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Background: Intraoperative ultrasonography (iUS) is a powerful technology that
is being increasingly utilized for brain tumour surgery. However,
ultrasonography has been documented to be observer dependent in a range
of healthcare settings. Here we objectively assess the degree of inter-
observer variability in iUS for brain tumour surgery.

Methods: Nine images taken from routinely collected iUS videos from brain
tumour surgery were presented to 18 neurosurgeons (5 consultants, 7 senior
fellows, 6 residents). This included three tumour types [metastasis, high-grade
(HGG) and low-grade glioma (LGG)] at three operative stages (before, during
and near resection completion). Using 3D Slicer, observers segmented what
they deemed to be tumour. Digital Image Correlation Engine Similarity
Coefficients (DSC) were calculated to examine inter-observer variability.
Results: A total of 1,377 DSCs were calculated between 18 observers across 9
images. Metastasis had the highest DSC (0.72 + 0.32), followed by HGG
(0.64 + 0.33) and LGG (0.58 + 0.25; p <0.00001). As the resection progressed,
the degree of inter-observer agreement broke down. Before resection the
DSC was 0.87+0.11; during resection (0.74+0.17) and at completion
(0.32+0.27; p<0.00001). The trend of decreasing agreement as the
resection progressed held across tumour types. Observers reported increasing
difficulty with iUS interpretation as the resection proceeded and there was
statistically significant (p = 0.014) negative correlation (—0.775) between DSC
and difficulty rating of the segmentation.

Conclusion: Here we demonstrate significant inter-observer variability in iUS for
brain tumour surgery. The degree of variability is tumour-type and operative
stage dependent. This work adds weight to the value of building machine
learning augmented iUS for brain tumour surgery.
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Introduction

Intraoperative ultrasonography (iUS) is a powerful technology
that is increasingly being utilized to support surgical resection of
brain tumours. iUS has several benefits compared to other intra-
operative imaging modalities such as intraoperative MRI
including: real-time visualisation of the tumour, more readily
available and cost efficient to implement. Importantly, it is also
easily integrated into surgical work-flows and does not increase
operative time as significantly as intra-operative MRI (1).
Synthesis of the literature points towards iUS enhancing glioma
extent of resection which is an important determinant of
improved survival (2, 3). Though point-of-care ultrasonography
(performed and interpreted by the treating clinician at bedside)
is user-friendly, there are learning curves for the psychomotor
skills required and image interpretation (4).

There is evidence of variable inter-observer agreement in
interpreting ultrasound images from different organs including
thyroid, pelvic, musculoskeletal and lung examinations (5-9).
Interpreting iUS images in brain tumour surgery is complicated
by posterior enhancement of the floor of the resection cavity
(10). A study examining agreement across 30 brain tumour iUS
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images found moderate levels of inter-observer variance (11).
Importantly, this study did not examine the impact of operative
stage on segmenting iUS images. This is a limitation as the most
difficult and important point to interpret iUS images and near
the end of tumour resection when the surgeon is using
ultrasound to help assist identifying residual tumour. Our study
aims to evaluate the degree of inter-observer agreement between
a group of neurosurgeons in interpreting iUS images from three
different brain tumours and across three operative stages.

Methods

A total of nine anonymized representative iUS images were
captured from three procedures (Figure 1). The GE healthcare
bk5000 ultrasound device was utilized. The iUS images were
optimised by the operating surgeon (NB) across 3 parameters:
frequency (5-13 MHz), depth (10-80 mm) and gain. The images
included a histologically confirmed high grade glioma (HGG),
low grade glioma (LGG) and brain metastasis. We chose the
commonest intra-axial tumours treated surgically in our
department with a known span of margin ambiguity. During

Before

FIGURE 1

Intra-operative B-mode ultrasound images from three tumour types across three stages of surgery.
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each procedure, images were captured at three stages: before
tumour resection, during resection and near completion of
resection. A total of 18 neurosurgeons participated in the study.
First, participants completed a survey detailing their grade
(attending, fellow or resident) and their experience with using
intra-operative ultrasonography for brain tumour surgery (<10
cases; 10-25 cases; 25-50 cases or >50 cases). Using 3D Slicer,
participants were invited to draw around (segment) what they
believed was tumour in the nine images. Participants were
supported with the use of 3D Slicer by members of the research
team (AJ, JW, OS). Participants were free to decide how many
the
participant also rated how difficult they found the segmentation

areas to segment, including none. For each image,
on a Likert scale from 1 (very easy) to 10 (very hard). Ethical
approval was waived for this study as it used anonymised
images captured as part of routine practice and involved

voluntary participation by neurosurgeons.

