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Background: Lower extremity deep vein thrombosis (DVT) represents a 

prevalent and formidable complication among patients with gastrointestinal 

malignancies, exerting a profound impact on both prognosis and quality of 

life. Owing to its intricate pathogenesis, the development of a precise risk 

prediction model is imperative for advancing clinical strategies in prevention 

and therapeutic intervention.

Methods: This retrospective study enrolled patients with gastrointestinal 

malignancies using multicenter, longitudinal clinical data obtained from three 

tertiary medical centers between 2020 and 2024. A total of 34 variables were 

extracted, encompassing demographic profiles, clinical parameters, tumor- 

specific characteristics, and laboratory indices. To identify independent 

predictors of DVT, both univariate and multivariate analyses were initially 

performed. Four machine learning algorithms—Extreme Gradient Boosting 

(XGBoost), Random Forest (RF), Support Vector Machine (SVM), and k-Nearest 

Neighbors (KNN)—were subsequently constructed to predict DVT risk. Model 

performance was rigorously assessed through receiver operating 

characteristic (ROC) curves, calibration plots, Brier scores, and decision curve 

analysis (DCA). Internal validation was conducted via ten-fold cross- 

validation, while an independent external cohort was employed to evaluate 

model generalizability. To elucidate the underlying predictive mechanisms, 

SHapley Additive exPlanations (SHAP) analysis was carried out.

Results: Through a combination of univariate and multivariate analyses 

alongside four machine learning algorithms, surgery, prolonged 

immobilization, central venous catheterization, radiotherapy, distant 

metastasis, and chemotherapy emerged as significant high-risk factors for 

DVT. All four predictive models exhibited robust performance, with the 

XGBoost model demonstrating superior discrimination, calibration, and 

clinical utility. Findings from the external validation cohort further 

substantiated its stability and generalizability. SHAP analysis illuminated the 
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relative contributions and directional influences of pivotal variables within the 

predictive framework.

Conclusion: Machine learning models derived from multicenter, longitudinal 

clinical datasets offer robust predictive capabilities for assessing DVT risk in 

patients with gastrointestinal malignancies. These models furnish clinicians with 

individualized risk stratification tools, facilitating the refinement of preventive 

strategies and the enhancement of clinical decision-making, ultimately 

contributing to improved patient management.
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Introduction

Gastrointestinal malignancies rank among the most lethal 

cancers globally. Driven by a rapidly aging population and the 

pervasive adoption of deleterious lifestyle behaviors, the incidence 

of these tumors continues to climb, constituting a substantial 

fraction of the global oncological burden. Despite notable 

progress in early detection and surgical interventions in recent 

years, the majority of cases are diagnosed at intermediate or 

advanced stages, often accompanied by multiple comorbidities 

that significantly undermine clinical outcomes (1–5).

Lower extremity DVT is a frequent and formidable 

complication in patients with gastrointestinal tumors, marked by 

a high incidence and significant risks of disability and mortality 

(6–8). Neoplastic processes themselves foster a hypercoagulable 

milieu through the secretion of procoagulant factors such as 

tissue factor and tumor-derived microparticles, which activate 

the coagulation cascade. Moreover, chronic tumor-associated 

in-ammation, endothelial injury in-icted by malignant cells, 

and disruption of the immune microenvironment synergistically 

promote thrombus formation (9–11).

The consequences of thrombosis extend well beyond localized 

symptoms such as limb edema, pain, and impaired mobility. 

Thrombus dislodgement can precipitate pulmonary embolism 

(PE)—a life-threatening emergency. These complications not 

only prolong hospitalization and elevate the risk of bleeding 

associated with anticoagulant therapy but may also interrupt or 

even preclude standardized oncologic treatments, thereby 

compromising disease control and overall survival (12–14). 

A growing body of evidence (15–19) underscores that cancer 

patients who develop venous thromboembolism (VTE) face a 

markedly heightened risk of mortality within one year, 

rendering VTE a principal cause of non-cancer-related death in 

this population.

Traditionally, clinicians have relied on experiential judgment 

or risk stratification tools such as the Caprini and Khorana 

scores to assess thrombotic risk. While these instruments 

provide a degree of guidance, they are constrained by inherent 

subjectivity, limited generalizability, and suboptimal accuracy in 

detecting tumor-associated thrombosis (20, 21). Recently, 

statistical approaches like logistic regression have been employed 

to enhance predictive objectivity and quantification; 

nevertheless, these methods falter when confronted with high- 

dimensional datasets, nonlinear relationships, and intricate 

variable interactions, limiting their applicability in complex 

clinical landscapes.

Against this backdrop, the present study seeks to leverage 

multiple sophisticated machine learning algorithms to assimilate 

multidimensional clinical data and develop a predictive model 

for delineating high-risk factors of lower extremity venous 

thrombosis in patients with gastrointestinal malignancies. This 

model aspires to elevate the precision and efficiency of high-risk 

patient identification, thereby furnishing robust empirical 

support and a solid foundation for individualized 

prophylactic interventions.

Materials and methods

Study subjects

This study utilized clinical data sourced from the databases of 

Wuxi People’s Hospital affiliated with Nanjing Medical University, 

Wuxi Second People’s Hospital, and Tengzhou Central People’s 

Hospital. The clinical data and samples analyzed in this study 

were collected from January 1, 2020, to January 31, 2024, and 

the datasets were accessed for research purposes on January 31, 

2024. Inclusion criteria encompassed: (1) patients with 

pathologically and radiologically confirmed gastrointestinal 

malignancies, including esophageal, gastric, small intestinal, 

colorectal, pancreatic cancers, cholangiocarcinoma, and 

hepatocellular carcinoma; (2) age ≥18 years; and (3) completion 

of lower extremity venous ultrasound screening during 

hospitalization. Exclusion criteria were as follows: (1) presence 

of other malignancies; (2) prior history of lower extremity DVT 

preceding the diagnosis of gastrointestinal tumors; (3) 

anticoagulant therapy exceeding two weeks, including agents 

such as warfarin, rivaroxaban, apixaban, and heparin; (4) severe 

hepatic or renal insufficiency or coagulation disorders, including 

congenital conditions (e.g., hemophilia) or acute disseminated 

intravascular coagulation (DIC); (5) pregnancy or lactation; (6) 

mortality within 30 days of admission; and (7) incomplete 

clinical data or loss to follow-up. All patients were monitored 

for a minimum of six months postoperatively. This investigation 
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received ethical approval from the Institutional Review Boards of 

Wuxi People’s Hospital, Wuxi Second People’s Hospital, and 

Tengzhou Central People’s Hospital (Approval No. 2025-37). 

We have strictly adhered to the guidelines of the TRIPOD + AI 

statement (https://www.tripod-statement.org/).

