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Background: Lower extremity deep vein thrombosis (DVT) represents a
prevalent and formidable complication among patients with gastrointestinal
malignancies, exerting a profound impact on both prognosis and quality of
life. Owing to its intricate pathogenesis, the development of a precise risk
prediction model is imperative for advancing clinical strategies in prevention
and therapeutic intervention.

Methods: This retrospective study enrolled patients with gastrointestinal
malignancies using multicenter, longitudinal clinical data obtained from three
tertiary medical centers between 2020 and 2024. A total of 34 variables were
extracted, encompassing demographic profiles, clinical parameters, tumor-
specific characteristics, and laboratory indices. To identify independent
predictors of DVT, both univariate and multivariate analyses were initially
performed. Four machine learning algorithms—Extreme Gradient Boosting
(XGBoost), Random Forest (RF), Support Vector Machine (SVM), and k-Nearest
Neighbors (KNN)—were subsequently constructed to predict DVT risk. Model
performance was rigorously assessed through receiver operating
characteristic (ROC) curves, calibration plots, Brier scores, and decision curve
analysis (DCA). Internal validation was conducted via ten-fold cross-
validation, while an independent external cohort was employed to evaluate
model generalizability. To elucidate the underlying predictive mechanisms,
SHapley Additive exPlanations (SHAP) analysis was carried out.

Results: Through a combination of univariate and multivariate analyses
alongside four machine learning algorithms, surgery, prolonged
immobilization, central venous catheterization, radiotherapy, distant
metastasis, and chemotherapy emerged as significant high-risk factors for
DVT. All four predictive models exhibited robust performance, with the
XGBoost model demonstrating superior discrimination, calibration, and
clinical utility. Findings from the external validation cohort further
substantiated its stability and generalizability. SHAP analysis illuminated the
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relative contributions and directional influences of pivotal variables within the

predictive framework.

Conclusion: Machine learning models derived from multicenter, longitudinal
clinical datasets offer robust predictive capabilities for assessing DVT risk in
patients with gastrointestinal malignancies. These models furnish clinicians with
individualized risk stratification tools, facilitating the refinement of preventive

strategies and the enhancement of clinical

decision-making, ultimately

contributing to improved patient management.
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Introduction

Gastrointestinal malignancies rank among the most lethal
cancers globally. Driven by a rapidly aging population and the
pervasive adoption of deleterious lifestyle behaviors, the incidence
of these tumors continues to climb, constituting a substantial
fraction of the global oncological burden. Despite notable
progress in early detection and surgical interventions in recent
years, the majority of cases are diagnosed at intermediate or
advanced stages, often accompanied by multiple comorbidities
that significantly undermine clinical outcomes (1-5).

Lower extremity DVT is
complication in patients with gastrointestinal tumors, marked by

a frequent and formidable

a high incidence and significant risks of disability and mortality
(6-8). Neoplastic processes themselves foster a hypercoagulable
milieu through the secretion of procoagulant factors such as
tissue factor and tumor-derived microparticles, which activate
the coagulation cascade. Moreover, chronic tumor-associated
inflammation, endothelial injury inflicted by malignant cells,
and disruption of the immune microenvironment synergistically
promote thrombus formation (9-11).

The consequences of thrombosis extend well beyond localized
symptoms such as limb edema, pain, and impaired mobility.
Thrombus dislodgement can precipitate pulmonary embolism
(PE)—a life-threatening emergency. These complications not
only prolong hospitalization and elevate the risk of bleeding
associated with anticoagulant therapy but may also interrupt or
thereby
compromising disease control and overall survival (12-14).

even preclude standardized oncologic treatments,
A growing body of evidence (15-19) underscores that cancer
patients who develop venous thromboembolism (VTE) face a
markedly heightened risk of mortality within one year,
rendering VTE a principal cause of non-cancer-related death in
this population.

Traditionally, clinicians have relied on experiential judgment
or risk stratification tools such as the Caprini and Khorana
scores to assess thrombotic risk. While these instruments
provide a degree of guidance, they are constrained by inherent
subjectivity, limited generalizability, and suboptimal accuracy in
detecting tumor-associated thrombosis (20, 21). Recently,
statistical approaches like logistic regression have been employed
to  enhance objectivity  and

predictive quantification;
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nevertheless, these methods falter when confronted with high-
dimensional datasets, nonlinear relationships, and intricate
variable interactions, limiting their applicability in complex
clinical landscapes.

Against this backdrop, the present study seeks to leverage
multiple sophisticated machine learning algorithms to assimilate
multidimensional clinical data and develop a predictive model
for delineating high-risk factors of lower extremity venous
thrombosis in patients with gastrointestinal malignancies. This
model aspires to elevate the precision and efficiency of high-risk
patient identification, thereby furnishing robust
solid

prophylactic interventions.

empirical

support and a foundation for  individualized

Materials and methods
Study subjects

This study utilized clinical data sourced from the databases of
Wuxi People’s Hospital affiliated with Nanjing Medical University,
Wuxi Second People’s Hospital, and Tengzhou Central People’s
Hospital. The clinical data and samples analyzed in this study
were collected from January 1, 2020, to January 31, 2024, and
the datasets were accessed for research purposes on January 31,
2024. with
pathologically and radiologically confirmed gastrointestinal

Inclusion criteria encompassed: (1) patients
malignancies, including esophageal, gastric, small intestinal,

colorectal, pancreatic cancers, cholangiocarcinoma, and
hepatocellular carcinoma; (2) age >18 years; and (3) completion
of lower extremity venous ultrasound screening during
hospitalization. Exclusion criteria were as follows: (1) presence
of other malignancies; (2) prior history of lower extremity DVT
preceding the diagnosis of gastrointestinal tumors; (3)
anticoagulant therapy exceeding two weeks, including agents
such as warfarin, rivaroxaban, apixaban, and heparin; (4) severe
hepatic or renal insufficiency or coagulation disorders, including
congenital conditions (e.g., hemophilia) or acute disseminated
intravascular coagulation (DIC); (5) pregnancy or lactation; (6)
mortality within 30 days of admission; and (7) incomplete
clinical data or loss to follow-up. All patients were monitored

for a minimum of six months postoperatively. This investigation
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received ethical approval from the Institutional Review Boards of
Wuxi People’s Hospital, Wuxi Second People’s Hospital, and
Tengzhou Central People’s Hospital (Approval No. 2025-37).
We have strictly adhered to the guidelines of the TRIPOD + Al
statement (https://www.tripod-statement.org/).

