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Background: Ultrasound-guided vacuum-assisted breast biopsy (VABB) has become

the standard minimally invasive procedure for diagnosing and treating benign breast

lesions. Despite its widespread adoption, postoperative complications such as

bruising, residual tumors, and skin injury remain significant clinical challenges that

can impact patient outcomes and satisfaction. Current risk assessment methods

lack precision, highlighting the need for more sophisticated predictive tools.

Methods: We conducted a multicenter retrospective study analyzing 1,064 VABB

procedures performed at three medical centers between 2017 and 2025. Using a

comprehensive set of 12 preoperative variables including tumor characteristics and

anatomical relationships, we developed and validated six machine learning models.

The random forest algorithm demonstrated superior performance in our five-fold

cross-validation analysis, with particular strength in predicting postoperative bruising

and operative duration.

Results: Our predictivemodel achieved exceptional performance for bruising risk

assessment (AUC 0.971, accuracy 96.7%) and moderate surgical duration

prediction. SHAP analysis identified three key predictive features: tumor size

(mean SHAP value 0.32), blood flow grade (0.28), and distance to pectoralis

muscle (0.25). The model maintained strong performance in external validation

(AUC 0.945), confirming its generalizability. However, prediction of rare

complications like tumor residual showed limited effectiveness (AUC 0.68).

Conclusions: This study presents a clinically validated machine learning tool that

accurately predicts common VABB complications, particularly postoperative

bruising. By incorporating specific anatomical and tumor characteristics into

preoperative planning, surgeons can better anticipate and potentially mitigate these

adverse outcomes. The model’s integration into clinical practice could enhance

surgical decision-making and improve patient counseling regarding expected

recovery experiences.

Clinical Trial Registration: https://www.chictr.org.cn/index.html, identifier

ChiCTR2500095736.
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1 Introduction

Benign breast tumors account for approximately 30 % of all

breast diseases, with an increasing incidence in younger women

(1, 2). Ultrasound-guided vacuum-assisted breast biopsy (VABB)

is widely used for such tumors, and its indications have

broadened owing to advances in imaging and surgical

instruments (3). Nevertheless, postoperative cutaneous bruising,

tumor residual, and skin damage have long been recognized as

major complications that adversely affect patient prognosis (4).

Operative difficulty is heightened and surgical efficacy

diminished especially when breast tumors are excessively large or

small, overly superficial or deep, unusually firm, situated adjacent

to major vessels, or accompanied by marked pectoralis muscle.

A complexity-grading and subtype-directed treatment paradigm

for VABB was proposed by Cui et al. (2022), broadening

procedural indications and helping to restrain overall

complication rates; nevertheless, postoperative cutaneous bruising

still occurs in up to 10% of conventional VABB cases and rises

to about 20% in high-complexity procedures, underscoring the

need for further optimization (5).

Machine learning (ML) is a type of artificial intelligencemodel that

provides more accurate predictions without explicit programming; a

variety of ML models are used to build information models based on

big data that reveal potential relationships between multiple clinical

predictors and outcomes (6–8), and analyze the underlying

mechanisms of various complications (9), thus guiding effective

protocols to reduce complications’ occurrence.

This study aims to establish a ML model to explore the

relationship between the aforementioned complex factors and

complications of VABB, with the goal of improving prediction

accuracy, optimizing surgical planning, enhancing surgical

quality, and reducing the incidence of complications.

2 Materials and methods

2.1 Study cohort

Derived from 903 cases of VABB cases admitted to The

People’s Hospital of China Medical University between October

2017 and May 2024, which were randomly divided into the

training set and test set in the ratio of 7:3; derived from 161

similar cases in the First Affiliated Hospital of Zhengzhou

University and the Second People’s Hospital of Hami City,

Xinjiang, between March 2024 and January 2025, which served

as a separate external validation set. All cases were graded

according to the diagnostic criteria for above paradigm (5).

Inclusion criteria: 1. Lesions classified as BI-RADS 4a or higher

on ultrasound or BI-RADS 3 with a clear surgical indication;

2. patient preference for minimally invasive surgery; 3. Single or

multiple lesions, provided that only one lesion required

excision.Exclusion criteria: 1. those with bleeding tendency or

who have recently taken anticoagulant drugs; 2. severe

cardiopulmonary comorbidities precluding surgery; 3. Incomplete

clinical or imaging data. This study was ethically reviewed by the

Ethics Committee of Liaoning Provincial People’s Hospital, Grant

No. (2024) H058. All patients signed an informed consent form

and agreed to use their data for this study. This study also

passed the China Clinical Trial Registry, registration number

ChiCTR2500095736.