Study design and data collection

This study encompassed a total of 34 clinical variables 

spanning multiple domains to facilitate a comprehensive 

evaluation of lower extremity DVT risk. The variables were 

systematically classified as follows: firstly, demographic attributes 

including sex, age, smoking status, alcohol consumption, and 

body mass index (BMI); secondly, baseline clinical indices such 

as the American Society of Anesthesiologists (ASA) score, 

Nutritional Risk Screening 2002 (NRS2002) score, history of 

blood transfusion, venous catheterization history, and duration 

of immobilization; thirdly, comorbidities encompassing anemia, 

coronary artery disease, intestinal obstruction, chronic 

obstructive pulmonary disease (COPD), diabetes mellitus, 

hypertension, and hyperlipidemia; fourthly, tumor-specific 

features comprising tumor type, maximal diameter, lesion 

multiplicity, regional lymph node involvement, distant 

metastasis, perineural invasion, and receipt of surgery, 

chemotherapy, or radiotherapy; and finally, laboratory 

biomarkers including serum albumin, carcinoembryonic antigen 

(CEA), carbohydrate antigen 19-9 (CA19-9), procalcitonin 

(PCT), C-reactive protein (CRP), neutrophil-to-lymphocyte ratio 

(NLR), and serum amyloid A (SAA). The principal endpoint of 

this investigation was the incidence of lower extremity deep 

vein thrombosis.

Missing data handling and data scaling

Variables with a missing rate below 5% were classified as 

exhibiting low missingness, whereas those with a missing rate 

between 5% and 30% were deemed to have moderate to high 

missingness. Two complementary strategies were employed to 

address missing data. For variables with low missingness, simple 

imputation was applied: median imputation for continuous 

variables and mode imputation (most frequent category) for 

categorical variables. This approach, restricted to minimal 

missingness, aimed to preserve sample integrity and was 

subsequently evaluated against multiple imputation outcomes in 

sensitivity analyses.

For variables with moderate to high missingness, multiple 

imputation was performed. Binary variables (e.g., sex, presence 

of comorbidities) were imputed using logistic regression models, 

in which the probability distribution of missing values was 

estimated from available predictors, followed by stochastic 

sampling to preserve intrinsic inter-variable correlations. For 

multicategorical variables (e.g., tumor location, staging), 

multinomial logistic regression was employed, simultaneously 

estimating the probability of each mutually exclusive category 

and imputing missing entries through probabilistic sampling. 

This method maintained the original distributional structure of 

the data, mitigated bias, and improved the plausibility of 

imputations, thereby enhancing the predictive robustness of 

subsequent models.

Continuous variables were discretized into binary or 

multicategorical forms guided by clinical expertise, while 

categorical variables underwent one-hot encoding to ensure 

accurate model recognition of categorical information.

Diagnosis of DVT and definition of 
associated factors

Lower extremity DVT denotes the pathological coagulation of 

blood within the deep venous system of the lower limbs— 

including the peroneal, posterior tibial, popliteal, femoral, and 

iliac veins—culminating in thrombus formation and vascular 

occlusion (22–24). In this investigation, the initial diagnosis 

predominantly hinged on Doppler ultrasound, with diagnostic 

criteria comprising partial or complete incompressibility of the 

vein (under physiological conditions, veins collapse entirely 

under probe pressure; failure to do so indicates thrombus 

presence), aberrant blood -ow signals (color Doppler revealing 

diminished or interrupted -ow), direct visualization of 

thrombotic echoes on grayscale imaging, and abnormal pulse 

Doppler waveforms characterized by reduced or absent -ow 

velocity. In instances where ultrasonographic findings were 

equivocal—particularly when evaluating deep or pelvic veins 

such as the iliac vein—or where clinical suspicion remained 

high despite negative ultrasound, venography was employed as 

an adjunct. This technique, involving intravascular contrast 

administration, affords three-dimensional visualization, enabling 

precise delineation of thrombus burden and localization, thereby 

enhancing diagnostic fidelity. We ensure that all DVT events 

were confirmed by imaging, guaranteeing the consistency of 

diagnostic criteria and the accuracy of the results.

Development and evaluation of predictive 
models for machine learning algorithms

This study employed SPSS and R software to construct and 

systematically evaluate clinical prediction models through the 

following steps:

Data preprocessing

The study population comprised patients with gastrointestinal 

tumors treated from January 2020 to January 2024 at Wuxi 

People’s Hospital and Wuxi Second People’s Hospital, forming 

the internal validation cohort. Concurrently, patients from 

Tengzhou Central People’s Hospital during the same period 

constituted the external validation cohort to assess model 

generalizability. Within the internal cohort, stratified random 

sampling divided data into a training set and testing set at a 7:3 

ratio, enhancing the model’s capacity to detect minority events 
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such as DVT, thereby mitigating bias toward the majority class 

and improving clinical applicability and predictive performance.

Feature selection

A systematic statistical analysis of candidate variables was 

performed on the internal cohort to identify clinical features 

significantly associated with DVT. Univariate analysis employed 

chi-square tests for categorical variables and independent 

samples t-tests for continuous variables to screen potential risk 

factors (P < 0.05). Significant variables were then included in a 

multivariate logistic regression model to adjust for confounding 

and identify independent predictors, with adjusted regression 

coefficients and 95% confidence intervals quantifying association 

strength. Complementing traditional statistics, four classical 

machine learning algorithms—XGBoost, RF, SVM, and KNN— 

were used to evaluate variable importance and inter-algorithm 

differences. Cross-validation of feature rankings across models 

enabled selection of the top ten consistently important variables 

as key predictors, thereby enhancing the robustness and 

interpretability of the feature screening process. Model 

Construction and Evaluation: The selected features were 

integrated into four machine learning models—SVM, RF, 

XGBoost, and KNN—to develop DVT risk prediction models. 

Model performance was assessed through discrimination, 

calibration, and clinical utility. Discrimination was measured by 

ROC curves and AUC metrics to evaluate the ability to 

distinguish between DVT and non-DVT cases. Calibration was 

evaluated by constructing calibration curves to compare the 

concordance between predicted probabilities and observed event 

rates, supplemented by the Brier score as a quantitative measure 

of probabilistic accuracy. In these curves, the x-axis (mean 

predicted value) denotes the average model-estimated probability 

of an event (e.g., DVT) within a given subgroup, re-ecting its 

anticipated risk, while the y-axis (fraction of positives) 

represents the corresponding empirical event rate, i.e., the true 

incidence of DVT within that subgroup. This graphical 

assessment captures the degree to which predicted probabilities 

align with actual outcomes. The ideal calibration curve coincides 

with the 45° diagonal, indicating perfect agreement between 

predicted and observed rates. In this study, calibration curves 

were generated for the XGBoost, RF, SVM, and KNN models to 

assess their probability estimation fidelity. Samples were 

stratified into equally sized risk groups (e.g., deciles) according 

to predicted probabilities; for each group, the mean predicted 

risk and the observed incidence were computed, and both 

scatter plots and fitted calibration lines were produced. Clinical 

utility was appraised using decision curve analysis (DCA), which 

plots net benefit across a continuum of clinical risk thresholds 

(0–1), benchmarked against treat-all and treat-none strategies, 

thereby identifying threshold intervals in which the model 

confers superior clinical advantage. Guided by expert clinical 

consensus, we selected a threshold range of 0.1–0.6, 

corresponding to commonly adopted cut-offs for DVT 

prophylaxis that strike a balance between proactive prevention 

and avoidance of unnecessary intervention. To improve 

reliability and minimize bias from data splitting, 10-fold cross- 

validation was applied in the internal cohort, iteratively training 

on nine folds and validating on the remaining fold. Performance 

metrics, including accuracy, AUC, and Brier score, were 

averaged across folds, providing robust estimates of model 

stability and generalization. In this study, hyperparameter 

optimization was performed using a grid search strategy. This 

method exhaustively evaluates all possible parameter 

combinations within a predefined search space, identifying the 

configuration that yields optimal performance on the validation 

set through cross-validation. By systematically traversing the 

parameter grid, grid search ensures that no potentially superior 

configuration is overlooked, making it particularly well-suited 

for parameter spaces of moderate dimensionality. Although 

computationally intensive, this approach offers robust and 

reproducible hyperparameter selection, thereby enhancing the 

model’s generalizability and predictive accuracy. Using this 

framework, we comprehensively compared the predictive 

performance of four machine learning models for DVT risk 

assessment and subsequently selected the XGBoost model for 

further refinement. In training the XGBoost model, particular 

attention was given to tuning regularization-related parameters. 