Study design and data collection

This study encompassed a total of 34 clinical variables
spanning multiple domains to facilitate a comprehensive
evaluation of lower extremity DVT risk. The variables were
systematically classified as follows: firstly, demographic attributes
including sex, age, smoking status, alcohol consumption, and
body mass index (BMI); secondly, baseline clinical indices such
as the American Society of Anesthesiologists (ASA) score,
Nutritional Risk Screening 2002 (NRS2002) score, history of
blood transfusion, venous catheterization history, and duration
of immobilization; thirdly, comorbidities encompassing anemia,

coronary artery disease, intestinal obstruction, chronic
obstructive pulmonary disease (COPD), diabetes mellitus,
hypertension, and hyperlipidemia; fourthly, tumor-specific
features comprising tumor type, maximal diameter, lesion
multiplicity, regional lymph node involvement, distant
metastasis, perineural invasion, and receipt of surgery,
chemotherapy, or radiotherapy; and finally, laboratory

biomarkers including serum albumin, carcinoembryonic antigen
(CEA), carbohydrate antigen 19-9 (CA19-9), procalcitonin
(PCT), C-reactive protein (CRP), neutrophil-to-lymphocyte ratio
(NLR), and serum amyloid A (SAA). The principal endpoint of
this investigation was the incidence of lower extremity deep
vein thrombosis.

Missing data handling and data scaling

Variables with a missing rate below 5% were classified as
exhibiting low missingness, whereas those with a missing rate
between 5% and 30% were deemed to have moderate to high
missingness. Two complementary strategies were employed to
address missing data. For variables with low missingness, simple
imputation was applied: median imputation for continuous
variables and mode imputation (most frequent category) for
categorical variables. This approach, restricted to minimal
missingness, aimed to preserve sample integrity and was
subsequently evaluated against multiple imputation outcomes in
sensitivity analyses.

For variables with moderate to high missingness, multiple
imputation was performed. Binary variables (e.g., sex, presence
of comorbidities) were imputed using logistic regression models,
in which the probability distribution of missing values was
estimated from available predictors, followed by stochastic
sampling to preserve intrinsic inter-variable correlations. For
(e.g. staging),
multinomial logistic regression was employed, simultaneously

multicategorical ~ variables tumor location,

estimating the probability of each mutually exclusive category
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and imputing missing entries through probabilistic sampling.
This method maintained the original distributional structure of
the data, mitigated bias, and improved the plausibility of
imputations, thereby enhancing the predictive robustness of
subsequent models.

Continuous variables were discretized into binary or
multicategorical forms guided by clinical expertise, while
categorical variables underwent one-hot encoding to ensure

accurate model recognition of categorical information.

Diagnosis of DVT and definition of
associated factors

Lower extremity DVT denotes the pathological coagulation of
blood within the deep venous system of the lower limbs—
including the peroneal, posterior tibial, popliteal, femoral, and
iliac veins—culminating in thrombus formation and vascular
occlusion (22-24). In this investigation, the initial diagnosis
predominantly hinged on Doppler ultrasound, with diagnostic
criteria comprising partial or complete incompressibility of the
vein (under physiological conditions, veins collapse entirely
under probe pressure; failure to do so indicates thrombus
presence), aberrant blood flow signals (color Doppler revealing
diminished or interrupted flow), direct visualization of
thrombotic echoes on grayscale imaging, and abnormal pulse
Doppler waveforms characterized by reduced or absent flow
velocity. In instances where ultrasonographic findings were
equivocal—particularly when evaluating deep or pelvic veins
such as the iliac vein—or where clinical suspicion remained
high despite negative ultrasound, venography was employed as
an adjunct. This technique, involving intravascular contrast
administration, affords three-dimensional visualization, enabling
precise delineation of thrombus burden and localization, thereby
enhancing diagnostic fidelity. We ensure that all DVT events
were confirmed by imaging, guaranteeing the consistency of

diagnostic criteria and the accuracy of the results.

Development and evaluation of predictive
models for machine learning algorithms

This study employed SPSS and R software to construct and
systematically evaluate clinical prediction models through the
following steps:

Data preprocessing

The study population comprised patients with gastrointestinal
tumors treated from January 2020 to January 2024 at Wuxi
People’s Hospital and Wuxi Second People’s Hospital, forming
the internal validation cohort. Concurrently, patients from
Tengzhou Central People’s Hospital during the same period
constituted the external validation cohort to assess model
generalizability. Within the internal cohort, stratified random
sampling divided data into a training set and testing set at a 7:3
ratio, enhancing the model’s capacity to detect minority events
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such as DVT, thereby mitigating bias toward the majority class
and improving clinical applicability and predictive performance.

Feature selection
A systematic statistical analysis of candidate variables was
performed on the internal cohort to identify clinical features
significantly associated with DVT. Univariate analysis employed
chi-square tests for categorical variables and independent
samples ¢-tests for continuous variables to screen potential risk
factors (P <0.05). Significant variables were then included in a
multivariate logistic regression model to adjust for confounding
and identify independent predictors, with adjusted regression
coefficients and 95% confidence intervals quantifying association
strength. Complementing traditional statistics, four classical
machine learning algorithms—XGBoost, RF, SVM, and KNN—
were used to evaluate variable importance and inter-algorithm
differences. Cross-validation of feature rankings across models
enabled selection of the top ten consistently important variables
as key predictors, thereby enhancing the robustness and
Model
were

interpretability of the feature screening process.
The
integrated into four machine learning models—SVM, REF,
XGBoost, and KNN—to develop DVT risk prediction models.
Model

calibration, and clinical utility. Discrimination was measured by

Construction and Evaluation: selected features

performance was assessed through discrimination,
ROC curves and AUC metrics to evaluate the ability to
distinguish between DVT and non-DVT cases. Calibration was
evaluated by constructing calibration curves to compare the
concordance between predicted probabilities and observed event
rates, supplemented by the Brier score as a quantitative measure
of probabilistic accuracy. In these curves, the x-axis (mean
predicted value) denotes the average model-estimated probability
of an event (e.g., DVT) within a given subgroup, reflecting its
anticipated risk, while the y-axis (fraction of positives)
represents the corresponding empirical event rate, i.e., the true
incidence of DVT within that subgroup. This

assessment captures the degree to which predicted probabilities

graphical

align with actual outcomes. The ideal calibration curve coincides
with the 45° diagonal, indicating perfect agreement between
predicted and observed rates. In this study, calibration curves
were generated for the XGBoost, RF, SVM, and KNN models to
assess their probability estimation fidelity. Samples were
stratified into equally sized risk groups (e.g., deciles) according
to predicted probabilities; for each group, the mean predicted
risk and the observed incidence were computed, and both
scatter plots and fitted calibration lines were produced. Clinical
utility was appraised using decision curve analysis (DCA), which
plots net benefit across a continuum of clinical risk thresholds
(0-1), benchmarked against treat-all and treat-none strategies,
thereby identifying threshold intervals in which the model
confers superior clinical advantage. Guided by expert clinical
threshold of 0.1-0.6,

adopted DVT
prophylaxis that strike a balance between proactive prevention

consensus, we selected a range

corresponding to commonly cut-offs for

and avoidance of unnecessary intervention. To improve

reliability and minimize bias from data splitting, 10-fold cross-
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validation was applied in the internal cohort, iteratively training
on nine folds and validating on the remaining fold. Performance
metrics, including accuracy, AUC, and Brier score, were
averaged across folds, providing robust estimates of model
stability and generalization. In this study, hyperparameter
optimization was performed using a grid search strategy. This
method possible
combinations within a predefined search space, identifying the