According to the summary statistics in Table 1, the mean

patient age was 41.98 ± 11.81 years, indicating that the cohort

consisted largely of individuals in early-to-middle adulthood.

Virtually all patients were non-lactating at the time of surgery,

and lesions were distributed evenly between the left and right

breasts. Almost half of the tumors were assigned Adler grade 0

for intralesional blood-flow signals; the proportion of patients

declined progressively with increasing grades, suggesting that

vascularity within and around most lesions was minimal.

Calcifications were detected in only 7.0% of cases. Moderate

breast ptosis was the most prevalent degree of sagging, observed

in 50.4% of the study population.

Surgery time was predominantly short or medium, with

prolonged procedures observed in only 1.3% of cases. Post-

operative evaluation indicated that most patients developed no

bruising, skin damage, or tumor residual. Pathological classification

confirmed benign disease in 96.7% of tumors, and 97.7% of

patients ultimately required no further conversion to surgery.

2.2 Surgical procedure

Experienced breast surgeons and radiologists (≥5 years’ work

experience) performed pre-operative ultrasound to localize

lesions and record size, vascularity, and anatomical relationships.

The needle entry site and trajectory were planned by the

surgeon, and the target lesion was localized pre-operatively with

a surface-projection plastic molds specifically designed for breast

masses. The VABB was standardized into five maneuvers: adjust

body position, buffer zone creation, lesion-groove positional

adjustment, cavity water injection inspection, compression

hemostasis. These above steps kept the cutting groove safely away

from vessels, skin, pectoralis muscle, and nipple, while enabling

real-time detection of minor bleeding and its precise control. The

excised specimen was submitted for paraffin-embedded

histopathological examination. After VABB, the resection cavity

was packed with gauze at the skin surface and secured with a

compressive elastic bandage. Forty-eight hours post-operatively,

the bandage was removed, and a sports bra was applied to

restrict breast motion, thereby minimizing pain and the risk of

delayed hemorrhage.

2.3 Data preprocessing

This study’s dataset consisted of 18 features, including 5

continuous and 13 categorical variables. Among them, 12

clinically meaningful features were selected as model inputs: age

(years), breastfeeding status, laterality (left or right breast), tumor

size (cm²), blood flow (Adler classification), distance from the

tumor’s upper margin to the skin (cm), distance from the lower
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margin to the pectoralis muscle (cm), distance from the proximal

margin to the nipple (cm), distance from the distal margin to the

glandular border (cm), tumor direction (clock-face positions),

calcification (yes/no), and breast ptosis (classified by the degree

of ptosis as normal, mild, moderate, or severe). In addition, six

key outcome variables were included: surgery time (defined as

the duration of ultrasound localization and vacuum-assisted

excision, excluding anesthesia and compression time, and

categorized as short <10 min, medium 10–20 min, or long

>20 min), postoperative bruising (yes/no), pathological

classification (benign, malignant, or inflammatory lesions), skin

damage (yes/no), tumor residual detected by ultrasound at

3-month follow-up (yes/no), and conversion to surgery (yes/no).

To align with ML requirements, tumor size was calculated as the

product of its length and width to obtain the area, and surgery

time and pathological classification were recoded as categorical

variables according to the above classifications.

2.4 Model building

Multiclass classification models were developed within the mlr3

ML framework to obtain precise predictions for indices related to

VABB (10). Six base learners were implemented: decision tree

(recursive partitioning and regression trees; rpart) (11), random

forest (ranger) (12), k-nearest neighbor (KNN) (13), extreme

gradient boosting (XGBoost) (14), support vector machine

(SVM) (15), and feed-forward neural network (nnet) (16).

During model training, a five-fold cross validation scheme was

applied to each algorithm to maximize use of the limited dataset

and to avoid overfitting.

2.5 Model evaluation

For model evaluation, accuracy and AUC are selected as the

core evaluation metrics, and the optimal model is screened and

extended to the test set and validation set for verification. In this

study, SHapley additive interpretation (SHAP) values were used

to assess the importance of overall features in the ML model

with the best predictive performance (17).

2.6 Statistical analysis

Data were analyzed using the statistical package R (v4.1.3).

Mean and standard deviation were used to describe continuous

TABLE 1 Descriptive statistics of relevant variables.

