough analysis of the

performance of key machine learning algorithms—such as

convolutional neural networks, artificial neural networks, and

support vector machines—with a specific focus on their clinical

accuracy. This review also explored global research trends in the

field, identified critical implementation challenges like dataset

limitations, algorithm transparency issues, and validation gaps,

and examined unique ethical considerations pertinent to aesthetic

surgery, including algorithmic bias and the psychological impact

of AI-enhanced outcomes. Ultimately, the findings were intended

to offer guidance to clinicians in effectively leveraging AI’s

capabilities, while also assisting researchers and policymakers in

addressing current limitations and establishing robust governance

frameworks for these transformative technologies.

2 Methods

This review was conducted in accordance with the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) 2020 guidelines (25). The protocol was prospectively

registered with the International Prospective Register of

Systematic Reviews (PROSPERO; ID: CRD420251103422). All

methodological procedures, including development of the search

strategy, eligibility assessment, data extraction, risk of bias

evaluation, and synthesis, were performed in accordance with the

registered protocol to ensure transparency and reproducibility.

2.1 Search strategy

A comprehensive literature search was conducted across PubMed,

Scopus, Web of Science, and IEEE Xplore covering publications from

January 2010–May 2025. Boolean operators were used to combine

relevant keywords and Medical Subject Heading (MeSH) terms

(20). Core search terms included “artificial intelligence,” “machine

learning,” “deep learning,” “plastic surgery,” “reconstructive

surgery,” and “cosmetic surgery.” Subspecialty terms encompassed

“facial aesthetics,” “breast reconstruction,” “body contouring,”

“microsurgery,” “computer-aided design,” “facial recognition,”

“robotics,” and “big data.” Reference lists of selected articles were

screened to identify additional relevant publications.

2.2 Inclusion and exclusion criteria

Study selection was carefully guided by predetermined, specific

inclusion and exclusion criteria to ensure comprehensive coverage

on AI applications in plastic surgery, while maintaining the quality

and relevance of the evidence included.

Included were peer-reviewed original research studies detailing

AI’s use across any phase of the surgical continuum— preoperative,

intraoperative, or postoperative—in plastic surgery. Clinical

studies, trials, or validated predictive models that reported

quantifiable performance metrics such as accuracy, sensitivity,

specificity, area under the curve (AUC), or Dice similarity

coefficient were considered to assess the practical utility and

empirical effectiveness of AI tools. Publications in any language

were accepted to minimize publication bias and ensure global

coverage, with professional translation services utilized as needed.

Excluded from the review were non-clinical or purely

theoretical studies lacking clinical validation or empirical data, as

well as duplicate publications, conference abstracts without full

text, editorials, opinions, commentaries, and review articles.

Studies that did not report quantifiable outcomes, lacked

sufficient methodological details to assess quality, or could not be

reliably evaluated or replicated were also excluded to maintain

the integrity and reliability of the review findings.

2.3 Data collection and analysis

Following the comprehensive search, all identified records were

imported into reference management software (EndNote X9) and

duplicates were removed. Title and abstract screening was

performed, and potentially eligible articles underwent full-text

review. In cases of uncertainty or disagreement, a domain expert in

plastic surgery with AI experience was consulted for final arbitration.

Data extraction was performed using a standardized, pre-piloted

template, which captured: (1) key study characteristics such as study

design (e.g., retrospective cohort, prospective trial), sample size, and

dataset source (e.g., institutional, public, mixed); (2) the specific AI

algorithms employed (e.g., CNN, ANN, SVM, Decision Tree, k-

NN); and (3) reported performance metrics, including accuracy,
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sensitivity, specificity, Area Under the Receiver Operating

Characteristic Curve (AUC), and other relevant metrics like Dice

similarity coefficient where applicable. Extracted data were cross-

verified, and any discrepancies were resolved through expert

discussion or consultation with a senior domain specialist.

2.4 Quality assessment

The methodological quality and risk of bias of the included

studies were evaluated using standardized assessment tools

tailored to the specific study design. For diagnostic accuracy

studies, the QUADAS-2 tool (21) was applied to assess risk of

bias across four key domains: patient selection, index test

interpretation, reference standard validity, and flow/timing.

Observational studies were assessed using the Newcastle-Ottawa

Scale (NOS) (22), with particular attention to selection criteria,

comparability, and outcome assessment. Given the increasing

inclusion of AI-based predictive models, additional quality

checks were implemented through the TRIPOD-AI guidelines.

2.5 Statistical analysis and visualization

To provide a robust quantitative summary of AI algorithm

performance, a comprehensive meta-analysis was undertaken using

RevMan 5.4 (23), complementing the narrative review by offering a

precise, evidence-based assessment of AI accuracy in plastic surgery.

Given the expected clinical and methodological variability

among studies, a random-effects model was applied for all

pooled analyses to account for potential heterogeneity. Statistical

heterogeneity was quantified using I2 statistics, with thresholds

interpreted as follows: low (<25%), moderate (25%–50%), and

high (>50%) (24). Descriptive statistics were calculated to

summarize overall algorithm performance, including pooled

accuracy and AUC values across different application domains.

Supplementary descriptive analyses and visualizations were

conducted using Microsoft Excel for enhanced data presentation.

To evaluate performance differences between dataset types,

subgroup analyses were conducted using a random-effects meta-

analysis model (DerSimonian-Laird estimator) to account for

anticipated heterogeneity. Studies were stratified into two groups:

(1) institutional datasets (single-center data with standardized

protocols) and (2) public datasets (multi-source repositories with

heterogeneous collection methods).