exhaustively  evaluates  all parameter
configuration that yields optimal performance on the validation
set through cross-validation. By systematically traversing the
parameter grid, grid search ensures that no potentially superior
configuration is overlooked, making it particularly well-suited
for parameter spaces of moderate dimensionality. Although
computationally intensive, this approach offers robust and
reproducible hyperparameter selection, thereby enhancing the
model’s generalizability and predictive accuracy. Using this
framework, we comprehensively compared the predictive
performance of four machine learning models for DVT risk
assessment and subsequently selected the XGBoost model for
further refinement. In training the XGBoost model, particular
attention was given to tuning regularization-related parameters.
L1 regularization (alpha) imposes an absolute penalty on feature
weights, promoting sparsity and implicit feature selection; L2
regularization (lambda) applies a squared penalty to constrain
weight magnitude, mitigating overfitting; the maximum tree
depth (max_depth) was limited to prevent overly complex tree
structures; the minimum child weight (min_child_weight) was
set to define the minimal sum of instance weights required for a
node split; and the learning rate (eta) was adjusted to
incrementally reduce the contribution of individual trees,
thereby smoothing the learning process. Collectively, these
measures preserved the model’s capacity to capture intricate
data patterns while reducing overfitting risk, ultimately
improving its stability and generalizability across both internal

and external validation cohorts.

External validation

The optimal model, with parameters fixed during internal
training, was applied to the external validation cohort from
Tengzhou Central People’s Hospital. Performance metrics were
computed and compared with internal results to assess
generalizability and clinical applicability.

Construction of confusion matrices

Confusion matrix plots were generated for the XGBoost model
across the internal test set, internal validation set, external test set,
and external validation set. These matrices provide an intuitive
visualization of classification performance, delineating the exact
counts of true positives, false positives, true negatives, and false
Such
assessment of the model’s sensitivity and specificity under

negatives. representation enables a more granular

varying data conditions.
Retrospective evaluation of the Khorana score

A supplementary retrospective analysis was undertaken to
assess the predictive utility of the Khorana score in estimating
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lower extremity DVT risk among the study cohort. For each
patient, a risk score was computed in accordance with the
Khorana scoring system, which assigns weighted points based
on tumor type, platelet count, hemoglobin concentration, white
blood cell count, and body mass index. Predictive performance
was quantified using ROC curve analysis, with the AUC and
corresponding 95% CI calculated. The AUC of the Khorana
score was subsequently compared with that of the best-
performing machine learning model identified in this study,
thereby corroborating the superior predictive accuracy of
our model.

Model interpretation

To elucidate model decision-making, SHAP analysis was
conducted. SHAP calculates each feature’s marginal contribution
—or “Shapley value”—across all possible feature subsets, fairly
attributing feature impact on predictions. SHAP values indicate
whether predicted
Visualization included SHAP summary plots, showing the

a feature increases or decreases risk.
distribution and directional influence of each feature’s SHAP
values across all samples, with color gradients reflecting original

feature values to reveal key risk factors and effect patterns.

10.3389/fsurg.2025.1648645

Additionally, SHAP force plots illustrated

individualized explanations, demonstrating how each feature’s

single-sample

contribution shifts the prediction from a baseline risk to the final
predicted value, highlighting personalized risk drivers or mitigators.

Results
Basic clinical information of the patient

A total of 1,369 patients with gastrointestinal tumors were
enrolled in this study (Figure 1), of whom 128 patients (9.35%)
developed lower extremity venous thrombosis. The internal
dataset comprised 835 patients with gastrointestinal malignancies,
including 80 cases of DVT, while the external dataset included
534 patients, of whom 48 had DVT. A comparison of their
clinical characteristics is presented in Table 1. Univariate and
multivariate analyses identified distant metastasis, duration of bed
rest, central venous catheterization, hypertension, radiotherapy,
chemotherapy, surgical treatment, and advanced age as
independent risk factors for lower extremity venous thrombosis
(P<0.05) (Table 2). Feature selection using the XGBoost, RF,

Patients with gastrointestinal tumors who received treatment at Wuxi
People's Hospital, Wuxi Second People's Hospital, and Tengzhou
Central People's Hospital from January 2020 to January 2024

With a history of lower extremity deep vein

Received anticoagulant therapy for more than two

(n=2331)
Other malignant tumors (n=65)
thrombosis (n=345)
P weeks (n=241)
\ 4

Severe hepatic or renal insufficiency, or diseases
associated with coagulopathy (n=123)

Women who are pregnant or breastfeeding (n=54)
Died within 30 days of hospitalization (n=69)

Enrolled in the study (n=1434)|

—— 1 oss of follow up (n=65)|

Internal validation set (n=835)|

External validation set (n=534)|

[DVT (n=80)| [Non-DVT (n=755)|

[DVT (n=48)|

Non-DVT (n=486)|

FIGURE 1

Illustrates the patient enrollment flowchart, clearly depicting the sample selection process
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TABLE 1 Comparison of features between the internal and external datasets.

