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Background: Intraoperative ultrasonography (iUS) is a powerful technology that 

is being increasingly utilized for brain tumour surgery. However, 

ultrasonography has been documented to be observer dependent in a range 

of healthcare settings. Here we objectively assess the degree of inter- 

observer variability in iUS for brain tumour surgery.

Methods: Nine images taken from routinely collected iUS videos from brain 

tumour surgery were presented to 18 neurosurgeons (5 consultants, 7 senior 

fellows, 6 residents). This included three tumour types [metastasis, high-grade 

(HGG) and low-grade glioma (LGG)] at three operative stages (before, during 

and near resection completion). Using 3D Slicer, observers segmented what 

they deemed to be tumour. Digital Image Correlation Engine Similarity 

Coefficients (DSC) were calculated to examine inter-observer variability.

Results: A total of 1,377 DSCs were calculated between 18 observers across 9 

images. Metastasis had the highest DSC (0.72 ± 0.32), followed by HGG 

(0.64 ± 0.33) and LGG (0.58 ± 0.25; p < 0.00001). As the resection progressed, 

the degree of inter-observer agreement broke down. Before resection the 

DSC was 0.87 ± 0.11; during resection (0.74 ± 0.17) and at completion 

(0.32 ± 0.27; p < 0.00001). The trend of decreasing agreement as the 

resection progressed held across tumour types. Observers reported increasing 

difficulty with iUS interpretation as the resection proceeded and there was 

statistically significant (p = 0.014) negative correlation (−0.775) between DSC 

and difficulty rating of the segmentation.

Conclusion: Here we demonstrate significant inter-observer variability in iUS for 

brain tumour surgery. The degree of variability is tumour-type and operative 

stage dependent. This work adds weight to the value of building machine 

learning augmented iUS for brain tumour surgery.
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Introduction

Intraoperative ultrasonography (iUS) is a powerful technology 

that is increasingly being utilized to support surgical resection of 

brain tumours. iUS has several benefits compared to other intra- 

operative imaging modalities such as intraoperative MRI 

including: real-time visualisation of the tumour, more readily 

available and cost efficient to implement. Importantly, it is also 

easily integrated into surgical work-%ows and does not increase 

operative time as significantly as intra-operative MRI (1). 

Synthesis of the literature points towards iUS enhancing glioma 

extent of resection which is an important determinant of 

improved survival (2, 3). Though point-of-care ultrasonography 

(performed and interpreted by the treating clinician at bedside) 

is user-friendly, there are learning curves for the psychomotor 

skills required and image interpretation (4).

There is evidence of variable inter-observer agreement in 

interpreting ultrasound images from different organs including 

thyroid, pelvic, musculoskeletal and lung examinations (5–9). 

Interpreting iUS images in brain tumour surgery is complicated 

by posterior enhancement of the %oor of the resection cavity 

(10). A study examining agreement across 30 brain tumour iUS 

images found moderate levels of inter-observer variance (11). 

Importantly, this study did not examine the impact of operative 

stage on segmenting iUS images. This is a limitation as the most 

difficult and important point to interpret iUS images and near 

the end of tumour resection when the surgeon is using 

ultrasound to help assist identifying residual tumour. Our study 

aims to evaluate the degree of inter-observer agreement between 

a group of neurosurgeons in interpreting iUS images from three 

different brain tumours and across three operative stages.

Methods

A total of nine anonymized representative iUS images were 

captured from three procedures (Figure 1). The GE healthcare 

bk5000 ultrasound device was utilized. The iUS images were 

optimised by the operating surgeon (NB) across 3 parameters: 

frequency (5–13 MHz), depth (10–80 mm) and gain. The images 

included a histologically confirmed high grade glioma (HGG), 

low grade glioma (LGG) and brain metastasis. We chose the 

commonest intra-axial tumours treated surgically in our 

department with a known span of margin ambiguity. During 

FIGURE 1 

Intra-operative B-mode ultrasound images from three tumour types across three stages of surgery.
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each procedure, images were captured at three stages: before 

tumour resection, during resection and near completion of 

resection. A total of 18 neurosurgeons participated in the study. 

First, participants completed a survey detailing their grade 

(attending, fellow or resident) and their experience with using 

intra-operative ultrasonography for brain tumour surgery (<10 

cases; 10–25 cases; 25–50 cases or >50 cases). Using 3D Slicer, 

participants were invited to draw around (segment) what they 

believed was tumour in the nine images. Participants were 

supported with the use of 3D Slicer by members of the research 

team (AJ, JW, OS). Participants were free to decide how many 

areas to segment, including none. For each image, the 

participant also rated how difficult they found the segmentation 

on a Likert scale from 1 (very easy) to 10 (very hard). Ethical 

approval was waived for this study as it used anonymised 

images captured as part of routine practice and involved 

voluntary participation by neurosurgeons.