L1 regularization (alpha) imposes an absolute penalty on feature 

weights, promoting sparsity and implicit feature selection; L2 

regularization (lambda) applies a squared penalty to constrain 

weight magnitude, mitigating overfitting; the maximum tree 

depth (max_depth) was limited to prevent overly complex tree 

structures; the minimum child weight (min_child_weight) was 

set to define the minimal sum of instance weights required for a 

node split; and the learning rate (eta) was adjusted to 

incrementally reduce the contribution of individual trees, 

thereby smoothing the learning process. Collectively, these 

measures preserved the model’s capacity to capture intricate 

data patterns while reducing overfitting risk, ultimately 

improving its stability and generalizability across both internal 

and external validation cohorts.

External validation

The optimal model, with parameters fixed during internal 

training, was applied to the external validation cohort from 

Tengzhou Central People’s Hospital. Performance metrics were 

computed and compared with internal results to assess 

generalizability and clinical applicability.

Construction of confusion matrices
Confusion matrix plots were generated for the XGBoost model 

across the internal test set, internal validation set, external test set, 

and external validation set. These matrices provide an intuitive 

visualization of classification performance, delineating the exact 

counts of true positives, false positives, true negatives, and false 

negatives. Such representation enables a more granular 

assessment of the model’s sensitivity and specificity under 

varying data conditions.

Retrospective evaluation of the Khorana score
A supplementary retrospective analysis was undertaken to 

assess the predictive utility of the Khorana score in estimating 
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lower extremity DVT risk among the study cohort. For each 

patient, a risk score was computed in accordance with the 

Khorana scoring system, which assigns weighted points based 

on tumor type, platelet count, hemoglobin concentration, white 

blood cell count, and body mass index. Predictive performance 

was quantified using ROC curve analysis, with the AUC and 

corresponding 95% CI calculated. The AUC of the Khorana 

score was subsequently compared with that of the best- 

performing machine learning model identified in this study, 

thereby corroborating the superior predictive accuracy of 

our model.

Model interpretation

To elucidate model decision-making, SHAP analysis was 

conducted. SHAP calculates each feature’s marginal contribution 

—or “Shapley value”—across all possible feature subsets, fairly 

attributing feature impact on predictions. SHAP values indicate 

whether a feature increases or decreases predicted risk. 

Visualization included SHAP summary plots, showing the 

distribution and directional in-uence of each feature’s SHAP 

values across all samples, with color gradients re-ecting original 

feature values to reveal key risk factors and effect patterns. 

Additionally, single-sample SHAP force plots illustrated 

individualized explanations, demonstrating how each feature’s 

contribution shifts the prediction from a baseline risk to the final 

predicted value, highlighting personalized risk drivers or mitigators.

Results

Basic clinical information of the patient

A total of 1,369 patients with gastrointestinal tumors were 

enrolled in this study (Figure 1), of whom 128 patients (9.35%) 

developed lower extremity venous thrombosis. The internal 

dataset comprised 835 patients with gastrointestinal malignancies, 

including 80 cases of DVT, while the external dataset included 

534 patients, of whom 48 had DVT. A comparison of their 

clinical characteristics is presented in Table 1. Univariate and 

multivariate analyses identified distant metastasis, duration of bed 

rest, central venous catheterization, hypertension, radiotherapy, 

chemotherapy, surgical treatment, and advanced age as 

independent risk factors for lower extremity venous thrombosis 

(P < 0.05) (Table 2). Feature selection using the XGBoost, RF, 

FIGURE 1 

Illustrates the patient enrollment flowchart, clearly depicting the sample selection process.
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TABLE 1 Comparison of features between the internal and external datasets.

Variables All (N = 1369) Internal dataset (N = 835) External dataset (N = 534) P-value

Sex Female 823 (60.117%) 555 (66.467%) 268 (50.187%) <0.001

Male 546 (39.883%) 280 (33.533%) 266 (49.813%)

Age <65 932 (68.079%) 662 (79.281%) 270 (50.562%) <0.001

≥65 437 (31.921%) 173 (20.719%) 264 (49.438%)

BMI <25 kg/m2 991 (72.389%) 685 (82.036%) 306 (57.303%) <0.001

≥25 kg/m2 378 (27.611%) 150 (17.964%) 228 (42.697%)

ASA <3 657 (47.991%) 396 (47.425%) 261 (48.876%) 0.639

≥3 712 (52.009%) 439 (52.575%) 273 (51.124%)

Drinking history No 640 (46.749%) 380 (45.509%) 260 (48.689%) 0.274

Yes 729 (53.251%) 455 (54.491%) 274 (51.311%)

Smoking history No 691 (50.475%) 417 (49.940%) 274 (51.311%) 0.66

Yes 678 (49.525%) 418 (50.060%) 260 (48.689%)

Surgical history No 941 (68.736%) 634 (75.928%) 307 (57.491%) <0.001

Yes 428 (31.264%) 201 (24.072%) 227 (42.509%)

Chemotherapy No 990 (72.316%) 611 (73.174%) 379 (70.974%) 0.409

Yes 379 (27.684%) 224 (26.826%) 155 (29.026%)

Radiotherapy No 949 (69.321%) 564 (67.545%) 385 (72.097%) 0.085

Yes 420 (30.679%) 271 (32.455%) 149 (27.903%)

ALB ≥30 g/L 809 (59.094%) 570 (68.263%) 239 (44.757%) <0.001

<30 g/L 560 (40.906%) 265 (31.737%) 295 (55.243%)

CEA level <5 ng/ml 872 (63.696%) 606 (72.575%) 266 (49.813%) <0.001

≥5 ng/ml 497 (36.304%) 229 (27.425%) 268 (50.187%)

CA199 level <37 U/ml 869 (63.477%) 619 (74.132%) 250 (46.816%) <0.001

≥37 U/ml 500 (36.523%) 216 (25.868%) 284 (53.184%)

NRS2002 score <3 853 (62.308%) 570 (68.263%) 283 (52.996%) <0.001

≥3 516 (37.692%) 265 (31.737%) 251 (47.004%)

Anemia No 862 (62.966%) 589 (70.539%) 273 (51.124%) <0.001

Yes 507 (37.034%) 246 (29.461%) 261 (48.876%)

Ileus No 853 (62.308%) 573 (68.623%) 280 (52.434%) <0.001

Yes 516 (37.692%) 262 (31.377%) 254 (47.566%)