Statistical analysis

Using Python through the ChatGPT Data Analyst interface,
segmentations were converted into binary masks and then
analysed using the Digital Image Correlation Engine Similarity
Coefficient (DSC) which measures the similarity between two
images by comparing pixel patterns (12). DSC range from 0 to 1
with segmentations that are perfectly aligned getting a score of 1
and segmentations that are not aligned at all getting a score of
0. For each image, every observer was compared against the
other, producing a DSC for each comparison. In this study, a
total of 153 DSCs were calculated for each image across the 18
participants. Heat maps were created for each image by
converting the binary masks into arrays and allocating each
pixel an aggregate score based upon whether it was incorporated
within the segmented tumour. Each pixel could have a score
ranging from 0 (all participants deemed this pixel not to be
tumour) to 18 (all participants deemed this pixel to be tumour).
The following colour code was then allocated to the pixels based
on their aggregate score: green (15-18), red (4-14) and white
(0-4). This heatmap was made transparent and then overlaid
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onto the original iUS image. Comparisons between the stages of
surgery and tumour type were performed with the Kruskal-
Wallis test with Dunn’s multiple comparisons test. Correlation
between the average difficulty ratings and DSCs for the 9 iUS
images was performed using Spearman’s correlation.
Comparisons between high and low experience surgeons across
tumour type and operation stage was performed using two-way
ANOVA with Tukey multiple comparisons test. Statistical
analysis and graphical visualisation were conducted using

R through the BioRender interface.

Results

A total of 18 neurosurgeons participated in the study
including 5 attendings, 7 fellows and 6 residents. From this
group, a total of 1,377 DSCs were calculated across the 9 iUS
images. Metastasis had the highest DSC (0.72 +0.32), followed
by HGG (0.64£0.33) and then LGG (0.58 £0.25; p <0.00001)
(Figure 2A). As the resection progressed, the degree of inter-
observer agreement broke down. Before resection the DSC was
0.871 +0.105; during resection (0.74 +0.174) and at completion
(0.32+£0.270; p<0.00001) (Figure 2B).
increasing difficulty with iUS interpretation as the resection

Observers reported

proceeded and there was statistically significant (p=0.014)
negative correlation (—0.775) between DSC and difficulty rating
of the segmentation (Figure 2C). The trend of decreasing
agreement as the resection progressed held across tumour types.
It was most pronounced in HGG where there was a near
complete breakdown of agreement in the resection cavity
(0.26 £ 0.28) (Figure 3). Heats maps for the iUS demonstrated
the spatial variation in observer agreement across the tumour
types and stages of surgery (Figure 4). It shows decreasing
agreement as the resection proceeds particularly within the
margins of the resection cavity near the end of the resection.
From the 18 participants, there were 5 observes who were highly
experienced with iUS (>50 cases) and 6 observers with low
experience (<10 cases). There was no significant difference in
DSCs between the high and low experience observers across the
tumour types and stages of surgery.

A B
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FIGURE 3
Tumour-specific comparison of DSC across three stages of surgery

Before

FIGURE 4

Spatial heat maps of observer agreement across 9 iUS images (green >80% agreement; red 20%—-79% agreement).

Discussion

In this study, we report the an assessment of inter-observer
agreement in interpreting iUS images from brain tumour surgery.
We found that inter-observer agreement was both tumour-type
and operation-stage dependent. Agreement was strongest for brain
metastases and then diminished for diffuse primary brain tumours.
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Also, agreement started strong before the surgical resection
commenced but broke down as the surgery proceeded. When we
conducted 2D spatial analysis, we found that the breakdown in
agreement was most marked at the base of the resection cavity.
Extent of resection is an important factor in improving survival in
patients with brain tumours (17, 18). A range of technologies have
been introduced to support neurosurgeons to enhance the extent
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of resection during brain tumour surgery including fluorescence-
guided surgery, intra-operative MRI and optical neuro-navigation
(13). Ultrasonography is part of this armamentarium and there is
evidence that its use can improve extent of resection (2, 3).
However, iUS is user dependent as it requires real-time subjective
interpretation of images. This is particularly relevant in brain
tumour surgery, as interpretation of the surgical cavity margins is
important in supporting intra-operative decision-making to extend
the resection or not.