Clinical Characteristics and Statistical Results

Characteristic Statistical Results

Number of Patients 1,064

Age (Mean ± SD) 41.98 (11.81)

Breastfeeding Status (%)

No 134 (12.6%)

Yes 930 (87.4%)

Left/Right Breast (%)

Right 517 (48.6%)

Left 547 (51.4%)

Tumor Size (cm2) (Mean ± SD) 1.21 (2.02)

Blood Flow (Adler Classification) (%)

0 501 (47.1%)

1 346 (32.5%)

2 176 (16.5%)

3 41 (3.9%)

Distance to Skin (cm) (Mean ± SD) 0.64 (0.25)

Distance to Pectoralis Muscle (cm) (Mean ± SD) 0.96 (0.59)

Distance to Nipple (cm) (Mean ± SD) 1.91 (1.04)

Distance to Gland Margin (cm) (Mean ± SD) 3.34 (1.06)

Tumor Direction (%)

1 o’clock 78 (7.3%)

2 o’clock 101 (9.5%)

3 o’clock 113 (10.6%)

4 o’clock 64 (6.0%)

5 o’clock 46 (4.3%)

6 o’clock 34 (3.2%)

7 o’clock 25 (2.4%)

8 o’clock 61 (5.7%)

9 o’clock 153 (14.4%)

10 o’clock 190 (17.9%)

11 o’clock 79 (7.4%)

12 o’clock 119 (11.2%)

Calcification (%)

No 990 (93.0%)

Yes 74 (7.0%)

Breast Ptosis (%)

Normal 253 (23.8%)

Mild 213 (20.0%)

Moderate 536 (50.4%)

Severe 62 (5.8%)

Surgery Time (Short/Medium/Long) (%)

Short 493 (46.3%)

Medium 557 (52.3%)

Long 14 (1.3%)

Bruising (%)

No 840 (78.9%)

Yes 224 (21.1%)

Pathological Classification (%)

Benign Lesions 1,029 (96.7%)

Inflammatory Lesions 14 (1.3%)

Malignant Lesions 21 (2.0%)

Skin Damage (%)

No 1,023 (96.1%)

Yes 41 (3.9%)

Tumor Residual (%)

No 1,054 (99.1%)

(Continued)

TABLE 1 Continued

Clinical Characteristics and Statistical Results

Yes 10 (0.9%)

Conversion to Surgery (%)

No 1,040 (97.7%)

Yes 24 (2.3%)
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variables. Frequencies and percentages were used to describe

categorical scalars. Statistical analysis was performed using the

R packages table one, mlr3, mlr3benchmark, mlr3extralearner

and shapviz. Statistical analysis were two-sided and

p-values < 0.05 were considered statistically significant.

3 Results

3.1 Results of model building

We first used six ML algorithms in the training set to construct

a multiclassification model about the surgery time and a

multiclassification model about the pathological classification,

respectively. The classification error rates of different algorithms

are shown in Figure 1. The ranger algorithm model about

surgery time has the lowest error rate (0.021). The ranger

algorithm for pathological classification had the same error rate

as the rpart, NNet, and XGBoost, which were all 0.027.

In constructing a binary prediction model for postoperative

complications, we compared the performance of six ML

algorithms. The results show that the ranger algorithm

performs best in predicting postoperative skin bruising with

an error rate of 3.2%; the NNet is optimal in predicting

postoperative skin damage with an error rate of 4.4%; the

KNN has the lowest error rate in identifying tumor residual at

0.8%; and for the prediction to open surgery conversion, the

SVM, the NNet, and the ranger collectively perform optimally,

with an error rate of 1.1% each.

Receiver-operating-characteristic (ROC) analyses for all models

are presented in Figure 2. The ranger algorithm yielded areas under

the curve (AUCs) of 0.967 for bruising and 0.894 for skin damage.

By contrast, the class distributions for conversion to surgery and

tumor residual were extremely imbalanced, rendering the

associated ROC curves unstable and the resulting AUC values of

little significance.

3.2 Results of model validation

Based on the 5-fold cross-validation of the training set, the

optimal results are selected for the operation. The model

selection and the accuracy and multiclassification AUC on the

test set and training set are shown in Supplementary Material S1.

Regarding the multiclassification model for surgery time, the

ranger algorithm gave the best results, with an accuracy of 0.797

and a multiclassification AUC of 0.818 on the test set, and an

accuracy of 0.447 and a multiclassification AUC of 0.818 on the

validation set. The classification model gave better results for

short- and medium-length surgeries, but was not effective for

long-length surgeries (Figure 3).