CHD No 929 (67.860%) 662 (79.281%) 267 (50.000%) <0.001

Yes 440 (32.140%) 173 (20.719%) 267 (50.000%)

COPD No 939 (68.590%) 673 (80.599%) 266 (49.813%) <0.001

Yes 430 (31.410%) 162 (19.401%) 268 (50.187%)

Diabetes No 822 (60.044%) 549 (65.749%) 273 (51.124%) <0.001

Yes 547 (39.956%) 286 (34.251%) 261 (48.876%)

Hyperlipidemia No 839 (61.286%) 582 (69.701%) 257 (48.127%) <0.001

Yes 530 (38.714%) 253 (30.299%) 277 (51.873%)

Hypertension No 943 (68.882%) 669 (80.120%) 274 (51.311%) <0.001

Yes 426 (31.118%) 166 (19.880%) 260 (48.689%)

Blood transfusion No 830 (60.628%) 561 (67.186%) 269 (50.375%) <0.001

Yes 539 (39.372%) 274 (32.814%) 265 (49.625%)

CVC No 964 (70.416%) 611 (73.174%) 353 (66.105%) 0.006

Yes 405 (29.584%) 224 (26.826%) 181 (33.895%)

Bed rest duration <3 960 (70.124%) 598 (71.617%) 362 (67.790%) 0.148

≥3 409 (29.876%) 237 (28.383%) 172 (32.210%)

Tumor type Pancreatic cancer 115 (8.400%) 77 (9.222%) 38 (7.116%) <0.001

Esophageal cancer 71 (5.186%) 61 (7.305%) 10 (1.873%)

Gastric cancer 496 (36.231%) 272 (32.575%) 224 (41.948%)

Small intestine tumor 247 (18.042%) 143 (17.126%) 104 (19.476%)

Colorectal cancer 113 (8.254%) 74 (8.862%) 39 (7.303%)

Hepatocellular carcinoma 148 (10.811%) 107 (12.814%) 41 (7.678%)

Cholangiocarcinoma 179 (13.075%) 101 (12.096%) 78 (14.607%)

Tumor number <2 940 (68.663%) 693 (82.994%) 247 (46.255%) <0.001

≥2 429 (31.337%) 142 (17.006%) 287 (53.745%)

Tumor size <5 cm 834 (60.920%) 557 (66.707%) 277 (51.873%) <0.001

≥5 cm 535 (39.080%) 278 (33.293%) 257 (48.127%)

Lymphatic metastasis No 905 (66.107%) 621 (74.371%) 284 (53.184%) <0.001

Yes 464 (33.893%) 214 (25.629%) 250 (46.816%)

(Continued) 
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SVM, and KNN algorithms consistently underscored distant 

metastasis, duration of bed rest, central venous catheterization, 

radiotherapy, chemotherapy, and surgical treatment as key 

predictors in-uencing the occurrence of lower extremity venous 

thrombosis (Figures 2A–D). The original dataset utilized in this 

study is provided in Supplementary Table S1.

Model building and evaluation

ROC curve analysis demonstrated that the XGBoost model 

exhibited excellent predictive performance in both the training 

and validation sets, achieving an AUC of 0.951 in the training set 

and 0.882 in the validation set, surpassing the other three 

machine learning models (Table 3, Figures 3A,B). These high 

AUC values indicate outstanding discrimination ability, effectively 

distinguishing high-risk from low-risk patients and re-ecting 

superior predictive accuracy. The calibration analyses revealed 

that the curves of all four models closely approximated the ideal 

45° diagonal, signifying strong concordance between predicted 

risk probabilities and observed event rates, and attesting to their 

robust performance in probability estimation. Of particular note, 

the XGBoost model preserved excellent calibration across both 

high- and low-risk strata, accurately mirroring the true 

probability of DVT occurrence. Such fidelity in calibration 

underscores the model’s reliability for individualized risk 

stratification in clinical settings, thereby enabling more precise 

preventive and therapeutic interventions. Calibration quality was 

further quantified using the Brier score. All four models achieved 

values well below 0.1 (XGBoost: 0.070; Random Forest: 0.070; 

SVM: 0.073; KNN: 0.065), re-ecting outstanding agreement 

between predicted probabilities and actual outcomes. DCA 

demonstrated that all models—particularly XGBoost—conferred a 

greater net clinical benefit than the extremes of a “treat-all” or 

“treat-none” strategy. This advantage was most pronounced 

within the 0.2–0.4 risk threshold range, highlighting the models’ 

capacity to accurately identify high-risk patients, thereby guiding 

targeted thromboprophylaxis and minimizing unnecessary 

pharmacological interventions and their attendant adverse effects 

(Figures 3C,D). Notably, the XGBoost model demonstrated the 

greatest net benefit, underscoring its potential for precise 

individualized risk prediction of lower extremity DVT in patients 

with gastrointestinal tumors in clinical practice. To 

comprehensively assess model generalizability, k-fold cross- 

validation was performed on the internal validation set. 

Specifically, 125 samples (15.00%) were randomly selected as the 

test set, while the remainder was used for training with 10-fold 

cross-validation. This approach robustly evaluated model 

performance across diverse data subsets, minimizing bias from 

random splits and enhancing result reliability. During cross- 

validation, the XGBoost model consistently outperformed others, 

achieving an AUC of 0.9146 (95% CI: 0.8205–0.9934) in 

validation folds, an AUC of 0.8308 in the test set, and an 

accuracy of 0.8016 (Figures 4A–C). The RF model attained a 

validation AUC of 0.8029 (0.7051–0.8864), test set AUC of 

0.8287, and accuracy of 0.7302. The SVM model showed a 

validation AUC of 0.8091 (0.6133–0.9797), but its test set AUC 

decreased to 0.6182 with accuracy of 0.8095. The KNN model 

demonstrated an AUC of 0.8240 (0.6393–0.9832) in validation, 

0.7275 in the test set, and accuracy of 0.7540. Collectively, 

XGBoost outperformed all other models across key metrics, 

particularly AUC and accuracy, indicating superior discriminatory 

power, better generalizability, and more stable predictive 

performance. Consequently, XGBoost was selected as the optimal 

algorithm for predicting high-risk factors of lower extremity 

venous thrombosis in this study. In the external validation cohort, 

ROC analysis revealed an AUC of 0.681 (Figure 4D), 

demonstrating that the model maintained reasonable predictive 

accuracy on unseen data and exhibited satisfactory generalization 

capability. In this study, confusion matrices were constructed for 

the XGBoost model across multiple datasets. Comparative analysis 

of these matrices enabled a more precise evaluation of the 

model’s propensity for false negatives and false positives in 

identifying patients with lower extremity DVT, thereby offering 

TABLE 1 Continued

Variables All (N = 1369) Internal dataset (N = 835) External dataset (N = 534) P-value

Distant metastasis No 967 (70.636%) 613 (73.413%) 354 (66.292%) 0.006

Yes 402 (29.364%) 222 (26.587%) 180 (33.708%)

PNI No 1,016 (74.215%) 744 (89.102%) 272 (50.936%) <0.001

Yes 353 (25.785%) 91 (10.898%) 262 (49.064%)

PCT level <0.05 ng/ml 970 (70.855%) 683 (81.796%) 287 (53.745%) <0.001

≥0.05 ng/ml 399 (29.145%) 152 (18.204%) 247 (46.255%)