Inter-observer agreement in
ultrasonography

Broadly, there is good inter-observer agreement in the use of
ultrasonography in medicine (5, 14, 15). However, this agreement
can be variable and starts to breakdown for certain measurements
and assessments. A study examining interpretation of thyroid
nodule ultrasound images found that there was strong agreement
on determining nodule calcification and vascularity but moderate
agreement on the nodule shapes and margins (5). This variability
in agreement based on the assessed parameters is important,
particularly in the context of iUS for brain tumour surgery. Given
the importance of extent of resection and the interpretation of
tumour margins, our study was specifically designed to probe the
question of agreement at the resection cavity margins.
Interpreting these images is notoriously difficult due to the
phenomenon known as posterior wall acoustic enhancement
(PAE) (10). PAE often appears beneath fluid-filled structures like
cysts as fluid attenuates ultrasound less than solid tissue, creating
stronger echoes and higher echogenicity. This can complicate
differentiation between residual tumour and PAE at the base of
resection cavities. Chacko and colleagues took samples from
resection cavities and found the sensitivity of iUS in detecting
tumour at the tumour-brain interface was 97.1%, however its
specificity was lower at 53.6% (16). The high false positive rate is
likely related to PAE and hyperechoic clot. A novel approach to
minimise PAE is to use a coupling fluid designed to have an
attenuation coefficient similar to brain tissue which helps reduce
the enhancement artifacts caused by saline solutions typically
used in resection cavities (19). The difference in DSC between
tumour types is interesting and relates to differing echogenic
signal of each tumour. Metastases and HGG usually appear more
hyperechoic, irregular, and well-circumscribed on iUS, often with
hypoechoic necrotic areas and hyperechoic oedema, whereas LGG
are typically iso- to mildly hyperechoic with less distinct margin
(10). This distinction makes it easier to segment metastases and
HGG compared to LGG which is supported by our study.

Role of experience in inter-observer
agreement

The experience of observers has been shown to improve inter-

observer agreement in MRI (20). The theory behind this is that
experienced observers coalesce around an accurate diagnosis

Frontiers in Surgery

10.3389/fsurg.2025.1679617

compared to less experienced observers where is a higher chance
of random or incorrect interpretations. Our study found that there
was no significant difference between the observers based on their
experience. The ultrasound literature has shown conflicting
findings on the impact of experience on inter-observer agreement.
A study examining transvaginal ultrasound for local staging of
cervical cancer found that experience improved observer agreement
for only one of three measured metrics (21). Conversely, the Swiss
and Rheumatism (SONAR) group
developed a semi-quantitative score for synovitis and erosion in

Sonography in Arthritis

Rheumatoid Arthritis and found that the experience of the
(22). The
explanation for the variability in these findings may be related to

sonographer  substantially improved agreement
the highly user dependent nature of ultrasound. Given raters
would need to position the ultrasound probe to generate the image
for interpretation, this adds a further layer of variability which may
impact the degree of agreement. This may provide an explanation
for why we did not identify differences between low and high
experience observers. Experienced observers would manipulate the
ultrasound probe in a way that helps them identify residual
tumour and this important facet of experience is lost when using

still images which are more open to random interpretation.

Future directions

Artificial intelligence is playing an increasing large role in
neurosurgery. This spans improving surgical workflows, real-
time monitoring and diagnosis, outcome prediction, volumetric
assessment, and neurosurgical education (23-25). One approach
to address this agreement gap in iUS, is to take a quantitative
approach to interpreting the ultrasound images. Basic image
analysis techniques for iUS for brain tumour surgery showed
that pixel brightness correlated with histological features (26).
More recently, machine learning approaches have been utilised
for both real-time tumour differentiation and histological and
(27-29).
characterized quantitative texture analysis in B-mode and

molecular  diagnosis Cepeda and colleagues
elastography which was found to be significantly associated with
overall survival (30). More recently, a multicentre study using
the brain tumour intraoperative ultrasound database (BraTioUS)
demonstrated the feasibility of a convolutional neural network

(CNN) model for glioma segmentation (31).

Limitations

The study had several limitations. The main limitation was
that we did not have a ground truth to compare the observers’
segmentations to. This could have included histological biopsies
that were correlated to the iUS images to help determine what
was truly tumour and what was not in the image. Secondly, the
experimental design differed from routine practice with static
images presented to the observer to interpret. This is different
to real life situations where surgeons can move the probe to get
real-time feedback which can help with interpreting the iUS
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images. Finally, our study included 9 images which is less
compared to other studies in the literature (11). We optimised
the study to maximise the number of observers and collected
responses from 18 neurosurgeons which is a major strength of
the study.

Conclusions

This study demonstrates that inter-observer agreement in
interpreting iUS images during brain tumour surgery varies
significantly by tumour type and resection stage. The findings
underscore the challenges of accurately interpreting tumour
margins, particularly in the resection cavity. While experience
did not significantly impact agreement, the study highlights the
need for quantitative approaches using machine learning to
improve consistency and accuracy in iUS interpretation for
brain tumour surgery.
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