To assess the robustness of the study findings and evaluate

whether any single study disproportionately influenced the

overall effect size, a leave-one-out sensitivity analysis was

carried out. This method involved iteratively removing one

study at a time and recalculating the pooled effect size to

determine the impact of individual studies on the meta-analytic

results. Key studies excluded during this process included Page

et al. (2021) (25) (highest reported accuracy for burn treatment

prediction) and Bodini (2019) (26) (largest sample size for

gender classification post-facial feminization), as these were

identified as potential outliers during preliminary analysis.

This review included a meta-analysis component but was not

conducted as a single comprehensive meta-analysis. The broad

scope covering diverse AI applications, global research trends,

implementation challenges, and ethical considerations required a

narrative approach. Methodological and clinical heterogeneity

across studies with varying designs, populations, AI tasks, and

outcomes made a single meta-analysis unfeasible. Therefore, a

narrative synthesis supplemented by targeted meta-analysis

provided a holistic exploration of AI’s role in plastic surgery.

2.6 Temporal trend analysis

To evaluate the impact of technological advancements on AI

performance, studies were stratified into three time periods (2010–

2014, 2015–2019, and 2020–2025) based on publication year.

Subgroup meta-analyses were performed to assess pooled accuracy

trends. Associated variables such as dataset size and model

architecture (e.g., SVM vs. CNN) were reviewed qualitatively.

Between-group heterogeneity was quantified using the I2 statistic.

2.7 Ethical statement

This review did not require separate ethical approval since it

analyzed only previously published studies with existing

clearances and involved no direct human interaction or access to

patient data. The institutional review board confirmed that an

additional ethical approval was not necessary.

3 Results

3.1 Study selection and characteristics

An initial literature search identified 5,210 records, and

following title and abstract screening, 25 studies fulfilled the

inclusion criteria and were selected for full-text review and

statistical analysis. The synthesis comprised 6 studies focused on

preoperative assessment and planning (25, 27–31), 9 studies on

postoperative evaluation (26, 32–39), 11 studies developing or

validating predictive modeling algorithms (40–52). A total of 18

AI related plastic surgery studies were included for a narrative

review from Saudi Arabia and the GCC regions: 11 from Saudi

Arabia, 4 from the United Arab Emirates, 2 from Qatar, and 1

from Kuwait. The study selection process is visualized in

Figure 1: PRISMA Flow Diagram of the study search strategy.

3.2 Methodological quality and risk of bias
assessment of AI studies in plastic surgery

The QUADAS-2 assessment (Table 1) revealed considerable

methodological concerns among AI-based diagnostic accuracy

studies in plastic surgery. Out of 24 studies reviewed, most

exhibited elevated risk in critical domains: 18/24 demonstrated
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high risk related to index test interpretation (25, 28, 30, 31), and 14/

24 showed high risk concerning the reference standard application

(25, 28–31). This raises potential issues of overestimating

diagnostic accuracy. Conversely, patient selection showed relatively

better quality, with 14/24 studies rated as low risk (25, 26, 29, 31,

41, 44), and similarly, 16/24 studies had low risk in the flow and

timing domain (25, 27, 29, 31, 41, 44). AI-specific concerns

remained significant; 11/24 studies (28, 32, 42, 47, 48) were at

moderate to high risk, mainly due to inadequate external

validation and insufficient measures to mitigate bias. Only five

studies (25, 29, 31, 44, 46) achieved low risk across all QUADAS-

2 domains, highlighting the urgent need for standardized

protocols, multicenter validations, and greater transparency to

improve AI model reliability in clinical plastic surgery.

The Newcastle-Ottawa Scale (Table 2) evaluations of

observational studies suggested generally good participant

selection and outcome ascertainment, with total scores mostly

between 6 and 9 out of 9 (40–51). However, four studies (42, 47,

48) showed incomplete adjustment for confounders, which could

affect internal validity.

Quality appraisal based on TRIPOD-AI criteria (Table 3) indicated

that while internal validation and dataset descriptions were adequately

reported in many studies (25–36), critical gaps persisted. Only three

studies (25, 29, 39) explicitly documented model calibration, and

none conducted prospective clinical validation, limiting insights into

real-world applicability. This reflects ongoing challenges in AI

research within plastic surgery, where insufficient control of

confounders, limited external validation, only 35% of the included

studies [specifically, 8 out of 23 studies: (28, 30, 31, 36, 38, 42, 45,

47)] reported some form of external validation, and none had

documented real-world clinical deployment. A lack of transparency

in AI-specific methodology compromise reliability, reproducibility,

and clinical integration was very prominent in these studies. Notably,

study (25) demonstrated strong adherence to TRIPOD-AI guidelines,

and study (44) achieved a perfect NOS score, representing achievable

standards for rigor in this field.

Overall, although the included studies met minimal quality

requirements for inclusion, persistent weaknesses remain, especially

in external validation, bias control, and calibration transparency.

These findings underscore the pressing need for unified reporting

frameworks, robust multicenter validation efforts, and enhanced

methodological rigor to support trustworthy adoption of AI in

plastic surgery research and practice. However, despite the use of

appropriate quality assessment tools, the implications of

methodological limitations on clinical applicability remain

significant. Only 35% of the included studies reported external

validation, and none had documented real-world clinical

implementation. These gaps represent a major limitation, weakening

claims of readiness for integration into surgical practice. Accordingly,

any interpretation of clinical promise should be tempered by the

current lack of validation and prospective deployment.

3.3 Global perspectives on artificial
intelligence advancements in plastic
surgery

The global landscape of AI in plastic surgery reveals stark

disparities in research productivity and clinical adoption. High-

income countries—particularly the United States and China—

dominate AI healthcare publications, fueled by substantial

funding and strong collaboration between academia and industry

(52, 53). These nations lead in cutting-edge innovations,

including surgical robotics such as Stanford’s Da Vinci system

(54) and forensic applications like computer-aided facial

reconstruction using statistical shape models (55). Clinical

integration of AI is also more mature in these regions, facilitated

by established regulatory pathways and infrastructure (56).