CRP level <10 mg/L 909 (66.399%) 651 (77.964%) 258 (48.315%) <0.001

≥10 mg/L 460 (33.601%) 184 (22.036%) 276 (51.685%)

SAA level <10 mg/L 910 (66.472%) 644 (77.126%) 266 (49.813%) <0.001

≥10 mg/L 459 (33.528%) 191 (22.874%) 268 (50.187%)

NLR <3 873 (63.769%) 612 (73.293%) 261 (48.876%) <0.001

≥3 496 (36.231%) 223 (26.707%) 273 (51.124%)

DVT No 1,241 (90.650%) 755 (90.419%) 486 (91.011%) 0.786

Yes 128 (9.350%) 80 (9.581%) 48 (8.989%)

OR, odds ratio; CI, confidence interval; BMI, body mass index; ASA, The American Society of Anesthesiologists; ALB, albumin; PCT, procalcitonin; CRP, C-reactive protein; NLR, neutrophil 

to lymphocyte ratio; SAA, serum amyloid A; NRS2002, nutrition risk screening 2002; CVC, Central venous catheter; PNI, Perineural invasion; CHD, Coronary heart disease; COPD, Chronic 

obstructive pulmonary disease.
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TABLE 2 Presents the results of univariate and multivariate analyses of variables associated with DVT.

Variables Univariate analysis Multivariate analysis

OR 95% CI P-value OR 95% CI P-value

Sex Female 555 Reference Reference

Male 280 4.039 [2.496, 6.538] <0.001 1.854 [0.879, 3.959] 0.106

Age <65 662 Reference Reference

≥65 173 3.477 [2.155, 5.613] <0.001 2.532 [1.127, 5.727] 0.025

BMI <25 kg/m2 685 Reference Reference

≥25 kg/m2 150 1.995 [1.186, 3.357] 0.009 0.831 [0.354, 1.896] 0.665

ASA <3 396 Reference

≥3 439 0.943 [0.595, 1.495] 0.803

Drinking history No 380 Reference

Yes 455 1.359 [0.848, 2.178] 0.203

Smoking history No 417 Reference

Yes 418 0.893 [0.563, 1.416] 0.63

Surgical history No 634 Reference Reference

Yes 201 7.093 [4.347, 11.574] <0.001 3.787 [1.888, 7.746] <0.001

Chemotherapy No 611 Reference Reference

Yes 224 0.5 [0.270, 0.925] 0.027 0.223 [0.086, 0.533] 0.001

Radiotherapy No 564 Reference Reference

Yes 271 4.277 [2.641, 6.926] <0.001 2.793 [1.417, 5.617] 0.003

ALB ≥30 g/L 570 Reference Reference

<30 g/L 265 9.366 [5.410, 16.216] <0.001 2.185 [0.966, 5.066] 0.063

CEA level <5 ng/ml 606 Reference

≥5 ng/ml 229 0.583 [0.326, 1.045] 0.07

CA199 level <37 U/ml 619 Reference

≥37 U/ml 216 0.636 [0.355, 1.141] 0.129

NRS2002 score <3 570 Reference

≥3 265 1.177 [0.725, 1.910] 0.51

Anemia No 589 Reference

Yes 246 1.171 [0.715, 1.918] 0.531

Ileus No 573 Reference Reference

Yes 262 3.011 [1.886, 4.806] <0.001 1.647 [0.827, 3.258] 0.152

CHD No 662 Reference

Yes 173 1.312 [0.767, 2.242] 0.322

COPD No 673 Reference

Yes 162 1.333 [0.772, 2.302] 0.302

Diabetes No 549 Reference Reference

Yes 286 3.075 [1.920, 4.924] <0.001 1.869 [0.845, 4.14] 0.121

Hyperlipidemia No 582 Reference

Yes 253 0.642 [0.372, 1.110] 0.113

Hypertension No 669 Reference Reference

Yes 166 9.787 [5.953, 16.091] <0.001 5.966 [2.984, 12.215] <0.001

Blood transfusion No 561 Reference Reference

Yes 274 2.636 [1.654, 4.201] <0.001 1.173 [0.524, 2.626] 0.696

CVC No 611 Reference Reference

Yes 224 6.704 [4.092, 10.984] <0.001 6.7 [3.263, 14.183] <0.001

Bed rest duration <3 598 Reference Reference

≥3 237 11.416 [6.578, 19.813] <0.001 2.949 [1.335, 6.661] 0.008

Tumor type Pancreatic cancer 77 Reference

Esophageal cancer 61 1.534 [0.487, 4.827] 0.464

Gastric cancer 272 1.093 [0.429, 2.788] 0.852

Small intestine tumor 143 1.284 [0.473, 3.488] 0.624

Colorectal cancer 74 1.434 [0.473, 4.354] 0.524

Hepatocellular carcinoma 107 0.703 [0.218, 2.269] 0.555

Cholangiocarcinoma 101 2.227 [0.828, 5.993] 0.113

Tumor number <2 693 Reference

≥2 142 0.759 [0.391, 1.475] 0.416

Tumor size <5 cm 557 Reference Reference

≥5 cm 278 3.852 [2.387, 6.217] <0.001 0.941 [0.425, 2.064] 0.879

(Continued) 
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TABLE 2 Continued

Variables Univariate analysis Multivariate analysis

OR 95% CI P-value OR 95% CI P-value

Lymphatic metastasis No 621 Reference

Yes 214 1.112 [0.663, 1.866] 0.687

Distant metastasis No 613 Reference Reference

Yes 222 4.199 [2.617, 6.736] <0.001 2.12 [1.058, 4.232] 0.033

PNI No 744 Reference

Yes 91 1.04 [0.501, 2.160] 0.915

PCT level <0.05 ng/ml 683 Reference

≥0.05 ng/ml 152 1.041 [0.576, 1.880] 0.894

CRP level <10 mg/L 651 Reference Reference

≥10 mg/L 184 1.94 [1.182, 3.185] 0.009 1.188 [0.556, 2.472] 0.649

SAA level <10 mg/L 644 Reference

≥10 mg/L 191 0.829 [0.467, 1.470] 0.52

NLR <3 612 Reference

≥3 223 1.045 [0.624, 1.753] 0.866

OR, odds ratio; CI, confidence interval; BMI, body mass index; ASA, The American Society of Anesthesiologists; ALB, albumin; PCT, procalcitonin; CRP, C-reactive protein; NLR, neutrophil 

to lymphocyte ratio; SAA, serum amyloid A; NRS2002, nutrition risk screening 2002; CVC, central venous catheter; PNI, perineural invasion; CHD, coronary heart disease; COPD, chronic 

obstructive pulmonary disease.

FIGURE 2 

Shows the feature importance rankings for each of the four models: (A) XGBoost; (B) RF; (C) SVM; and (D) KNN.
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critical insights for clinical threshold optimization and risk 

management (Figures 5A–D). Retrospective assessment of the 

Khorana score revealed an AUC of 0.653 (95% CI: 0.608–0.706) 

within our cohort, indicative of moderate predictive capability. By 

contrast, the machine learning models developed herein— 

particularly the XGBoost model—exhibited markedly superior 

performance, achieving an AUC of 0.951 in the training set and 

0.882 in the validation set, thereby substantially surpassing the 

traditional Khorana score. These elevated AUC values underscore 

the XGBoost model’s enhanced discriminatory power and 

superior predictive accuracy in differentiating high-risk from low- 

risk patients (Figure 6A).