Statistical analysis

Using Python through the ChatGPT Data Analyst interface, 

segmentations were converted into binary masks and then 

analysed using the Digital Image Correlation Engine Similarity 

Coefficient (DSC) which measures the similarity between two 

images by comparing pixel patterns (12). DSC range from 0 to 1 

with segmentations that are perfectly aligned getting a score of 1 

and segmentations that are not aligned at all getting a score of 

0. For each image, every observer was compared against the 

other, producing a DSC for each comparison. In this study, a 

total of 153 DSCs were calculated for each image across the 18 

participants. Heat maps were created for each image by 

converting the binary masks into arrays and allocating each 

pixel an aggregate score based upon whether it was incorporated 

within the segmented tumour. Each pixel could have a score 

ranging from 0 (all participants deemed this pixel not to be 

tumour) to 18 (all participants deemed this pixel to be tumour). 

The following colour code was then allocated to the pixels based 

on their aggregate score: green (15–18), red (4–14) and white 

(0–4). This heatmap was made transparent and then overlaid 

onto the original iUS image. Comparisons between the stages of 

surgery and tumour type were performed with the Kruskal– 

Wallis test with Dunn’s multiple comparisons test. Correlation 

between the average difficulty ratings and DSCs for the 9 iUS 

images was performed using Spearman’s correlation. 

Comparisons between high and low experience surgeons across 

tumour type and operation stage was performed using two-way 

ANOVA with Tukey multiple comparisons test. Statistical 

analysis and graphical visualisation were conducted using 

R through the BioRender interface.

Results

A total of 18 neurosurgeons participated in the study 

including 5 attendings, 7 fellows and 6 residents. From this 

group, a total of 1,377 DSCs were calculated across the 9 iUS 

images. Metastasis had the highest DSC (0.72 ± 0.32), followed 

by HGG (0.64 ± 0.33) and then LGG (0.58 ± 0.25; p < 0.00001) 

(Figure 2A). As the resection progressed, the degree of inter- 

observer agreement broke down. Before resection the DSC was 

0.871 ± 0.105; during resection (0.74 ± 0.174) and at completion 

(0.32 ± 0.270; p < 0.00001) (Figure 2B). Observers reported 

increasing difficulty with iUS interpretation as the resection 

proceeded and there was statistically significant (p = 0.014) 

negative correlation (−0.775) between DSC and difficulty rating 

of the segmentation (Figure 2C). The trend of decreasing 

agreement as the resection progressed held across tumour types. 

It was most pronounced in HGG where there was a near 

complete breakdown of agreement in the resection cavity 

(0.26 ± 0.28) (Figure 3). Heats maps for the iUS demonstrated 

the spatial variation in observer agreement across the tumour 

types and stages of surgery (Figure 4). It shows decreasing 

agreement as the resection proceeds particularly within the 

margins of the resection cavity near the end of the resection. 

From the 18 participants, there were 5 observes who were highly 

experienced with iUS (>50 cases) and 6 observers with low 

experience (<10 cases). There was no significant difference in 

DSCs between the high and low experience observers across the 

tumour types and stages of surgery.

FIGURE 2 

Comparison of DSC between the three tumour types (A) between the three stages of surgery (B) and correlation between DSC and difficulty rating (C).
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Discussion

In this study, we report the an assessment of inter-observer 

agreement in interpreting iUS images from brain tumour surgery. 

We found that inter-observer agreement was both tumour-type 

and operation-stage dependent. Agreement was strongest for brain 

metastases and then diminished for diffuse primary brain tumours. 

Also, agreement started strong before the surgical resection 

commenced but broke down as the surgery proceeded. When we 

conducted 2D spatial analysis, we found that the breakdown in 

agreement was most marked at the base of the resection cavity. 

Extent of resection is an important factor in improving survival in 

patients with brain tumours (17, 18). A range of technologies have 

been introduced to support neurosurgeons to enhance the extent 

FIGURE 3 

Tumour-specific comparison of DSC across three stages of surgery.

FIGURE 4 

Spatial heat maps of observer agreement across 9 iUS images (green >80% agreement; red 20%–79% agreement).
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of resection during brain tumour surgery including %uorescence- 

guided surgery, intra-operative MRI and optical neuro-navigation 

(13). Ultrasonography is part of this armamentarium and there is 

evidence that its use can improve extent of resection (2, 3). 

However, iUS is user dependent as it requires real-time subjective 

interpretation of images. This is particularly relevant in brain 

tumour surgery, as interpretation of the surgical cavity margins is 

important in supporting intra-operative decision-making to extend 

the resection or not.

Inter-observer agreement in 
ultrasonography

Broadly, there is good inter-observer agreement in the use of 

ultrasonography in medicine (5, 14, 15). However, this agreement 

can be variable and starts to breakdown for certain measurements 

and assessments. A study examining interpretation of thyroid 

nodule ultrasound images found that there was strong agreement 

on determining nodule calcification and vascularity but moderate 

agreement on the nodule shapes and margins (5). This variability 

in agreement based on the assessed parameters is important, 

particularly in the context of iUS for brain tumour surgery. Given 

the importance of extent of resection and the interpretation of 

tumour margins, our study was specifically designed to probe the 

question of agreement at the resection cavity margins. 