Variables All (N =1369) @ Internal dataset (N = 835) External dataset (N =534) @P-value
Sex Female 823 (60.117%) 555 (66.467%) 268 (50.187%) <0.001
Male 546 (39.883%) 280 (33.533%) 266 (49.813%)
Age <65 932 (68.079%) 662 (79.281%) 270 (50.562%) <0.001
>65 437 (31.921%) 173 (20.719%) 264 (49.438%)
BMI <25 kg/m2 991 (72.389%) 685 (82.036%) 306 (57.303%) <0.001
>25 kg/m2 378 (27.611%) 150 (17.964%) 228 (42.697%)
ASA <3 657 (47.991%) 396 (47.425%) 261 (48.876%) 0.639
>3 712 (52.009%) 439 (52.575%) 273 (51.124%)
Drinking history No 640 (46.749%) 380 (45.509%) 260 (48.689%) 0.274
Yes 729 (53.251%) 455 (54.491%) 274 (51.311%)
Smoking history No 691 (50.475%) 417 (49.940%) 274 (51.311%) 0.66
Yes 678 (49.525%) 418 (50.060%) 260 (48.689%)
Surgical history No 941 (68.736%) 634 (75.928%) 307 (57.491%) <0.001
Yes 428 (31.264%) 201 (24.072%) 227 (42.509%)
Chemotherapy No 990 (72.316%) 611 (73.174%) 379 (70.974%) 0.409
Yes 379 (27.684%) 224 (26.826%) 155 (29.026%)
Radiotherapy No 949 (69.321%) 564 (67.545%) 385 (72.097%) 0.085
Yes 420 (30.679%) 271 (32.455%) 149 (27.903%)
ALB >30g/L 809 (59.094%) 570 (68.263%) 239 (44.757%) <0.001
<30 g/L 560 (40.906%) 265 (31.737%) 295 (55.243%)
CEA level <5 ng/ml 872 (63.696%) 606 (72.575%) 266 (49.813%) <0.001
>5 ng/ml 497 (36.304%) 229 (27.425%) 268 (50.187%)
CA199 level <37 U/ml 869 (63.477%) 619 (74.132%) 250 (46.816%) <0.001
>37 U/ml 500 (36.523%) 216 (25.868%) 284 (53.184%)
NRS2002 score <3 853 (62.308%) 570 (68.263%) 283 (52.996%) <0.001
>3 516 (37.692%) 265 (31.737%) 251 (47.004%)
Anemia No 862 (62.966%) 589 (70.539%) 273 (51.124%) <0.001
Yes 507 (37.034%) 246 (29.461%) 261 (48.876%)
Ileus No 853 (62.308%) 573 (68.623%) 280 (52.434%) <0.001
Yes 516 (37.692%) 262 (31.377%) 254 (47.566%)
CHD No 929 (67.860%) 662 (79.281%) 267 (50.000%) <0.001
Yes 440 (32.140%) 173 (20.719%) 267 (50.000%)
COPD No 939 (68.590%) 673 (80.599%) 266 (49.813%) <0.001
Yes 430 (31.410%) 162 (19.401%) 268 (50.187%)
Diabetes No 822 (60.044%) 549 (65.749%) 273 (51.124%) <0.001
Yes 547 (39.956%) 286 (34.251%) 261 (48.876%)
Hyperlipidemia No 839 (61.286%) 582 (69.701%) 257 (48.127%) <0.001
Yes 530 (38.714%) 253 (30.299%) 277 (51.873%)
Hypertension No 943 (68.882%) 669 (80.120%) 274 (51.311%) <0.001
Yes 426 (31.118%) 166 (19.880%) 260 (48.689%)
Blood transfusion No 830 (60.628%) 561 (67.186%) 269 (50.375%) <0.001
Yes 539 (39.372%) 274 (32.814%) 265 (49.625%)
CvC No 964 (70.416%) 611 (73.174%) 353 (66.105%) 0.006
Yes 405 (29.584%) 224 (26.826%) 181 (33.895%)
Bed rest duration <3 960 (70.124%) 598 (71.617%) 362 (67.790%) 0.148
>3 409 (29.876%) 237 (28.383%) 172 (32.210%)
Tumor type Pancreatic cancer 115 (8.400%) 7 (9.222%) 38 (7.116%) <0.001
Esophageal cancer 71 (5.186%) 1 (7.305%) 10 (1.873%)
Gastric cancer 496 (36.231%) 272 (32.575%) 224 (41.948%)
Small intestine tumor 247 (18.042%) 143 (17.126%) 104 (19.476%)
Colorectal cancer 113 (8.254%) 4 (8.862%) 39 (7.303%)
Hepatocellular carcinoma 148 (10.811%) 107 (12.814%) 41 (7.678%)
Cholangiocarcinoma 179 (13.075%) 101 (12.096%) 78 (14.607%)
Tumor number <2 940 (68.663%) 693 (82.994%) 247 (46.255%) <0.001
>2 429 (31.337%) 142 (17.006%) 287 (53.745%)
Tumor size <5cm 834 (60.920%) 557 (66.707%) 277 (51.873%) <0.001
>5cm 535 (39.080%) 278 (33.293%) 257 (48.127%)
Lymphatic metastasis No 905 (66.107%) 621 (74.371%) 284 (53.184%) <0.001
Yes 464 (33.893%) 214 (25.629%) 250 (46.816%)
(Continued)
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‘ All (N =1369) | Internal dataset (N =835) External dataset (N = 534)

Distant metastasis 967 (70.636%)

Yes 402 (29.364%)

PNI No 1,016 (74.215%)
Yes 353 (25.785%)

PCT level <0.05 ng/ml 970 (70.855%)
>0.05 ng/ml 399 (29.145%)

CRP level <10 mg/L 909 (66.399%)
>10 mg/L 460 (33.601%)

SAA level <10 mg/L 910 (66.472%)
>10 mg/L 459 (33.528%)

NLR <3 873 (63.769%)
>3 1496 (36.231%)

DVT No 1,241 (90.650%)
Yes 128 (9.350%)

613 (73.413%) 354 (66.292%) 0.006
222 (26.587%) 180 (33.708%)
744 (89.102%) 272 (50.936%) <0.001
91 (10.898%) 262 (49.064%)
683 (81.796%) 287 (53.745%) <0.001
152 (18.204%) 247 (46.255%)
651 (77.964%) 258 (48.315%) <0.001
184 (22.036%) 276 (51.685%)
644 (77.126%) 266 (49.813%) <0.001
191 (22.874%) 268 (50.187%)
612 (73.293%) 261 (48.876%) <0.001
223 (26.707%) 273 (51.124%)
755 (90.419%) 486 (91.011%) 0.786
0 (9.581%) 48 (8.989%)

OR, odds ratio; CI, confidence interval; BMI, body mass index; ASA, The American Society of Anesthesiologists; ALB, albumin; PCT, procalcitonin; CRP, C-reactive protein; NLR, neutrophil

to lymphocyte ratio; SAA, serum amyloid A; NRS2002, nutrition risk screening 2002; CVC, Central venous catheter; PNI, Perineural invasion; CHD, Coronary heart disease; COPD, Chronic

obstructive pulmonary disease.

SVM, and KNN algorithms consistently underscored distant
metastasis, duration of bed rest, central venous catheterization,
radiotherapy, chemotherapy, and surgical treatment as key
predictors influencing the occurrence of lower extremity venous
thrombosis (Figures 2A-D). The original dataset utilized in this
study is provided in Supplementary Table S1.

Model building and evaluation

ROC curve analysis demonstrated that the XGBoost model
exhibited excellent predictive performance in both the training
and validation sets, achieving an AUC of 0.951 in the training set
and 0.882 in the validation set, surpassing the other three
machine learning models (Table 3, Figures 3A,B). These high
AUC values indicate outstanding discrimination ability, effectively
distinguishing high-risk from low-risk patients and reflecting
superior predictive accuracy. The calibration analyses revealed
that the curves of all four models closely approximated the ideal
45° diagonal, signifying strong concordance between predicted
risk probabilities and observed event rates, and attesting to their
robust performance in probability estimation. Of particular note,
the XGBoost model preserved excellent calibration across both
high- and low-risk strata, accurately mirroring the true
probability of DVT occurrence. Such fidelity in calibration
the model's reliability for individualized risk

stratification in clinical settings, thereby enabling more precise

underscores

preventive and therapeutic interventions. Calibration quality was
further quantified using the Brier score. All four models achieved
values well below 0.1 (XGBoost: 0.070; Random Forest: 0.070;
SVM: 0.073; KNN: 0.065),
between predicted probabilities and actual outcomes.