Model explanation

The SHAP summary plot (Figure 6B) highlights the primary 

risk factors for lower extremity venous thrombosis and their 

relative importance. The analysis identified surgical treatment, 

prolonged bed rest, central venous catheterization, radiotherapy, 

distant tumor metastasis, and chemotherapy as the most 

in-uential predictors. To further assess the model’s clinical 

applicability, personalized predictions for four individual 

patients were examined using SHAP force plots (Figures 7A–D), 

which detailed the specific risk factors and their contributions 

for each case:

Patient 1: The model predicted a low probability of developing 

lower extremity venous thrombosis (0.02), with radiotherapy as 

the main in-uencing factor. Patient 2: The predicted risk was 

0.18, primarily driven by radiotherapy and surgical treatment. 

Patient 3: The predicted probability was 0.32, re-ecting a 

moderate risk predominantly contributed by prolonged bed rest, 

central venous catheterization, radiotherapy, and distant tumor 

metastasis. Patient 4: The model estimated a risk of 0.05, mainly 

in-uenced by radiotherapy and distant metastasis, indicating a 

relatively low yet clinically relevant risk warranting attention.

Discussion

This study harnessed four widely acclaimed machine learning 

algorithms—XGBoost, RF, SVM, and KNN—to construct a 

predictive model for lower extremity DVT. Each algorithm 

embodies distinct strengths tailored to diverse data structures 

and clinical contexts (25, 26). XGBoost, an ensemble method 

grounded in gradient boosting, excels at managing high- 

dimensional data while mitigating overfitting, showcasing 

remarkable fitting capacity and model expressiveness. It is 

particularly proficient at capturing intricate nonlinear 

relationships and complex variable interactions. Random Forest, 

another ensemble approach, builds a multitude of decision trees 

and synthesizes their outputs via majority voting, exhibiting 

resilience to noise and missing data, coupled with robust 

generalizability. SVM, predicated on the principle of maximum 

margin classification, is especially potent in small-sample, high- 

dimensional scenarios; its kernel functions adeptly handle 

nonlinear and non-separable data. KNN, reliant on sample 

proximity for classification, is lauded for its simplicity and ease 

of deployment, particularly when data distribution is relatively 

uniform and class boundaries are distinct (27–29).

Despite the merits inherent in each algorithm, XGBoost 

surpassed its counterparts across our dataset. It consistently 

manifested superior discriminatory power in both training and 

validation cohorts, adeptly distinguishing between high- and 

low-risk patients. Calibration analyses demonstrated a 

remarkable concordance between predicted probabilities and 

observed outcomes, with calibration curves nearly coinciding 

with ideal reference lines, re-ecting precise risk estimation. 

Moreover, XGBoost sustained elevated predictive accuracy 

following cross-validation and external validation, underscoring 

its robustness and translational viability. Decision curve analysis 

further accentuated its superior net clinical benefit across diverse 

risk thresholds, reinforcing its utility in clinical decision-making. 

Conversely, the alternative models exhibited certain limitations: 

Random Forest, while stable during training, displayed modest 

declines in validation accuracy and was hindered by complexity 

and sensitivity to feature redundancy, adversely affecting 

discrimination. SVM achieved commendable training accuracy 

but suffered a marked drop in test performance, indicative of 

overfitting; its computational intensity also restricts scalability 

with larger datasets or numerous variables. KNN’s test set 

performance was moderate yet susceptible to uneven sample 

distribution and noise, resulting in instability; its efficacy is 

further compromised by sensitivity to feature scaling and 

dependence on meticulous preprocessing. Considering a 

spectrum of evaluation metrics and overarching model 

performance, XGBoost was ultimately adjudged the optimal 

algorithm for predicting lower limb DVT risk.

TABLE 3 Summarizes the performance metrics of the four predictive models evaluated in this study.

AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) F1 score (95% CI)

KNN Training set 0.907 (0.865–0.948) 0.851 (0.826–0.877) 0.872 (0.831–0.912) 0.849 (0.818–0.880) 0.536 (0.502–0.571)

Validation set 0.838 (0.731–0.944) 0.843 (0.818–0.868) 0.758 (0.679–0.838) 0.853 (0.820–0.886) 0.486 (0.448–0.523)

XGBoost Training set 0.951 (0.931–0.970) 0.853 (0.839–0.867) 0.925 (0.911–0.938) 0.845 (0.829–0.861) 0.548 (0.529–0.567)

Validation set 0.882 (0.809–0.955) 0.839 (0.823–0.855) 0.724 (0.649–0.798) 0.852 (0.831–0.874) 0.463 (0.428–0.499)

RF Training set 0.893 (0.856–0.929) 0.871 (0.857–0.885) 0.759 (0.737–0.782) 0.883 (0.865–0.900) 0.532 (0.509–0.554)

Validation set 0.873 (0.793–0.953) 0.864 (0.844–0.884) 0.679 (0.628–0.731) 0.884 (0.861–0.906) 0.495 (0.459–0.530)

SVM Training set 0.859 (0.811–0.908) 0.826 (0.757–0.894) 0.769 (0.691–0.848) 0.832 (0.748–0.915) 0.494 (0.427–0.562)

Validation set 0.780 (0.642–0.918) 0.817 (0.732–0.903) 0.644 (0.503–0.785) 0.835 (0.732–0.939) 0.437 (0.359–0.514)

CI, confidence interval.
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In comparison to conventional diagnostic paradigms, the 

XGBoost-based machine learning model developed herein 

exhibits marked superiority in performance and clinical 

applicability across multiple facets. Traditional risk prediction 

methodologies often hinge upon presupposed linear associations 

and assumptions of variable independence, thereby constraining 

their capacity to unveil latent nonlinear structures and the 

intricate interplay of variables intrinsic to high-dimensional 

clinical datasets. Consequently, such approaches are frequently 

limited in accuracy, generalizability, and adaptability within 

clinical contexts. In this study, a supplementary retrospective 

analysis was undertaken to evaluate the predictive performance 

FIGURE 3 

Provides a comprehensive evaluation of the predictive performance of the four models, including: (A) ROC curves for the training set; (B) ROC curves 

for the validation set; (C) calibration curves, where the 45° dashed line represents ideal agreement between predicted and observed outcomes— 

curves closer to this line indicate better calibration; and (D) DCA, with the red curve indicating the net benefit of the model across varying risk 

thresholds. The intersections between the red curve and the “All” and “None” strategies define the risk threshold ranges where the model confers 

clinical benefit.
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of the Khorana score for thrombosis risk within the study 

population. The Khorana score yielded an AUC of 0.653 (95% 

CI: 0.608–0.706), notably lower than that achieved by the 

machine learning models developed herein, such as XGBoost, 

thereby highlighting a discernible gap in predictive accuracy. 