We used the ranger algorithm to construct a classification

model and validate it on the full training set of postoperative

bruises. The results showed an accuracy of 0.967 with an AUC of

0.971 on the test set. on the validation set the accuracy was 0.913

with an AUC of 0.945. The classification model showed good

performance on the test set as well as on the external validation

set (Figure 3).

Regarding the multi-classification model for pathological

classification, three algorithms worked nearly the same in the

5-fold cross-validation. The ranger model was still chosen as the

final model since the first few classification models were the most

effective. The results showed an accuracy of 0.974 on the test set

and 0.931 on the validation set. However, the model classified all

samples as benign lesions and did not recognize the other two

classifications that were less numerous (Figure 3).

Regarding the model of skin damage, the random forest

algorithm had the best accuracy and AUC results. We used the

ranger algorithm to construct a classification model for the full

training set, and the results showed an accuracy of 0.956 on the

test set. The validation set could not be validated because the

skin damages in the validation set were all null (Figure 3).

3.3 Results of model interpretability

The SHAP plot (Figure 4) shows the importance of each

feature in the ML model for predicting the surgery time,

bruising. The SHAP values show that the tumor size, blood flow,

distance to gland margin, and distance to pectoralis muscle are

important factors affecting the surgery time. In contrast, the

likelihood of bruising was primarily determined by lesion size,

blood-flow grade, and the distance to pectoralis muscle.

4 Discussion

Ultrasound-guided VABB is now a well-established technique.

The 2017 VABB guidelines stipulated that excision should be

restricted to lesions ≤3 cm in maximal diameter (18). In the

2021 revision, however, it was emphasized that the probability of

residual disease rises in direct proportion to tumor size once the

diameter exceeds 2 cm, and no explicit upper size limit was

imposed (19). The 2017 document further classified lesions

situated near the nipple–areolar complex or adjacent to breast

implants as relative contraindications (18), whereas the 2021

guidelines recommended VABB as the preferred approach for

tumors <1 cm, particularly when located close to the chest wall

or an implant (19). The progressive relaxation of surgical

indications has been accompanied by a tangible rise in

procedural difficulty and complexity. Among the 1,064 cases

analyzed, the prevalence of individual complicating factors was as

follows: excessive lesion size, 14%; very small lesions, 39%;

excessive depth, 67%; excessive superficiality, 95%; close

proximity to major vessels or marked hyper-vascularity, 20%;

calcification, 6%; and excessive Breast Ptosis, 56%. When cases

were stratified by cumulative complexity, mild complexity

(one–two factors) accounted for 30% of procedures and was

associated with a 7% complication rate; moderate complexity

(three–four factors) comprised 57% of procedures with a 25%

complication rate; and severe complexity (five or more factors)

represented 8.4% of procedures but carried an 86% complication
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FIGURE 1

Classification error rates for six ML algorithms applied to the prediction of six postoperative complications. (A) Surgery time, (B) bruising,

(C) pathological classification, (D) skin damage, (E) tumor residual, (F) conversion to surgery.
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rate. These data demonstrate a strong positive association between

procedural complexity and the incidence of postoperative

complications in vacuum-assisted breast excision.

By elucidating the correlation between procedural complexity

and postoperative complications in VABB, prophylactic, case-

specific measures can be implemented pre-operatively in high-

risk patients, thereby enhancing surgical quality and safeguarding

clinical outcomes.

Surgery time and bruising were identified as outcome variables

with unequivocally positive predictive signals. For both endpoints,

the ranger algorithm demonstrated the lowest misclassification rate

and achieved the highest precision and AUC values in the test set.

FIGURE 2

Receiver-operating-characteristic curves for the random-forest models predicting postoperative bruising and postoperative skin damage. (A) Bruising,

(B) skin damage.

FIGURE 3

Performance profiles of the random-forest models for operative duration, postoperative ecchymosis/bruising, histopathology, and postoperative skin

damage. (A) Surgery time-text, (B) bruising-text, (C) pathological-text, (D) skin damage-text, (E) surgery time-val, (F) pathological classification-val.
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FIGURE 4

SHAP plots of each feature in the machine learning model for predicting surgery time and bruising. (A) Surgery time, (B) bruising.
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SHAP analysis further revealed that lesion size, intralesional blood-flow

grade, and the distance to gland margin were the principal

determinants of surgery time and bruising. Surgery time and

bruising were identified as endpoints with strong positive predictive

signals. Tumor size, intralesional vascularity, and the distances to

gland margin, pectoralis muscle, and skin proved to be the principal

determinants of surgery time, whereas tumor size, vascularity, and

the distance to pectoralis muscle exerted the greatest influence on

bruising. Excessive tumor size, overly superficial or deep location,

and close proximity to major vessels or marked hyper-vascularity

constituted the complexity factors most strongly associated with

prolonged operative time and with the development of bruising.