reflecting outstanding agreement
DCA
demonstrated that all models—particularly XGBoost—conferred a
greater net clinical benefit than the extremes of a “treat-all” or
“treat-none” strategy. This advantage was most pronounced
within the 0.2-0.4 risk threshold range, highlighting the models’
capacity to accurately identify high-risk patients, thereby guiding
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targeted thromboprophylaxis and minimizing unnecessary
pharmacological interventions and their attendant adverse effects
(Figures 3C,D). Notably, the XGBoost model demonstrated the
greatest net benefit, underscoring its potential for precise
individualized risk prediction of lower extremity DVT in patients
with
comprehensively assess model generalizability, k-fold cross-

gastrointestinal  tumors in  clinical practice. To

validation was performed on the internal validation set.
Specifically, 125 samples (15.00%) were randomly selected as the
test set, while the remainder was used for training with 10-fold
This

performance across diverse data subsets, minimizing bias from

cross-validation. approach robustly evaluated model
random splits and enhancing result reliability. During cross-
validation, the XGBoost model consistently outperformed others,
achieving an AUC of 09146 (95% CIL: 0.8205-0.9934) in
validation folds, an AUC of 0.8308 in the test set, and an
accuracy of 0.8016 (Figures 4A-C). The RF model attained a
validation AUC of 0.8029 (0.7051-0.8864), test set AUC of
0.8287, and accuracy of 0.7302. The SVM model showed a
validation AUC of 0.8091 (0.6133-0.9797), but its test set AUC
decreased to 0.6182 with accuracy of 0.8095. The KNN model
demonstrated an AUC of 0.8240 (0.6393-0.9832) in validation,
0.7275 in the test set, and accuracy of 0.7540. Collectively,
XGBoost outperformed all other models across key metrics,
particularly AUC and accuracy, indicating superior discriminatory
better

performance. Consequently, XGBoost was selected as the optimal

power, generalizability, and more stable predictive
algorithm for predicting high-risk factors of lower extremity
venous thrombosis in this study. In the external validation cohort,
ROC analysis revealed an AUC of 0.681 (Figure 4D),
demonstrating that the model maintained reasonable predictive
accuracy on unseen data and exhibited satisfactory generalization
capability. In this study, confusion matrices were constructed for
the XGBoost model across multiple datasets. Comparative analysis
of these matrices enabled a more precise evaluation of the
model’s propensity for false negatives and false positives in
identifying patients with lower extremity DVT, thereby offering
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TABLE 2 Presents the results of univariate and multivariate analyses of variables associated with DVT.

Variables Univariate analysis Multivariate analysis
95% ClI P-value 95% ClI
Sex Female 555 Reference Reference
Male 280 4.039 [2.496, 6.538] <0.001 1.854 [0.879, 3.959] 0.106
Age <65 662 Reference Reference
>65 173 3.477 [2.155, 5.613] <0.001 2.532 [1.127, 5.727] 0.025
BMI <25 kg/m* 685 Reference Reference
>25 kg/m2 150 1.995 [1.186, 3.357] 0.009 0.831 [0.354, 1.896] 0.665
ASA <3 396 Reference
>3 439 0.943 [0.595, 1.495] 0.803
Drinking history No 380 Reference
Yes 455 1.359 [0.848, 2.178] 0.203
Smoking history No 417 Reference
Yes 418 0.893 [0.563, 1.416] 0.63
Surgical history No 634 Reference Reference
Yes 201 7.093 [4.347, 11.574] <0.001 3.787 [1.888, 7.746] <0.001
Chemotherapy No 611 Reference Reference
Yes 224 0.5 [0.270, 0.925] 0.027 0.223 [0.086, 0.533] 0.001
Radiotherapy No 564 Reference Reference
Yes 271 4.277 [2.641, 6.926] <0.001 2.793 [1.417, 5.617] 0.003
ALB >30g/L 570 Reference Reference
<30 g/L 265 9.366 [5.410, 16.216] <0.001 2.185 [0.966, 5.066] 0.063
CEA level <5 ng/ml 606 Reference
>5 ng/ml 229 0.583 [0.326, 1.045] 0.07
CA199 level <37 U/ml 619 Reference
>37 U/ml 216 0.636 [0.355, 1.141] 0.129
NRS2002 score <3 570 Reference
>3 265 1.177 [0.725, 1.910] 0.51
Anemia No 589 Reference
Yes 246 1.171 [0.715, 1.918] 0.531
Ileus No 573 Reference Reference
Yes 262 3.011 [1.886, 4.806] <0.001 1.647 [0.827, 3.258] 0.152
CHD No 662 Reference
Yes 173 1.312 [0.767, 2.242] 0.322
COPD No 673 Reference
Yes 162 1.333 [0.772, 2.302] 0.302
Diabetes No 549 Reference Reference
Yes 286 3.075 [1.920, 4.924] <0.001 1.869 [0.845, 4.14] 0.121
Hyperlipidemia No 582 Reference
Yes 253 0.642 [0.372, 1.110] 0.113
Hypertension No 669 Reference Reference
Yes 166 9.787 [5.953, 16.091] <0.001 5.966 [2.984, 12.215] <0.001
Blood transfusion No 561 Reference Reference
Yes 274 2.636 [1.654, 4.201] <0.001 1.173 [0.524, 2.626] 0.696
CvC No 611 Reference Reference
Yes 224 6.704 [4.092, 10.984] <0.001 6.7 [3.263, 14.183] <0.001
Bed rest duration <3 598 Reference Reference
>3 237 11.416 [6.578, 19.813] <0.001 2.949 [1.335, 6.661] 0.008
Tumor type Pancreatic cancer 77 Reference
Esophageal cancer 61 1.534 [0.487, 4.827] 0.464
Gastric cancer 272 1.093 [0.429, 2.788] 0.852
Small intestine tumor 143 1.284 [0.473, 3.488] 0.624
Colorectal cancer 74 1.434 [0.473, 4.354] 0.524
Hepatocellular carcinoma 107 0.703 [0.218, 2.269] 0.555
Cholangiocarcinoma 101 2.227 [0.828, 5.993] 0.113
Tumor number <2 693 Reference
>2 142 0.759 [0.391, 1.475] 0.416
Tumor size <5 cm 557 Reference Reference
>5cm 278 3.852 [2.387, 6.217] <0.001 0.941 [0.425, 2.064] 0.879

(Continued)
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TABLE 2 Continued

Variables Univariate analysis Multivariate analysis
95% CI P-value (0] 95% ClI P-value
Lymphatic metastasis No 621 Reference
Yes 214 1.112 [0.663, 1.866] 0.687
Distant metastasis No 613 Reference Reference
Yes 222 4.199 [2.617, 6.736] <0.001 2.12 [1.058, 4.232] 0.033
PNI No 744 Reference
Yes 91 1.04 [0.501, 2.160] 0.915
PCT level <0.05 ng/ml 683 Reference
>0.05 ng/ml 152 1.041 [0.576, 1.880] 0.894
CRP level <10 mg/L 651 Reference Reference
>10 mg/L 184 1.94 [1.182, 3.185] 0.009 1.188 [0.556, 2.472] 0.649
SAA level <10 mg/L 644 Reference
>10 mg/L 191 0.829 [0.467, 1.470] 0.52
NLR <3 612 Reference
>3 223 1.045 [0.624, 1.753] 0.866

OR, odds ratio; CI, confidence interval; BMI, body mass index; ASA, The American Society of Anesthesiologists; ALB, albumin; PCT, procalcitonin; CRP, C-reactive protein; NLR, neutrophil
to lymphocyte ratio; SAA, serum amyloid A; NRS2002, nutrition risk screening 2002; CVC, central venous catheter; PNI, perineural invasion; CHD, coronary heart disease; COPD, chronic
obstructive pulmonary disease.
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FIGURE 2
Shows the feature importance rankings for each of the four models: (A) XGBoost; (B) RF; (C) SVM; and (D) KNN.
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TABLE 3 Summarizes the performance metrics of the four predictive models evaluated in this study.