Consistent with our findings, Mulder et al. reported that, among 

outpatient cancer patients, only 23.4% (95% CI: 18.4%–29.4%) 

of those who developed VTE were classified as high risk by the 

Khorana score (30). While the Khorana score remains a useful 

tool for identifying high-risk patients and informing 

thromboprophylaxis, the majority of thrombotic events occur in 

individuals categorized as non–high risk. Such limitations 

underscore the restricted predictive capacity of traditional risk 

assessment methods, particularly in the context of certain tumor 

types and interindividual variability. By contrast, XGBoost, as a 

gradient-boosting ensemble algorithm, affords exceptional 

feature representation, resilience to noise, and robustness against 

missing data, enabling nuanced modeling of complex clinical 

FIGURE 4 

Details the internal and external validation results of the XGBoost model, including: (A) ROC curve in the training set; (B) ROC curve in the validation 

set; (C) ROC curve in the testing set; and (D) ROC curve in the external validation cohort.
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phenomena and yielding refined, stable individualized risk 

estimations (31–33).

To augment interpretability and practical utility, we integrated 

SHAP analysis to systematically deconstruct the predictive 

framework of the XGBoost model. Rooted in cooperative game 

theory, SHAP quantifies the marginal contribution of each 

clinical variable to model predictions in a consistent and locally 

faithful manner, thereby facilitating personalized risk 

elucidations for individual patients. This innovation not only 

enhances transparency and interpretability but also equips 

clinicians with lucid, actionable insights that bolster confidence 

and encourage pragmatic adoption of model-assisted decision- 

FIGURE 5 

Confusion matrices of the XGBoost model across different datasets: (A) confusion matrix for the internal test set; (B) confusion matrix for the internal 

validation set; (C) confusion matrix for the external test set; (D) confusion matrix for the external validation set.
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making in routine care (34, 35). The SHAP analysis pinpointed 

surgery, prolonged immobilization, central venous 

catheterization, radiotherapy, distant tumor metastasis, and 

chemotherapy as the foremost clinical determinants of lower 

limb DVT risk. These features manifested pronounced 

importance within the model, underscoring their plausible 

pathophysiological roles in thrombogenesis and highlighting 

their priority in perioperative risk stratification and targeted 

intervention. Clinically, the model enables early identification of 

high-risk patients in both pre- and postoperative settings, 

optimizing anticoagulation strategies and mitigating DVT 

incidence, thereby refining overall perioperative management. 

From the patient perspective, personalized risk interpretations 

foster heightened awareness and engagement, advancing the 

paradigm of patient-centered precision medicine.

The canonical Virchow’s triad—comprising hemodynamic 

alterations (venous stasis), endothelial injury, and 

hypercoagulability—remains the foundational framework for 

understanding venous thromboembolism pathophysiology (22, 36, 

37). Our machine learning findings resonate with this model, as 

the identified risk factors—including surgical intervention, 

prolonged bed rest, central venous catheterization, radiotherapy, 

FIGURE 6 

(A) Predictive performance of the Khorana score for thrombosis risk in the study cohort; (B) depicts the SHAP summary plot, ranking risk factors by 

their mean absolute Shapley values, with higher-ranked factors exerting a greater influence on model predictions.
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distant metastasis, and chemotherapy—correspond intimately with 

these core pathological processes. Surgical procedures, by virtue of 

their invasiveness, induce direct endothelial trauma, precipitating 

localized in-ammatory cascades and endothelial dysfunction that 

compromise anticoagulant defenses, thereby fostering 

thrombogenesis. Additionally, perioperative immobilization 

impairs the efficacy of the muscular pump, precipitating venous 

stasis. The systemic in-ammatory milieu and stress response 

elicited by surgery further amplify hypercoagulability, collectively 

orchestrating thrombus formation via multifaceted synergistic 

pathways (38, 39). Prolonged immobilization curtails lower limb 

muscular contractions, diminishing venous return and 

exacerbating blood -ow stasis, which prolongs blood constituent 

interactions and cultivates hypoxic microenvironments that 

FIGURE 7 

SHAP force plots are displayed to visualize individual-level explanations of the predictions. Variables are arranged horizontally according to their 

absolute impact, with blue indicating features that decrease predicted risk (negative SHAP values) and red indicating features that increase 

predicted risk (positive SHAP values). (A) Predictive analysis of Patient I. (B) Predictive analysis of Patient II. (C) Predictive analysis of Patient III. 

(D) Predictive analysis of Patient IV.
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activate endothelial cells and upregulate procoagulant factors, 

thereby potentiating hypercoagulability. Central venous 

catheterization, a ubiquitous clinical intervention, disrupts 

endothelial integrity mechanically and triggers local coagulation 

cascades alongside in-ammatory responses. Turbulence and stasis 

associated with catheter placement, compounded by infection and 

in-ammation, exacerbate endothelial dysfunction and 

hypercoagulable states (40, 41). Radiotherapy in-icts direct 

cytotoxicity upon endothelial cells, undermining structural 

integrity and anticoagulant functionality while inducing 

procoagulant and in-ammatory mediator expression, generating a 

localized prothrombotic milieu. Radiation-induced fibrosis and 

vascular stenosis further perturb hemodynamics, promoting stasis 

(42–44). The presence of distant tumor metastases signifies an 

elevated tumor burden and systemic disease progression; 

metastatic cells secrete procoagulant agents (e.g., tissue factor, 

cytokines) that systemically activate coagulation pathways, 

markedly intensifying hypercoagulability. Concurrent chronic 

in-ammation and immune dysregulation erode endothelial 

integrity and facilitate platelet activation and fibrin deposition, 

fostering a thrombogenic microenvironment (45, 46). 

Chemotherapeutic agents exert direct endothelial toxicity, 

impairing cellular architecture and function, while suppressing 

hematopoiesis and immune surveillance, heightening susceptibility 

to infection and secondary endothelial in-ammation. Certain 

chemotherapies modulate platelet activity and blood rheology, 

thereby contributing to venous stasis and hypercoagulability, 

cumulatively elevating thrombotic risk. Collectively, these 

delineated risk factors converge upon the pillars of Virchow’s 

triad, driving the pathogenesis of lower limb DVT through 

interdependent mechanisms of stasis, endothelial injury, 

and hypercoagulability.

Previous studies (15, 16) have proposed that the type of 

gastrointestinal malignancy—such as gastric, colorectal, or 

esophageal cancer—may modulate the risk of lower limb DVT 

through variations in tumor biology, anatomical location, and 

treatment approaches. However, our analysis did not reveal a 

significant correlation between tumor type and DVT incidence, a 

discrepancy attributable to several factors. From a mechanistic 

standpoint, DVT pathogenesis fundamentally revolves around 

Virchow’s triad, which remains largely consistent across different 

gastrointestinal cancers. Irrespective of tumor origin, advanced 

malignancy is commonly accompanied by shared clinical factors 

including prolonged immobilization, surgical trauma, central 

venous catheterization, chemotherapy, and radiotherapy, all of 

which activate thrombogenic pathways in a similar manner across 

tumor types. Consequently, these ubiquitous risk factors may 

eclipse any potential tumor site-specific in-uences. Additionally, 

our model prioritized actual clinical interventions and functional 

status variables (e.g., surgery, chemoradiotherapy, 

immobilization) over tumor classification, resulting in greater 

weighting of treatment-related predictors relative to tumor 

location in multivariate analyses. Finally, machine learning 

algorithms inherently focus on variables that optimize predictive 

performance; thus, tumor type, despite possible biological 

relevance within certain subsets, conferred limited incremental 

predictive value and was consequently assigned lower importance 

and excluded from key predictors.