Careful intra-operative attention to these parameters should therefore

help prevent unnecessarily lengthy procedures and reduce the

incidence of postoperative cutaneous ecchymosis and hematoma.

Across the full cohort of 1,064 cases, procedures of short

(<10 min) and moderate (10–20 min) surgery time accounted for

46.3% and 52.3%, respectively—i.e., 98.6% were completed within

20 min, fully consistent with the minimally invasive and rapid

nature of VABB. Although prolonged operations (>20 min) were

uncommon (n = 14; 1.3%), the longest procedure extended to 60 min.

Among these cases, the incidence of bruising reached 21.1%,

while tumor residual, skin damage, and conversion to surgery

occurred in 0.9%, 3.9%, and 2.3%, respectively—together

representing over 50% of all such rare complications in the

series. Notably, these operations typically involved four to six

complicating factors, underscoring that meticulous management

of moderate-to-severe complexity cases is pivotal for reducing the

overall rate of infrequent but clinically significant complications.

To optimize the safety and technical quality of minimally

invasive VABB, each complicating factor was classified and paired

with a targeted mitigation strategy. Type I complexity—tumors

that are excessively large or small—requires precise pre-operative

localization. Type II complexity refers to lesions situated close to

the skin, pectoralis muscle, or major vessels; in these cases,

injection of a perilesional buffer zone and adjustment of patient

positioning are recommended to widen the interval between the

tumor and adjacent critical structures. Type III complexity is

characterized by marked breast ptosis and is best managed

through enhanced fixation to prevent displacement of either the

tumor or the cutting groove. A special subtype encompasses

heavily calcified lesions; these are most safely addressed by coring

the tissue circumferentially to free the mass, followed by retrieval

with curved forceps (5, 20). Finally, comprehensive, workflow-

based management of the entire excision procedure has been

advocated to further improve surgical quality and patient safety (21).

Several limitations were encountered while developing the

complication-risk prediction model for VABB. The overall sample

size—especially the number of positive events for prolonged surgery

time, skin damage, and tumor residual—was limited. This resulted

in a severe class imbalance, particularly for rare events such as

tumor residual and surgical conversion, causing the model to

exhibit a bias toward the majority classes. Consequently, although

the ranger model achieved high aggregate accuracy in both the test

and validation sets, its ability to discriminate minority classes was

constrained. A more balanced and larger dataset, or effective class-

balancing strategies, such as SMOTE, could potentially improve the

model’s ability to detect these infrequent but critical outcomes.

Future investigations should therefore refine the model architecture,

expand the dataset, or implement more effective class-balancing

strategies to improve performance for these infrequent outcomes.

At the technical level, it is recommended that synthetic-minority

oversampling methods such as SMOTE be adopted to improve

class balance, and that multicenter collaboration be pursued to

enlarge both the size and diversity of the dataset. Although the

models displayed satisfactory predictive performance, the underlying

decision rationale remains insufficiently transparent; future work

should therefore incorporate interpretability techniques—e.g., SHAP

value analysis—to enhance clinical trust. For routine clinical

deployment, operative variables such as surgeon experience, device

selection, and long-term follow-up outcomes should be integrated,

and a real-time prediction module compatible with surgical-

navigation systems should be developed. The absence of long-term

follow-up data in this study limits the understanding of the model’s

potential in predicting postoperative complications and patient

outcomes over time. The present study was limited to VABB, and

the generalizability of the models to other breast procedures has yet

to be established. To address this, the research paradigm will be

expanded to encompass additional breast procedures—including

radical mastectomy and breast-conserving surgery—and model

generalizability will be evaluated through transfer-learning

approaches. Ultimately, deep interdisciplinary collaboration between

clinical medicine and biomedical informatics will facilitate the

transformation of these predictive models into precise, intelligent

decision-support systems for routine clinical use.

5 Conclusion

In summary, the VABB prediction model developed in this

study demonstrated substantial clinical value—most notably in

forecasting surgery time and bruising—and can assist surgeons in

formulating more precise operative strategies. Further refinements

should focus on enhancing class balance within the dataset to

strengthen the model’s overall practicality and reliability.
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