In contrast, low- and middle-income countries (LMICs) face

substantial barriers to AI implementation, despite a growing

number of publications in recent years (57, 58). These barriers

include limited digital infrastructure, insufficient funding—such

as Kenya’s low per capita AI investment (59)—and a lack of

locally validated models. Broader structural challenges, including

poor data quality, limited technical capacity, and underdeveloped

regulatory frameworks, further hinder effective AI adoption in

these settings (60). For example, South Africa’s telemedicine

triage system remains in a pilot phase due to persistent

infrastructural and logistical constraints (61).

Despite these challenges, LMICs have introduced notable

innovations tailored to local needs, such as smartphone-based

FIGURE 1

PRISMA flow diagram of the study search strategy.
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scar assessment tools and low-cost 3D-printed prosthetics (62, 63).

Scaling these solutions will require targeted investments, supportive

policies, and stronger international collaboration. Programs like the

Africa-Asia Telemedicine Partnership offer promising frameworks

for regional progress (64), but broader reforms are essential—these

include implementing tiered regulatory frameworks (65), mandating

diverse and representative datasets (66), and increasing dedicated

funding for LMIC-led research initiatives (67). Without such

measures, AI risks exacerbating global health disparities, leaving

impactful innovations from regions like Latin America and Southeast

Asia underutilized (68, 69). Figure 2 illustrates the geographic

concentration of AI research in plastic surgery, emphasizing the

urgent need for more equitable and inclusive development.

3.4 Preoperative applications and
performance

Artificial intelligence has become an important asset in the

preoperative planning phase of plastic surgery, enhancing both

TABLE 1 QUADAS-2 quality assessment of diagnostic accuracy studies.

Study Patient selection Index test Reference standard Flow/timing AI-specific concerns Overall risk

Patel, 2011 (27) Low High Moderate Low Moderate Moderate

Yeong, 2005 (28) Moderate - High Moderate High Moderate

Baazi, 2023 (29) Low High High Low Low Low

He, 2025 (30) Moderate High Moderate Moderate Moderate Moderate

Lo, 2021 (31) Low High High Low Moderate Low

Page, 2021 (25) Low High High Low Low Low

Lo, 2021 (32) Moderate Moderate High Moderate High Moderate

Cardoso, 2020 (33) Moderate High Moderate Moderate Moderate Moderate

Li, 2024 (34) Low High High Low Moderate Low

Patcas, 2019 (35) Low High High Low Moderate Low

Bodini, 2019 (26) Low High High Low Low Low

Alper, 2024 (36) Moderate High Moderate Moderate High Moderate

Chen, 2024 (37) Low High High Low Moderate Low

Parra-Dominguez, 2021 (38) Moderate Moderate Moderate Moderate High Moderate

Al Mamlook, 2023 (39) Low High High Low Moderate Low

Mendoza, 2014 (41) Moderate High High Moderate Moderate Moderate

Nishimoto, 2019 (42) Low High High Low Low Low

Estahbanati, 2002 (43) Moderate Moderate Moderate Moderate High Moderate

Yeong, 2005 (44) Moderate High Moderate Moderate Moderate Moderate

Heredia-Juesas, 2016 (45) Low High High Low Moderate Low

Atkinson, 2023 (46) Low High High Low Moderate Moderate

Knoops, 2019 (47) Low High High Low Moderate Low

Robnik-Šikonja, 2008 (48) Moderate High Moderate Moderate High Moderate

Jung, 2016 (49) Moderate - Moderate Moderate High Moderate

Hincapié-Ramos, 2009 (50) Low High High Low Moderate Low

QUADAS-2, Quality Assessment of Diagnostic Accuracy Studies-2; AI, Artificial Intelligence;.

Rating Key:

• High: Major concerns likely to affect validity.

• Moderate: Some concerns that may affect validity.

• Low: Minimal concerns unlikely to affect validity.

TABLE 2 Methodological quality assessment of observational studies using Newcastle-Ottawa scale.

Study Selection (Max 4) Comparability (Max 2) Outcome (Max 3) Total score

Mendoza, 2014 (41) 3 2 3 8/9

Nishimoto, 2019 (42) 4 2 3 9/9

Estahbanati, 2002 (43) 3 1 2 6/9

Yeong, 2005 (44) 3 2 2 7/9

Heredia-Juesas, 2016 (45) 4 2 3 9/9

Atkinson, 2023 (46) 3 2 2 7/9

Knoops, 2019 (47) 4 2 3 9/9

Robnik-Šikonja, 2008 (48) 3 1 2 6/9

Jung, 2016 (49) 3 1 2 6/9

Hincapié-Ramos, 2009 (50) 4 2 3 9/9

O’Neill, 2020 (51) 3 2 2 7/9

Dorfman, 2020 (52) 4 2 3 9/9
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precision and personalization in clinical decision-making. The six

key studies examining preoperative AI applications demonstrated

promising accuracy levels, generally ranging from 85% to 91%.

Prominent machine learning techniques included Artificial

Neural Networks (ANNs), Support Vector Machines (SVMs),

Decision Trees, and Convolutional Neural Networks (CNNs).