‘-- AUC (95% CI) = Accuracy (95% Cl) | Sensitivity (95% CI) | Specificity (95% CI) | F1 score (95% Cl)

Training set

Validation set

0.907 (0.865-0.948)
0.838 (0.731-0.944)

0.851 (0.826-0.877)
0.843 (0.818-0.868)

XGBoost | Training set 0.951 (0.931-0.970) 0.853 (0.839-0.867)
Validation set | 0.882 (0.809-0.955) 0.839 (0.823-0.855)
RF Training set 0.893 (0.856-0.929) 0.871 (0.857-0.885)
Validation set | 0.873 (0.793-0.953) 0.864 (0.844-0.884)
SVM Training set 0.859 (0.811-0.908) 0.826 (0.757-0.894)

Validation set

0.780 (0.642-0.918)

0.817 (0.732-0.903)

0.872 (0.831-0.912)
0.758 (0.679-0.838)
0.925 (0.911-0.938)
0.724 (0.649-0.798)
0.759 (0.737-0.782)
0.679 (0.628-0.731)
0.769 (0.691-0.848)
0.644 (0.503-0.785)

0.849 (0.818-0.880)
0.853 (0.820-0.886)
0.845 (0.829-0.861)
0.852 (0.831-0.874)
0.883 (0.865-0.900)
0.884 (0.861-0.906)
0.832 (0.748-0.915)
0.835 (0.732-0.939)

0.536 (0.502-0.571)
0.486 (0.448-0.523)
0.548 (0.529-0.567)
0.463 (0.428-0.499)
0.532 (0.509-0.554)
0.495 (0.459-0.530)
0.494 (0.427-0.562)
0.437 (0.359-0.514)

CI, confidence interval.

critical insights for clinical threshold optimization and risk
management (Figures 5A-D). Retrospective assessment of the
Khorana score revealed an AUC of 0.653 (95% CI: 0.608-0.706)
within our cohort, indicative of moderate predictive capability. By
contrast, the machine learning models developed herein—
particularly the XGBoost model—exhibited markedly superior
performance, achieving an AUC of 0.951 in the training set and
0.882 in the validation set, thereby substantially surpassing the
traditional Khorana score. These elevated AUC values underscore
the XGBoost model's enhanced discriminatory power and
superior predictive accuracy in differentiating high-risk from low-
risk patients (Figure 6A).

Model explanation

The SHAP summary plot (Figure 6B) highlights the primary
risk factors for lower extremity venous thrombosis and their
relative importance. The analysis identified surgical treatment,
prolonged bed rest, central venous catheterization, radiotherapy,
distant tumor metastasis, and chemotherapy as the most
influential predictors. To further assess the model’s clinical
applicability, personalized predictions for four individual
patients were examined using SHAP force plots (Figures 7A-D),
which detailed the specific risk factors and their contributions
for each case:

Patient 1: The model predicted a low probability of developing
lower extremity venous thrombosis (0.02), with radiotherapy as
the main influencing factor. Patient 2: The predicted risk was
0.18, primarily driven by radiotherapy and surgical treatment.
Patient 3: The predicted probability was 0.32,

moderate risk predominantly contributed by prolonged bed rest,

reflecting a

central venous catheterization, radiotherapy, and distant tumor
metastasis. Patient 4: The model estimated a risk of 0.05, mainly
influenced by radiotherapy and distant metastasis, indicating a
relatively low yet clinically relevant risk warranting attention.

Discussion

This study harnessed four widely acclaimed machine learning
algorithms—XGBoost, RF, SVM, and KNN—to construct a
predictive model for lower extremity DVT. Each algorithm
embodies distinct strengths tailored to diverse data structures

Frontiers in Surgery

and clinical contexts (25, 26). XGBoost, an ensemble method
grounded in gradient boosting, excels at managing high-
dimensional data while mitigating overfitting, showcasing
remarkable fitting capacity and model expressiveness. It is
particularly  proficient at capturing intricate nonlinear
relationships and complex variable interactions. Random Forest,
another ensemble approach, builds a multitude of decision trees
and synthesizes their outputs via majority voting, exhibiting
resilience to noise and missing data, coupled with robust
generalizability. SVM, predicated on the principle of maximum
margin classification, is especially potent in small-sample, high-
dimensional scenarios; its kernel functions adeptly handle
nonlinear and non-separable data. KNN, reliant on sample
proximity for classification, is lauded for its simplicity and ease
of deployment, particularly when data distribution is relatively
uniform and class boundaries are distinct (27-29).

Despite the merits inherent in each algorithm, XGBoost
surpassed its counterparts across our dataset. It consistently
manifested superior discriminatory power in both training and
validation cohorts, adeptly distinguishing between high- and
Calibration

remarkable concordance between predicted probabilities and

low-risk  patients. analyses demonstrated a
observed outcomes, with calibration curves nearly coinciding
with ideal reference lines, reflecting precise risk estimation.
Moreover, XGBoost sustained elevated predictive accuracy
following cross-validation and external validation, underscoring
its robustness and translational viability. Decision curve analysis
further accentuated its superior net clinical benefit across diverse
risk thresholds, reinforcing its utility in clinical decision-making.
Conversely, the alternative models exhibited certain limitations:
Random Forest, while stable during training, displayed modest
declines in validation accuracy and was hindered by complexity
and sensitivity to feature redundancy, adversely affecting
discrimination. SVM achieved commendable training accuracy
but suffered a marked drop in test performance, indicative of
overfitting; its computational intensity also restricts scalability
KNN’s test set

performance was moderate yet susceptible to uneven sample

with larger datasets or numerous variables.

distribution and noise, resulting in instability; its efficacy is
further compromised by sensitivity to feature scaling and
on meticulous

dependence preprocessing. Considering a

spectrum of evaluation metrics and overarching model
performance, XGBoost was ultimately adjudged the optimal

algorithm for predicting lower limb DVT risk.
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FIGURE 3
Provides a comprehensive evaluation of the predictive performance of the four models, including: (A) ROC curves for the training set; (B) ROC curves
for the validation set; (C) calibration curves, where the 45° dashed line represents ideal agreement between predicted and observed outcomes—
curves closer to this line indicate better calibration; and (D) DCA, with the red curve indicating the net benefit of the model across varying risk
thresholds. The intersections between the red curve and the "All” and “None” strategies define the risk threshold ranges where the model confers
clinical benefit.