Interpreting these images is notoriously difficult due to the 

phenomenon known as posterior wall acoustic enhancement 

(PAE) (10). PAE often appears beneath %uid-filled structures like 

cysts as %uid attenuates ultrasound less than solid tissue, creating 

stronger echoes and higher echogenicity. This can complicate 

differentiation between residual tumour and PAE at the base of 

resection cavities. Chacko and colleagues took samples from 

resection cavities and found the sensitivity of iUS in detecting 

tumour at the tumour-brain interface was 97.1%, however its 

specificity was lower at 53.6% (16). The high false positive rate is 

likely related to PAE and hyperechoic clot. A novel approach to 

minimise PAE is to use a coupling %uid designed to have an 

attenuation coefficient similar to brain tissue which helps reduce 

the enhancement artifacts caused by saline solutions typically 

used in resection cavities (19). The difference in DSC between 

tumour types is interesting and relates to differing echogenic 

signal of each tumour. Metastases and HGG usually appear more 

hyperechoic, irregular, and well-circumscribed on iUS, often with 

hypoechoic necrotic areas and hyperechoic oedema, whereas LGG 

are typically iso- to mildly hyperechoic with less distinct margin 

(10). This distinction makes it easier to segment metastases and 

HGG compared to LGG which is supported by our study.

Role of experience in inter-observer 
agreement

The experience of observers has been shown to improve inter- 

observer agreement in MRI (20). The theory behind this is that 

experienced observers coalesce around an accurate diagnosis 

compared to less experienced observers where is a higher chance 

of random or incorrect interpretations. Our study found that there 

was no significant difference between the observers based on their 

experience. The ultrasound literature has shown con%icting 

findings on the impact of experience on inter-observer agreement. 

A study examining transvaginal ultrasound for local staging of 

cervical cancer found that experience improved observer agreement 

for only one of three measured metrics (21). Conversely, the Swiss 

Sonography in Arthritis and Rheumatism (SONAR) group 

developed a semi-quantitative score for synovitis and erosion in 

Rheumatoid Arthritis and found that the experience of the 

sonographer substantially improved agreement (22). The 

explanation for the variability in these findings may be related to 

the highly user dependent nature of ultrasound. Given raters 

would need to position the ultrasound probe to generate the image 

for interpretation, this adds a further layer of variability which may 

impact the degree of agreement. This may provide an explanation 

for why we did not identify differences between low and high 

experience observers. Experienced observers would manipulate the 

ultrasound probe in a way that helps them identify residual 

tumour and this important facet of experience is lost when using 

still images which are more open to random interpretation.

Future directions

Artificial intelligence is playing an increasing large role in 

neurosurgery. This spans improving surgical work%ows, real- 

time monitoring and diagnosis, outcome prediction, volumetric 

assessment, and neurosurgical education (23–25). One approach 

to address this agreement gap in iUS, is to take a quantitative 

approach to interpreting the ultrasound images. Basic image 

analysis techniques for iUS for brain tumour surgery showed 

that pixel brightness correlated with histological features (26). 

More recently, machine learning approaches have been utilised 

for both real-time tumour differentiation and histological and 

molecular diagnosis (27–29). Cepeda and colleagues 

characterized quantitative texture analysis in B-mode and 

elastography which was found to be significantly associated with 

overall survival (30). More recently, a multicentre study using 

the brain tumour intraoperative ultrasound database (BraTioUS) 

demonstrated the feasibility of a convolutional neural network 

(CNN) model for glioma segmentation (31).

Limitations

The study had several limitations. The main limitation was 

that we did not have a ground truth to compare the observers’ 

segmentations to. This could have included histological biopsies 

that were correlated to the iUS images to help determine what 

was truly tumour and what was not in the image. Secondly, the 

experimental design differed from routine practice with static 

images presented to the observer to interpret. This is different 

to real life situations where surgeons can move the probe to get 

real-time feedback which can help with interpreting the iUS 
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images. Finally, our study included 9 images which is less 

compared to other studies in the literature (11). We optimised 

the study to maximise the number of observers and collected 

responses from 18 neurosurgeons which is a major strength of 

the study.

Conclusions

This study demonstrates that inter-observer agreement in 

interpreting iUS images during brain tumour surgery varies 

significantly by tumour type and resection stage. The findings 

underscore the challenges of accurately interpreting tumour 

margins, particularly in the resection cavity. While experience 

did not significantly impact agreement, the study highlights the 

need for quantitative approaches using machine learning to 

improve consistency and accuracy in iUS interpretation for 

brain tumour surgery.
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