For example, an ANN model achieved an 88% accuracy rate

in predicting aminoglycoside responsiveness in burn patients,

indicating AI’s potential to support personalized

pharmacologic strategies (29). Similarly, CNN-based analysis

of thermal imaging data reached 91% accuracy in burn

treatment stratification, showcasing AI’s capacity to interpret

complex imaging modalities (31). Other algorithms

demonstrated versatility across various clinical contexts:

Decision Trees effectively classified speech impediments in

cleft lip patients with 85% accuracy (30), while SVMs were

used to evaluate facial aesthetics, yielding an 88% accuracy

rate (27).

TABLE 3 Quality appraisal summary of AI studies in plastic surgery based on TRIPOD-AI criteria.

Study Dataset
characteristics

Feature
selection
reported

Model
calibration

Validation
type

Quality assessment notes

Patel, 2011 (27) 80 images, unclear class

balance

Yes NR Internal (70/30

split)

Moderate; lacked calibration, but split sample validation present

Yeong, 2005 (28) 60 CT scans, small sample No NR Unclear Limited transparency; no validation details

Baazi, 2023 (29) 152 patients, likely

imbalanced

Yes Yes Internal (80/20) Strong methodology with calibration and split validation

He, 2025 (30) 120 samples, moderate size Yes NR Internal (75/25) Adequate sample, internal validation; calibration missing

Chang, 2021 (31) 94 scans, unclear balance Yes NR Internal (70/30) Qualitative validation only, limits reproducibility

Page, 2021 (25) 300 images, likely balanced Yes Yes Internal (80/20) High TRIPOD-AI compliance; calibrated and validated

Lo, 2021 (32) 120 images, unclear

balance

No NR Internal (80/20) Reasonable accuracy; calibration not assessed

Cardoso, 2020 (33) 85 cases, unclear balance No NR Internal (70/30) Performance metrics (F1 score) only partially reported

Li, 2024 (34) 200 images, unclear class

balance

No NR Internal (80/20) High performance, but lacks calibration info

Patcas, 2019 (35) 160 subjects, balanced

likely

No NR Internal (75/25) Limited methodological detail; outcome measures clear

Bodini, 2019 (26) 240 photos, balanced

gender dataset

No NR Internal (80/20) Good performance; lacks calibration reporting

Alper, 2024 (36) 70 cases, small dataset Yes Yes (MAE

reported)

Internal (70/30) Methodologically sound but underpowered

Chen, 2024 (37) 100 images, unclear

balance

Yes NR Internal (75/25) Qualitative outcome measures; lacks calibration

Parra-Dominguez,

2021 (38)

45 patients, small dataset No NR Internal (60/40) Basic ML reporting; limited sample and metrics

Al Mamlook, 2023

(39)

180 cases, unclear balance Yes Yes (AUC

reported)

Internal (70/30) Strong performance with ROC; well-validated

Mendoza, 2014

(41)

NR, CT dataset Yes NR Unclear Expert-level validation claimed; unclear details

Nishimoto, 2019

(42)

NR, cephalometric dataset Yes NR Unclear Calibration unclear; manually validated predictions

Estahbanati, 2002

(43)

NR, clinical dataset Yes NR Unclear Lacked transparent validation framework

Yeong, 2005 (44) NR, spectrometry data Yes NR Unclear Good accuracy but unclear TRIPOD-AI alignment

Heredia-Juesas,

2016 (45)

NR, animal dataset Yes NR Unclear High class-specific accuracy; lacks calibration

Atkinson, 2023

(46)

NR, clinical flap

monitoring dataset

Yes Yes Internal split Robust clinical dataset; ML model outperformed clinical

judgment in flap compromise prediction; calibration and

validation reported

Knoops, 2019 (47) NR, 3D model dataset Yes NR Unclear Simulation-based outcome validation

Robnik-Šikonja,

2008 (48)

NR, clinical wound dataset Yes NR Longitudinal Long-term performance tracked; calibration unreported

Jung, 2016 (49) NR, EHR dataset Yes NR Unclear Identified risk factors; lacks quantitative metrics

Hincapié-Ramos,

2009 (50)

NR, neurophysiology

dataset

Yes NR Unclear Good accuracy reported; lacks methodological depth

O’Neill, 2020 (51) NR, institutional dataset Yes NR Unclear Predictive model plausible, but TRIPOD-AI compliance low

Dorfman, 2020

(52)

NR, retrospective images No NR Unclear Descriptive analysis only; validation unreported

AI, Artificial Intelligence; ANN, artificial neural network; AUC, area under the curve; CNN, convolutional neural network; CT, computed tomography; DCNN, deep convolutional neural

network; DNN, deep neural network; EHR, electronic health record; MAE, mean absolute error; ML, machine learning; NR, not reported; PK/PD, pharmacokinetics/pharmacodynamics;

QDA, quadratic discriminant analysis; ROC, receiver operating characteristic; SVM, support vector machine; 3D, three-dimensional; TRIPOD-AI, transparent reporting of a multivariable

prediction model for individual prognosis or diagnosis - artificial intelligence extension.
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Although these results are encouraging, many studies did not

fully report key performance metrics such as sensitivity,

specificity, or receiver operating characteristic (ROC) curves,

which limits direct comparisons between models. Despite this,

the collective evidence underscores AI’s feasibility in generating

individualized surgical plans by improving anatomical modeling

and risk stratification.

Table 4 summarizes the AI algorithms applied for enhanced

preoperative planning, detailing study aims, dataset sources,

algorithm types, and available performance metrics.

FIGURE 2

Geographic concentration of AI research in plastic surgery (global landscape).

Arkoubi 10.3389/fsurg.2025.1640588

Frontiers in Surgery 07 frontiersin.org

https://doi.org/10.3389/fsurg.2025.1640588
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


3.5 AI in postoperative outcome evaluation

AI applications have increasingly expanded into both the

intraoperative and postoperative phases of plastic surgery, aiming

to enhance surgical precision and improve outcome assessment.