In comparison to conventional diagnostic paradigms, the
XGBoost-based machine learning model developed herein
exhibits
applicability across multiple facets. Traditional risk prediction

marked superiority in performance and clinical
methodologies often hinge upon presupposed linear associations

and assumptions of variable independence, thereby constraining
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their capacity to unveil latent nonlinear structures and the
intricate interplay of variables intrinsic to high-dimensional
clinical datasets. Consequently, such approaches are frequently
limited in accuracy, generalizability, and adaptability within
clinical contexts. In this study, a supplementary retrospective
analysis was undertaken to evaluate the predictive performance
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FIGURE 4

Details the internal and external validation results of the XGBoost model, including: (A) ROC curve in the training set; (B) ROC curve in the validation
set; (C) ROC curve in the testing set; and (D) ROC curve in the external validation cohort.

of the Khorana score for thrombosis risk within the study tool for identifying high-risk patients and informing
population. The Khorana score yielded an AUC of 0.653 (95%  thromboprophylaxis, the majority of thrombotic events occur in
CI: 0.608-0.706), notably lower than that achieved by the individuals categorized as non-high risk. Such limitations
machine learning models developed herein, such as XGBoost, underscore the restricted predictive capacity of traditional risk
thereby highlighting a discernible gap in predictive accuracy. assessment methods, particularly in the context of certain tumor
Consistent with our findings, Mulder et al. reported that, among  types and interindividual variability. By contrast, XGBoost, as a
outpatient cancer patients, only 23.4% (95% CI: 18.4%-29.4%)  gradient-boosting ensemble algorithm, affords exceptional
of those who developed VTE were classified as high risk by the  feature representation, resilience to noise, and robustness against
Khorana score (30). While the Khorana score remains a useful — missing data, enabling nuanced modeling of complex clinical
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FIGURE 5

Confusion matrices of the XGBoost model across different datasets: (A) confusion matrix for the internal test set; (B) confusion matrix for the internal
validation set; (C) confusion matrix for the external test set; (D) confusion matrix for the external validation set.

phenomena and yielding refined, stable individualized risk  clinical variable to model predictions in a consistent and locally
estimations (31-33). faithful ~manner, thereby facilitating personalized risk

To augment interpretability and practical utility, we integrated  elucidations for individual patients. This innovation not only
SHAP analysis to systematically deconstruct the predictive enhances transparency and interpretability but also equips
framework of the XGBoost model. Rooted in cooperative game  clinicians with lucid, actionable insights that bolster confidence
theory, SHAP quantifies the marginal contribution of each  and encourage pragmatic adoption of model-assisted decision-
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FIGURE 6
(A) Predictive performance of the Khorana score for thrombosis risk in the study cohort; (B) depicts the SHAP summary plot, ranking risk factors by
their mean absolute Shapley values, with higher-ranked factors exerting a greater influence on model predictions.

making in routine care (34, 35). The SHAP analysis pinpointed

surgery,  prolonged  immobilization,  central  venous
catheterization, radiotherapy, distant tumor metastasis, and
chemotherapy as the foremost clinical determinants of lower
limb DVT risk. These
importance within the model, underscoring their plausible

pathophysiological roles in thrombogenesis and highlighting

features manifested pronounced

their priority in perioperative risk stratification and targeted
intervention. Clinically, the model enables early identification of
high-risk patients in both pre- and postoperative settings,
and mitigating DVT

optimizing anticoagulation strategies

Frontiers in Surgery 1

incidence, thereby refining overall perioperative management.
From the patient perspective, personalized risk interpretations
foster heightened awareness and engagement, advancing the
paradigm of patient-centered precision medicine.

The canonical Virchow’s triad—comprising hemodynamic
stasis),  endothelial  injury,
the foundational framework for
understanding venous thromboembolism pathophysiology (22, 36,

alterations (venous and

hypercoagulability—remains

37). Our machine learning findings resonate with this model, as
the identified
prolonged bed rest, central venous catheterization, radiotherapy,

risk factors—including surgical intervention,
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distant metastasis, and chemotherapy—correspond intimately with
these core pathological processes. Surgical procedures, by virtue of
their invasiveness, induce direct endothelial trauma, precipitating
localized inflammatory cascades and endothelial dysfunction that
compromise  anticoagulant  defenses,  thereby  fostering
thrombogenesis. ~ Additionally,

impairs the efficacy of the muscular pump, precipitating venous

perioperative  immobilization
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stasis. The systemic inflaimmatory milieu and stress response
elicited by surgery further amplify hypercoagulability, collectively
orchestrating thrombus formation via multifaceted synergistic
pathways (38, 39). Prolonged immobilization curtails lower limb
venous return and

muscular contractions,

exacerbating blood flow stasis, which prolongs blood constituent

diminishing

interactions and cultivates hypoxic microenvironments that
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activate endothelial cells and upregulate procoagulant factors,
thereby Central
catheterization, intervention,

potentiating  hypercoagulability. venous

a ubiquitous clinical disrupts
endothelial integrity mechanically and triggers local coagulation
cascades alongside inflammatory responses. Turbulence and stasis
associated with catheter placement, compounded by infection and
exacerbate  endothelial
hypercoagulable states (40, 41).
endothelial

anticoagulant

inflammation, dysfunction  and
Radiotherapy inflicts direct
cytotoxicity upon cells, undermining structural
integrity functionality ~ while

procoagulant and inflammatory mediator expression, generating a

and inducing
localized prothrombotic milieu. Radiation-induced fibrosis and
vascular stenosis further perturb hemodynamics, promoting stasis
(42-44). The presence of distant tumor metastases signifies an
elevated tumor burden and systemic disease progression;
metastatic cells secrete procoagulant agents (e.g., tissue factor,
cytokines) that

markedly intensifying hypercoagulability. Concurrent chronic

systemically activate coagulation pathways,

inflammation and immune dysregulation erode endothelial
integrity and facilitate platelet activation and fibrin deposition,
microenvironment (45,  46).
endothelial toxicity,
impairing cellular architecture and function, while suppressing

fostering a  thrombogenic

Chemotherapeutic agents exert direct
hematopoiesis and immune surveillance, heightening susceptibility
to infection and secondary endothelial inflammation. Certain
chemotherapies modulate platelet activity and blood rheology,
thereby contributing to venous stasis and hypercoagulability,
these

delineated risk factors converge upon the pillars of Virchow’s

cumulatively ~elevating thrombotic risk.  Collectively,
triad, driving the pathogenesis of lower limb DVT through

interdependent mechanisms of stasis, endothelial injury,
and hypercoagulability.

Previous studies (15, 16) have proposed that the type of
gastrointestinal malignancy—such as gastric, colorectal, or
esophageal cancer—may modulate the risk of lower limb DVT
through variations in tumor biology, anatomical location, and
treatment approaches. However, our analysis did not reveal a
significant correlation between tumor type and DVT incidence, a
discrepancy attributable to several factors. From a mechanistic
standpoint, DVT pathogenesis fundamentally revolves around
Virchow’s triad, which remains largely consistent across different
gastrointestinal cancers. Irrespective of tumor origin, advanced
malignancy is commonly accompanied by shared clinical factors
including prolonged immobilization, surgical trauma, central
venous catheterization, chemotherapy, and radiotherapy, all of
which activate thrombogenic pathways in a similar manner across
tumor types. Consequently, these ubiquitous risk factors may
eclipse any potential tumor site-specific influences. Additionally,
our model prioritized actual clinical interventions and functional
(e.g.
immobilization) over tumor classification, resulting in greater

status variables surgery, chemoradiotherapy,
weighting of treatment-related predictors relative to tumor
location in multivariate analyses. Finally, machine learning
algorithms inherently focus on variables that optimize predictive
performance; thus, tumor type, despite possible biological

relevance within certain subsets, conferred limited incremental
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predictive value and was consequently assigned lower importance
and excluded from key predictors.