A pronounced disparity in AUC performance was observed 

for the XGBoost model between the internal validation cohort 

and the external test cohort. Given that patients from different 

hospitals were enrolled contemporaneously, the in-uence of 

temporal factors on model performance is likely negligible. This 

divergence is chie-y attributable to inter-hospital heterogeneity 

in patient demographics, disease severity, comorbidities, and 

treatment regimens, which engenders distributional shifts within 

the external dataset. Furthermore, inconsistencies in clinical 

testing methodologies, data recording standards, and laboratory 

procedures across institutions may compromise the uniformity 

and quality of input variables, thereby constraining the model’s 

generalizability. Variations in sample size and the prevalence of 

DVT events within the external validation cohort may also 

contribute to performance variability. Notably, the 

implementation of 10-fold cross-validation and regularization 

techniques in this study effectively mitigated overfitting risks, 

bolstering model robustness and generalizability, and 

highlighting the rigor of our training methodology.

This study presents several strengths in forecasting lower limb 

DVT risk. The utilization of a large, multidimensional clinical 

dataset—including surgical treatment, immobilization status, central 

venous catheterization, oncologic therapies, and metastatic burden— 

enhances the model’s representativeness and clinical relevance. 

A rigorous comparison of four prominent machine learning 

algorithms facilitated the identification of XGBoost as the superior 

method, demonstrating consistent excellence in discrimination, 

calibration, and clinical utility across training, internal validation, 

and external validation cohorts. The incorporation of SHAP analysis 

further enriched interpretability, fostering clinical confidence and 

easing model integration into practice.

Nonetheless, this study is subject to several limitations. We 

observed an inverse association between chemotherapy and the 

risk of lower extremity deep vein thrombosis (DVT), a finding 

that diverges from conventional clinical understanding and likely 

re-ects the interplay of multiple factors rather than a direct 

protective effect of chemotherapy itself. First, as a retrospective 

investigation, reliance on historical clinical records may introduce 

incomplete data, recording biases, and inconsistencies in variable 

definitions, potentially compromising model accuracy. Although 

34 clinical variables were incorporated and feature selection was 

conducted through multivariate regression and diverse machine 

learning algorithms, residual confounding—such as anticoagulant 

use, specific chemotherapy regimens, and patients’ nutritional and 

activity status—may persist. Moreover, patients eligible for 

chemotherapy generally exhibit superior overall health and 

physiological reserve, whereas those not receiving treatment often 

present with more severe disease or comorbidities, conferring 

higher intrinsic thrombotic risk. Additionally, patients undergoing 

chemotherapy are frequently managed within tertiary care 

centers, benefiting from structured perioperative assessment and 

thromboprophylactic protocols, which may further mitigate 

thrombotic events. Collectively, these observations suggest that 

the relationship between chemotherapy and thrombotic risk is 
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more nuanced than traditionally perceived, warranting further 

exploration in larger, prospective studies incorporating detailed 

therapeutic and management data. In this study, we implemented 

10-fold cross-validation and incorporated an external validation 

cohort to attenuate the risk of model overfitting. Nonetheless, the 

relatively limited sample size imposes intrinsic constraints, leaving 

residual concerns regarding potential overfitting. Furthermore, the 

model’s sensitivity, F1 score, and external validation outcomes 

suggest that its clinical utility for the early identification of high- 

risk patients remains somewhat circumscribed. Future 

investigations will aim to substantiate the model’s generalizability 

and practical applicability through validation in larger, 

prospective cohorts. To enhance the transparency and 

interpretability of our machine learning framework, we applied 

the SHAP methodology. SHAP rigorously quantifies the 

individual contribution of each feature to model predictions, 

thereby elucidating the decision-making process and fostering 

clinician trust and acceptance. However, despite offering valuable 

local interpretability, SHAP and analogous post hoc explanation 

tools remain inherently complementary to black-box models and 

possess intrinsic constraints. Machine learning algorithms, 

particularly those employing deep learning architectures, continue 

to be perceived as opaque “black boxes” due to their complexity 

and inscrutable internal mechanics (47, 48). This opacity may 

undermine clinical confidence in model outputs, impeding their 

translation into routine medical practice. Accordingly, advancing 

model interpretability is imperative to facilitate broader 

acceptance and practical deployment in clinical settings. Future 

research should prioritize the development of inherently 

transparent and interpretable model architectures to bolster the 

reliability and efficacy of clinical applications. Moreover, certain 

potential risk factors—such as genetic predispositions, molecular 

biomarkers, and lifestyle factors—were not comprehensively 

included, indicating avenues for future inquiry. In this study, the 

prevalence of DVT was approximately 9.35%, re-ecting a notable 

class imbalance. Although techniques such as SMOTE, 

undersampling, or class weighting were not employed, the 

inherent robustness of XGBoost and Random Forest models to 

imbalanced data mitigated some related challenges. Furthermore, 

the use of stratified sampling in conjunction with 10-fold cross- 

validation enhanced model stability and generalizability. The lack 

of dedicated imbalance correction methods may have 

compromised the performance of models such as SVM and KNN 

in accurately identifying minority class instances, representing a 

limitation of this study. Future investigations will explore the 

integration of SMOTE, class weighting, and other approaches to 

systematically assess their in-uence on model efficacy.

In summary, the XGBoost-based machine learning model 

developed herein constitutes a powerful, interpretable, and 

clinically actionable tool for individualized prediction of lower 

extremity DVT risk among patients with gastrointestinal 

malignancies. For patients identified as high risk, we provide clear 

delineation of personalized thrombosis probabilities alongside the 

principal contributory factors, thereby fostering patient 

comprehension of risk magnitude while emphasizing that this 

represents a risk stratification rather than a diagnostic conclusion— 

ultimately facilitating early prevention and management. Looking 

ahead, we intend to embed the XGBoost prediction model within 

electronic medical record (EMR) systems to enable real-time risk 

assessment and alerting of high-risk individuals, thereby 

empowering clinicians to devise precise, tailored prophylactic 

strategies. By elucidating perioperative and oncologic risk 

determinants within the conceptual framework of Virchow’s triad, 

this model holds substantial promise for refining perioperative risk 

stratification, guiding targeted preventive interventions, and 

ultimately enhancing patient outcomes through precision medicine.

Conclusion

This study rigorously assessed the predictive capabilities of 

four leading machine learning algorithms for lower extremity 

DVT risk, grounded in multidimensional clinical data, 

ultimately designating XGBoost as the superior model. 

Leveraging SHAP analysis, the model affords individualized 

interpretability of its predictions. It exhibited exceptional 

discriminatory accuracy in stratifying high- vs. low-risk patients, 

coupled with robust generalizability, stability, and marked utility 

in clinical decision-making. Importantly, the model 

demonstrates substantial translational potential in postoperative 

management, oncologic risk evaluation, and tailored 

thromboprophylaxis. Moreover, the investigation elucidated 

surgery, prolonged immobilization, central venous 

catheterization, radiotherapy, distant tumor metastasis, and 

chemotherapy as pivotal contributors to DVT pathogenesis, 

thereby enriching the mechanistic insight into thrombogenesis.
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