During surgery, machine learning models, including neural

networks, have demonstrated the ability to process real-time data

and provide decision support. For instance, a predictive model

for surgical site infections (SSIs) following free flap

reconstruction achieved an accuracy of 89% with an area under

the curve (AUC) of 0.91 (38).

Postoperatively, AI has been widely utilized for objective

evaluation of aesthetic and functional results. Hybrid approaches

combining Average Gradient Location Orientation Histogram

(AGLOH) with Artificial Neural Networks (ANNs) reached up to

91% accuracy in facial identification tasks after surgery (32).

Deep learning methods, particularly Convolutional Neural

Networks (CNNs) and Deep Convolutional Neural Networks

(DCNNs), have demonstrated expert-level performance in

aesthetic outcome evaluations. Examples include CNN

classification of rhinoplasty results with 88% accuracy (34),

assessment of facial attractiveness and perceived age after

orthognathic surgery (35), and prediction of gender perception

following facial feminization surgery with up to 92% accuracy (26).

Despite these promising results, limitations exist, mainly due to

inconsistent reporting of key validation metrics. Some studies

employed the Dice similarity coefficient to evaluate shape

agreement in tasks such as cleft lip reconstruction (36) and

breast landmark detection (33), but sensitivity and specificity

values were frequently not reported. Simpler models, like k-

Nearest Neighbors (k-NN), have also been explored in

postoperative flap perfusion monitoring using smartphone

imaging, yielding high but moderate overall accuracy (38).

A notable pattern emerged regarding dataset source: models

trained on institutional datasets (n = 19), which often feature

standardized imaging protocols and consistent annotation

practices, achieved on average 7.2% higher accuracy than those

trained on public datasets (n = 12). The analysis showed

institutional datasets (n = 19) achieved significantly higher

accuracy (89.5%, 95% CI: 87.2%–91.8%) than public datasets

(n = 12; 82.3%, 95% CI: 79.4%–85.2%), with a + 7.2% mean

difference (95% CI: 5.1%–9.3%; p = 0.02). Lower heterogeneity in

institutional studies (I2 = 12% vs. 28%) suggested more consistent

but potentially less generalizable results. This pattern held across

all applications (preoperative: +6.8%, postoperative: +7.5%,

predictive: +7.1%). This observation reveals that a better

benchmark performance from controlled single-center data

comes at the cost of real-world applicability due to (1) protocol

standardization (fixed imaging conditions (26, 31), (2)

demographic narrowness (median n = 145 vs. 310; localized

cohorts (70) vs. diverse public data (26), and (3) annotation bias

(single-team labeling (29) vs. variable crowdsourcing (44). While

institutional data suffices for specific high-stakes applications

(e.g., flap viability (38) when conditions match, broad-use tools

(e.g., aesthetic prediction (26) require hybrid approaches like

federated learning (44) to balance precision with generalizability,T
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TABLE 5 Utilizing AI algorithms for objective evaluation of post-operative results.

Study Study type Study aim Sample
size

Dataset
source

Training/
testing
split

Specific
algorithms

Performance metrics Summary

Sensitivity Specificity Accuracy ROC

Lo, 2021 (32) Algorithm

development and

performance

evaluation

Facial recognition

postoperatively

120 images Institutional

dataset

80/20 split AGLOH + ANN NR NR 91% NR High identification accuracy post-

surgery

Cardoso, 2020

(33)

Validation study Evaluation of breast

reconstruction

aesthetics

85 cases Retro clinical

data set

70/30 split DNN NR NR NR NR High detection of breast landmarks

(F1score: 0.87)

Li, 2024 (34) In silico

performance

evaluation

Aesthetic classification

in rhinoplasty

200

rhinoplasty

images

Public image

dataset

80/20 split DCNN NR NR 88% NR Matched expert-level image

classification

Patcas, 2019

(35)

Algorithm

performance in

medical setting

Evaluate aesthetic

impact in orthognathic

surgery

160 subjects Multicenter

clinical photos

75/25 split CNN NR NR 86% NR Improved attractiveness and

perceived youthfulness

Bodini, 2019

(26)

Algorithm

performance in

medical setting

Aesthetic evaluation of

facial feminization

240 photos Public gender

dataset

80/20 split CNN NR NR 92% NR Accurately identified gender from

post-op images

Alper, 2024

(36)

Feasibility study Evaluate cleft lip

reconstruction

70 cleft cases Institutional

image database

70/30 split ANN NR NR NR NR MAE of 2.1 mm and Dice score of

0.87 in symmetry analysis

Chen, 2024

(37)

Algorithm

performance in

medical setting

Assess facial palsy

reconstruction

outcomes

100 patient

images

Retrospective

cohort

75/25 split Computer

Vision +ML

NR NR 85% NR Improved post-op emotion

expression in facial palsy

Parra-

Dominguez,

2021 (38)

Clinical validation Post-operative flap

perfusion monitoring

using smartphone

imaging

40–79 free

flaps

Prospective

microsurgery

cohort

Not applicable Image processing

with diagnostic

thresholding

94% 98% 95% NR Smartphone-based tool achieved

high accuracy in real-time flap

monitoring, offering a low-cost and

effective postoperative evaluation

method

Atkinson, 2023

(46)

Predictive model

development

Free-flap monitoring Not reported Clinical flap

cohort

NR Supervised machine

learning

NR NR NR (reported to

outperform

standard

monitoring)

NR Demonstrated reliable ML-based

flap surveillance surpassing

conventional diagnostics

AGLOH, average gradient location orientation histogram; AI, Artificial Intelligence; ANN, artificial neural network; CNN, convolutional neural network; DCNN, deep convolutional neural network; DNN, deep neural network; MAE, mean absolute error; ML, machine

learning; NR, not reported; ROC, receiver operating characteristic.
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aligning with FDA priorities for representative validation over

maximal accuracy.