A pronounced disparity in AUC performance was observed
for the XGBoost model between the internal validation cohort
and the external test cohort. Given that patients from different
hospitals were enrolled contemporaneously, the influence of
temporal factors on model performance is likely negligible. This
divergence is chiefly attributable to inter-hospital heterogeneity
in patient demographics, disease severity, comorbidities, and
treatment regimens, which engenders distributional shifts within
the external dataset. Furthermore, inconsistencies in clinical
testing methodologies, data recording standards, and laboratory
procedures across institutions may compromise the uniformity
and quality of input variables, thereby constraining the model’s
generalizability. Variations in sample size and the prevalence of
DVT events within the external validation cohort may also
Notably, the
implementation of 10-fold cross-validation and regularization

contribute to  performance  variability.
techniques in this study effectively mitigated overfitting risks,

bolstering model robustness and generalizability, and
highlighting the rigor of our training methodology.

This study presents several strengths in forecasting lower limb
DVT risk. The utilization of a large, multidimensional clinical
dataset—including surgical treatment, immobilization status, central
venous catheterization, oncologic therapies, and metastatic burden—
enhances the model’s representativeness and clinical relevance.
A rigorous comparison of four prominent machine learning
algorithms facilitated the identification of XGBoost as the superior
method, demonstrating consistent excellence in discrimination,
calibration, and clinical utility across training, internal validation,
and external validation cohorts. The incorporation of SHAP analysis
further enriched interpretability, fostering clinical confidence and
easing model integration into practice.

Nonetheless, this study is subject to several limitations. We
observed an inverse association between chemotherapy and the
risk of lower extremity deep vein thrombosis (DVT), a finding
that diverges from conventional clinical understanding and likely
reflects the interplay of multiple factors rather than a direct
protective effect of chemotherapy itself. First, as a retrospective
investigation, reliance on historical clinical records may introduce
incomplete data, recording biases, and inconsistencies in variable
definitions, potentially compromising model accuracy. Although
34 clinical variables were incorporated and feature selection was
conducted through multivariate regression and diverse machine
learning algorithms, residual confounding—such as anticoagulant
use, specific chemotherapy regimens, and patients’ nutritional and
activity status—may persist. Moreover, patients eligible for
chemotherapy generally exhibit superior overall health and
physiological reserve, whereas those not receiving treatment often
present with more severe disease or comorbidities, conferring
higher intrinsic thrombotic risk. Additionally, patients undergoing
chemotherapy are frequently managed within tertiary care
centers, benefiting from structured perioperative assessment and
thromboprophylactic protocols, which may further mitigate
thrombotic events. Collectively, these observations suggest that
the relationship between chemotherapy and thrombotic risk is
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more nuanced than traditionally perceived, warranting further
exploration in larger, prospective studies incorporating detailed
therapeutic and management data. In this study, we implemented
10-fold cross-validation and incorporated an external validation
cohort to attenuate the risk of model overfitting. Nonetheless, the
relatively limited sample size imposes intrinsic constraints, leaving
residual concerns regarding potential overfitting. Furthermore, the
model’s sensitivity, F1 score, and external validation outcomes
suggest that its clinical utility for the early identification of high-
risk patients remains somewhat circumscribed. Future
investigations will aim to substantiate the model’s generalizability
applicability ~through validation
To the
interpretability of our machine learning framework, we applied
the SHAP methodology. SHAP the

individual contribution of each feature to model predictions,

and practical in larger,

prospective  cohorts. enhance transparency and

rigorously  quantifies

thereby elucidating the decision-making process and fostering
clinician trust and acceptance. However, despite offering valuable
local interpretability, SHAP and analogous post hoc explanation
tools remain inherently complementary to black-box models and
possess intrinsic constraints. Machine learning algorithms,
particularly those employing deep learning architectures, continue
to be perceived as opaque “black boxes” due to their complexity
and inscrutable internal mechanics (47, 48). This opacity may
undermine clinical confidence in model outputs, impeding their
translation into routine medical practice. Accordingly, advancing
to facilitate
acceptance and practical deployment in clinical settings. Future
the

transparent and interpretable model architectures to bolster the

model interpretability is imperative broader

research should prioritize development of inherently
reliability and efficacy of clinical applications. Moreover, certain
potential risk factors—such as genetic predispositions, molecular
biomarkers, and lifestyle factors—were not comprehensively
included, indicating avenues for future inquiry. In this study, the
prevalence of DVT was approximately 9.35%, reflecting a notable
Although SMOTE,

undersampling, or class weighting were not employed, the

class imbalance. techniques such as
inherent robustness of XGBoost and Random Forest models to
imbalanced data mitigated some related challenges. Furthermore,
the use of stratified sampling in conjunction with 10-fold cross-
validation enhanced model stability and generalizability. The lack
of dedicated

compromised the performance of models such as SVM and KNN

imbalance correction methods may have
in accurately identifying minority class instances, representing a
limitation of this study. Future investigations will explore the
integration of SMOTE, class weighting, and other approaches to
systematically assess their influence on model efficacy.

In summary, the XGBoost-based machine learning model
developed herein constitutes a powerful, interpretable, and
clinically actionable tool for individualized prediction of lower
extremity DVT

malignancies. For patients identified as high risk, we provide clear

risk among patients with gastrointestinal
delineation of personalized thrombosis probabilities alongside the
thereby

comprehension of risk magnitude while emphasizing that this

principal  contributory  factors, fostering  patient

represents a risk stratification rather than a diagnostic conclusion—
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ultimately facilitating early prevention and management. Looking
ahead, we intend to embed the XGBoost prediction model within
electronic medical record (EMR) systems to enable real-time risk
of high-risk thereby
empowering clinicians to devise precise, tailored prophylactic

assessment and alerting individuals,

strategies. risk

determinants within the conceptual framework of Virchow’s triad,

By elucidating perioperative and oncologic

this model holds substantial promise for refining perioperative risk
guiding
ultimately enhancing patient outcomes through precision medicine.

stratification, targeted preventive interventions, and

Conclusion

This study rigorously assessed the predictive capabilities of
four leading machine learning algorithms for lower extremity
DVT data,
ultimately ~designating XGBoost model.

in multidimensional clinical
the

Leveraging SHAP analysis, the model affords individualized

risk, grounded
as superior
interpretability of its predictions. It exhibited exceptional
discriminatory accuracy in stratifying high- vs. low-risk patients,
coupled with robust generalizability, stability, and marked utility
the

demonstrates substantial translational potential in postoperative

in  clinical  decision-making.  Importantly, model

management, oncologic risk evaluation, and tailored
thromboprophylaxis. Moreover, the investigation elucidated
surgery,  prolonged  immobilization,  central  venous

catheterization, radiotherapy, distant tumor metastasis, and
chemotherapy as pivotal contributors to DVT pathogenesis,
thereby enriching the mechanistic insight into thrombogenesis.
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