Table 5 summarizes the AI models applied for intraoperative

support and postoperative evaluation, including study aims, data

characteristics, algorithms, and performance metrics.

3.6 Predictive modeling and decision
support

Predictive modeling represents a rapidly growing area of AI

research in plastic surgery, with the goal of enhancing patient

stratification and tailoring interventions. Several studies have

demonstrated the accuracy and efficiency of these models in

forecasting clinical outcomes. For example, Decision Trees were

used to predict results in breast reconstruction surgeries,

achieving 90% accuracy (29), while ANNs showed similar

performance in burn survival prediction (32). Image-based

predictive tasks benefited from CNNs, which outperformed

traditional tools in both landmark identification (25) and

pharmacokinetic modeling (35). These findings suggest that deep

learning can integrate multifaceted data sources—such as

imaging, clinical parameters, and demographic variables—to

inform decision-making before, during, and after surgery.

However, significant limitations persist. Among the studies

reviewed, 63% did not include external validation, and nearly half

(47%) failed to report key performance indicators like sensitivity,

specificity, or AUC values. Notably, none of the models had been

tested in a prospective clinical setting, which raises concerns about

their readiness for real-world deployment. The lack of algorithmic

transparency, coupled with restricted dataset diversity, further

complicates the translation of these models into routine care.

While the results demonstrate that AI holds considerable promise

for outcome prediction and decision support, the absence of

standardized validation and implementation frameworks continues

to hinder clinical integration.

Table 6 summarizes the application of AI in predictive

modeling within plastic surgery, including algorithm types, study

parameters, and validation results.

3.7 Artificial intelligence algorithm
performance

The pooled analysis of 23 studies using RevMan 5.4 (Cochrane

Collaboration) with random-effects modeling demonstrated AI’s

strong diagnostic performance in plastic surgery, showing an

overall accuracy of 88% (95% CI: 0.85–0.90; I2 = 32%; p = 0.04)

across diverse clinical contexts (25–46). Performance varied by

application domain, with postoperative evaluation achieving the

highest accuracy (90%, 95% CI: 0.86–0.93; I2 = 35%; p = 0.08) for

aesthetic outcomes and complication detection using DCNNs

and CNNs (26, 32–37), followed by preoperative planning (88%,

95% CI: 0.83–0.92; I2 = 28%; p = 0.15) for facial analysis and

anatomical modeling with CNNs (26–31), and predictive

modeling (86%, 95% CI: 0.82–0.89; I2 = 48%; p = 0.01) for risk

assessment using ANNs (25, 38–46).

The leave-one-out sensitivity analysis confirmed the stability of

this study’s pooled estimates, with no single study dominating the

observed effects. Exclusion of Page et al. (2021) (25) (burn

treatment CNN) marginally reduced overall accuracy from 88%

to 87.4% (95% CI: 0.84–0.90), while removal of Bodini (2019)

(26) (facial feminization CNN) resulted in a negligible change

(87.9%; 95% CI: 0.85–0.91). Heterogeneity remained low-to-

moderate (I2 = 28%–35%) across all iterations, supporting the

robustness of the study findings.

While these results demonstrate consistent algorithmic

performance with CNNs excelling in image-based tasks and ANNs

in predictive modeling, their clinical significance requires careful

interpretation. Preoperative applications demand higher precision

thresholds than postoperative assessments, necessitating

benchmarking against gold standards and expert clinicians. The

findings suggest AI’s potential to enhance decision-making, but

establishing task-specific performance thresholds and validating

real-world utility remain crucial for safe clinical translation (25–46).

Table 7 summarizes the pooled accuracy rates and

heterogeneity across each domain, supporting the expanding

clinical utility of AI in plastic surgery.

3.8 Regional insights: artificial intelligence
research in plastic surgery within the
GCC countries

This review identified eight AI-focused plastic surgery studies

from GCC countries, with the majority originating from Saudi

Arabia and additional contributions from the UAE, Qatar, and

Kuwait (68–85). The Saudi studies predominantly addressed

facial symmetry analysis, AI ethics, and clinician-AI integration,

while research from other GCC nations explored topics such as

wound healing, cosmetic assessment, and predictive analytics.

The methodologies encompassed retrospective cohorts, predictive

modeling, perception-based surveys, and pilot case studies,

reflecting a nascent to developing stage of AI incorporation

within regional plastic surgery.

Although many of these studies reported statistically significant

results (p < 0.05), they were not included in the pooled statistical

synthesis due to substantial methodological variability, limited

cohort sizes, diverse outcome measures, and incomplete

reporting of essential data such as confidence intervals and

model performance indicators. Furthermore, studies from other

GCC countries beyond those mentioned were excluded for not

meeting the predefined inclusion criteria, which emphasized

methodological rigor, quantitative outcomes, and clinical relevance.

The findings underscore a rising regional engagement with AI

as a tool for personalized assessment and surgical planning,

particularly with efforts to tailor technologies to the demographic

and clinical profiles of local populations. At the same time, these

studies illustrate a need for unified research standards, broader

sample inclusion, and improved transparency in reporting to

enhance evidence robustness and facilitate cross-study
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TABLE 6 Utilizing AI algorithms for objective evaluation of predictive modelling results.

Study Study type Study aim Sample
size

Dataset
source

Training/
testing
split

Specific
algorithms

Performance metrics Summary

Sensitivity Specificity Accuracy ROC

Page 2021 (25) In silico optimization Burn treatment

prediction

300 thermal

images

Burn center

image database

80/20 split CNN 0.90 0.92 91% 0.93 CNN predicted appropriate

treatment modalities for burn

injuries

Mendoza, 2014

(41)

Algorithm development Diagnosis of

craniosynostosis

NR Institutional CT

dataset

NR Logistic Regression NR NR Expert level NR ML classified non-syndromic

craniosynostosis with expert-level

performance

Nishimoto,

2019 (42)

Algorithm validation Preoperative anatomic

landmarking

NR Institutional

cephalometric

images

NR CNN NR NR Comparable to

manual

NR CNN predicted landmarks as

accurately as manual identification

Estahbanati,

2002 (43)

Retrospective algorithm

development

Prediction of burn

survival

NR Institutional

clinical dataset

NR ANN NR NR 90% NR ANN predicted outcomes with high

accuracy

Yeong, 2005

(44)

Experimental evaluation Prediction of burn

wound healing time

NR Institutional

spectrometry data

NR - NR NR 86% NR Predicted healing time from

reflectance spectrometry

Heredia-Juesas,

2016 (45)

Experimental animal

study

Classification of burn

wound depth

NR Animal model

dataset

NR QDA NR NR Class

dependent

NR QDA classified burn depth with

highest accuracy for healthy tissue

Knoops, 2019

(47)

Algorithm development Predict postoperative

orthognathic shape

features

NR Institutional 3D

model dataset

NR Random Forest NR NR NR NR ML-driven 3D models simulated

surgical outcomes

Hincapié-

Ramos, 2009

(50)

Algorithm development Predictive cell

counting in wound

healing scratch assays

Not reported in vitro scratch

assay images

Not reported Deep learning-

based image

analysis

NR NR NR NR Demonstrated successful deep

learning-based automated cell

counting in lab assays to support

prediction of healing outcomes

O’Neill, 2020

(51)

Retrospective cohort

analysis

Autologous Breast

Reconstruction success

prediction

NR Institutional

retrospective

dataset

NR Decision Trees NR NR 90% NR Predicted DIEP flap failure (10% of

patients) with BMI/comorbidities

as risks

Dorfman, 2020

(52)

Validation study Evaluation of

aesthetics in facial

plastic surgery

NR Institutional

retrospective

images

NR CNN NR NR NR NR Detected changes in estimated age

pre/post-rhinoplasty

AI, Artificial Intelligence; ANN, artificial neural network; BMI, body mass index; CNN, convolutional neural network; CT, computed tomography; DIEP, deep inferior epigastric perforator; ML, machine learning; NR, not reported; PK/PD, pharmacokinetic/

pharmacodynamic; QDA, quadratic discriminant analysis; ROC, receiver operating characteristic.
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comparability. Narrow sample bases, heterogeneous endpoints, and

inconsistent reporting limits these studies integration into global

datasets but highlight key areas for future research development.

Table 8 provides a detailed overview of the study characteristics,

focus areas, and reported outcomes across the GCC region.

3.9 Temporal trends in AI performance

Temporal subgroup analysis demonstrated a clear upward

trend in AI model accuracy over time. During the period 2010–

2014 (n = 5 studies), pooled accuracy was 82% (95% CI: 78–85;

I2 = 41%), with models predominantly relying on support vector

machines (SVMs) and small datasets comprising fewer than 100

samples (27–29). In the 2015–2019 interval (n = 9), accuracy

improved to 87% (95% CI: 84–90; I2 = 33%), coinciding with

broader adoption of convolutional neural networks (CNNs) and

use of institutional datasets (25, 31, 32). Most notably, studies

published between 2020 and 2025 (n = 9) reported the highest

pooled accuracy of 91% (95% CI: 88–93; I2 = 25%), characterized

by the use of large datasets (>500 samples) and more

sophisticated architectures, such as hybrid CNNs with attention

mechanisms (26, 38, 44). The observed heterogeneity across these

time periods was statistically significant (p = 0.02), underscoring

both methodological evolution and improvements in data quality.

These findings are visually summarized in Figure 3, which

illustrates the temporal progression of AI accuracy in plastic

surgery applications.

4 Discussion

Artificial intelligence (AI) is rapidly reshaping plastic surgery

by improving diagnostic precision, surgical planning, outcome

prediction, and aesthetic evaluation. In this study, AI models

demonstrated a pooled diagnostic accuracy of 88%, with CNNs

and ANNs emerging as the most effective architectures in image-

based and predictive tasks, respectively. Postoperative evaluation

showed the highest performance, particularly for aesthetic

assessments and complication prediction. However, this technical

promise is undermined by critical limitations: over 60% of

studies lacked external validation, none reported prospective

clinical trials, and key metrics such as sensitivity or AUC were

often omitted. Methodological inconsistencies, inadequate

adherence to reporting standards such as TRIPOD-AI, and

limited model transparency raise concerns about reproducibility

and clinical applicability. Furthermore, algorithmic performance

was generally higher in institutional datasets, but such models

risk overfitting and poor generalizability to diverse patient

populations. These findings underscore the need for rigorous

multicenter validation and standardized evaluation frameworks.

TABLE 7 Pooled accuracy and heterogeneity across artificial intelligence applications in plastic surgery.

Application domain No. studies Pooled accuracy (95% CI) I2 (%) p value Algorithms (references)

Preoperative planning 6 0.88 (0.83–0.92) 28% 0.15 CNN (26–31)

Postoperative evaluation 7 0.90 (0.86–0.93) 35% 0.08 DCNN (26, 32–37)

Predictive modeling 10 0.86 (0.82–0.89) 48% 0.01 ANN (25, 38–46)

Overall 23 0.88 (0.85–0.90) 32% 0.04

CI, confidence interval; CNN, convolutional neural network; DCNN, deep convolutional neural network.

FIGURE 3

Forest plot of pooled algorithm accuracy across preoperative, postoperative, and predictive modeling domains.
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While the temporal analysis indicates consistent improvement

in AI accuracy, it also introduces methodological limitations. Early

studies—limited by small datasets, simpler algorithms, and lack of

external validation—may underestimate the current capabilities of

AI in plastic surgery. This time-based heterogeneity necessitates

cautious interpretation of pooled estimates, as more recent

studies (post-2020) offer a more accurate reflection of clinically

deployable models.

Beyond technical challenges, the ethical and regulatory

landscape for AI in plastic surgery remains underdeveloped.

Algorithmic bias, particularly concerning race, gender, and facial

phenotypes, is a pressing concern in aesthetic applications, where

skewed training data may reinforce narrow beauty standards or

misrepresent underrepresented groups. Patient autonomy is

also at risk in elective procedures, where AI-generated

recommendations might subtly influence personal choices and

undermine informed consent (86). Despite emerging global

regulatory efforts, such as the United States Food and Drug

Administration’s (FDA) Software as a Medical Device (SaMD)

framework, none of the reviewed models reported compliance,

and no clear liability structures currently exist for AI-assisted

surgical outcomes. This study highlights the need for inclusive,

transparent, and ethically grounded AI development. Specific

recommendations include that clinicians engage with

interpretable AI tools and prioritize shared decision-making,

researchers adhere to rigorous reporting and validation

standards, policymakers establish clear regulatory and liability

pathways, and institutions invest in explainable AI and the

development of diverse, representative datasets. Without

coordinated action across stakeholders, the integration of AI into

plastic surgery risks reinforcing disparities rather than advancing

equitable innovation.

4.1 Limitations

This review reveals fundamental limitations in AI translation

for plastic surgery, foremost being inadequate external validation

(only 35% of studies (29, 31, 44) and predominant single-center

designs. Critical metrics like sensitivity/specificity (reported in

just 16% of studies (25, 38) and AUC values (12% (26, 44, 46)

were routinely omitted, while only one study employed Dice

coefficients (36). Such inconsistent reporting - compounded by

absent calibration metrics - obscures true model performance

and necessitates strict adherence to TRIPOD-AI/CONSORT-AI

standards (17, 21).

Geographic bias toward high-income nations risks clinical

irrelevance for diverse populations, particularly in aesthetic

applications where facial structure and skin tone variability

matter (26, 70). Most studies (17/25) failed to fully describe

model architectures or training protocols (25, 29, 44), and only

two employed interpretability tools like SHAP/Grad-CAM (44,

46). These omissions undermine both reproducibility and

clinician trust in predictive outputs.

The complete absence of real-world deployment data or cost-

effectiveness analyses exposes a critical implementation gap. NoT
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studies addressed ethical frameworks for AI-assisted decisions (52)

or prospective clinical validation, mirroring field-wide trends where

<15% of surgical AI models achieve clinical adoption (86).

Overcoming these barriers requires multicenter trials with diverse

populations, standardized reporting per TRIPOD-AI (17), and

deliberate integration of health economic evaluations.

4.2 Future recommendations

To realize AI’s potential in plastic surgery, this study proposes

a comprehensive framework addressing both foundational

principles and actionable implementation strategies. The

foundation must prioritize standardized development through

international collaborations to build diverse, representative

datasets, ensuring models generalize across populations. This

requires moving beyond retrospective studies to conduct

prospective clinical trials assessing real-world impacts on surgical

outcomes, efficiency, and cost-effectiveness. Specialty-specific

benchmarks for key applications like facial symmetry analysis

and breast reconstruction prediction should be established to

enable meaningful comparisons. Crucially, these efforts must

incorporate low-cost, scalable solutions accessible to low-resource

settings to prevent widening healthcare disparities (87).

Implementation should follow three priority tiers: (1) Immediate

focus (0–2 years) on establishing multicenter validation consortiums

across ≥50 institutions globally, with particular emphasis on LMIC

participation through adapted telemedicine platforms, while

developing generative AI solutions to address demographic gaps

via ethically-sourced synthetic data; (2) Mid-term goals (2–5 years)

conducting large-scale clinical trials of high-impact applications

like intraoperative decision-support systems, implemented through

phased rollout across diverse healthcare systems; (3) Long-term

transformation (5+ years) through systemic integration of AI

competency into surgical education via simulation platforms and

sustainable deployment of containerized AI systems in low-

infrastructure settings. Throughout this process, transparency must

be maintained using explainable AI techniques (SHAP, attention

maps), with open-source models shared under privacy safeguards.

Clinician-AI partnerships should balance automation with surgical

autonomy, supported by robust ethical governance addressing

informed consent, data privacy, and psychological impacts. Success

will require cross-institutional governance frameworks, centralized

computational resources, specialized training programs, and

sustained commitments from international health organizations -

ensuring AI enhances precision without compromising patient

safety or autonomy across all healthcare settings.

5 Conclusion

This review confirms the strong potential of AI—particularly

Convolutional Neural Networks—in advancing plastic surgery

through high accuracy in preoperative planning, intraoperative

support, and postoperative evaluation. However, meaningful

clinical adoption depends on overcoming current limitations such

as insufficient external validation, methodological inconsistencies,

and limited data diversity. Progress will require standardized

validation frameworks, broader multicenter collaboration, and

ethically grounded implementation strategies. With these efforts,

AI can become a transformative tool that enhances surgical

precision, personalizes care, and improves patient outcomes,

realizing its full potential only through sustained commitment to

rigorous validation, transparency, and equitable access.
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