

OPEN ACCESS

EDITED BY Simona Censi, University of Padua, Italy

REVIEWED BY
Gian Luigi Canu,
University of Cagliari, Italy
Claudio Casella,
University of Brescia, Italy
Eleonora Lori,
Sapienza University of Rome, Italy

*CORRESPONDENCE
Marco Marcianò

☑ mm.94@hotmail.it
Bianca Vicari
☑ biancavicari99@gmail.com

RECEIVED 09 August 2025 ACCEPTED 24 September 2025 PUBLISHED 20 October 2025

CITATION

Marcianò M, Vicari B, Orlando G, Melfa G, Campo I, Salamone G and Scerrino G (2025) Unexpected late-onset bleeding following thyroid surgery: case report and review of the literature.

Front. Surg. 12:1682888. doi: 10.3389/fsurg.2025.1682888

COPYRIGHT

© 2025 Marcianò, Vicari, Orlando, Melfa, Campo, Salamone and Scerrino. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Unexpected late-onset bleeding following thyroid surgery: case report and review of the literature

Marco Marcianò*, Bianca Vicari*, Giuseppina Orlando, Giuseppina Melfa, Isabella Campo, Giuseppe Salamone and Gregorio Scerrino

MEPRECC "Medicina di Precisione in Area Medica, Chirurgica e Critica", University of Palermo, Palermo, Italy

Postoperative hematoma is an uncommon but potentially life-threatening and unpredictable complication of thyroid surgery. We report a case of very late postoperative bleeding occurring on the eighth postoperative day (POD) in a patient undergoing right lobe thyroidectomy who had restarted antiplatelet therapy since the first POD. The patient was readmitted to the emergency department with complaints of progressive anterior neck swelling and bleeding from the wound but without respiratory distress. Under general anesthesia, cervical reexploration allowed the detection of a hematoma situated in the right thyroid bed and subhyoid region and active bleeding of the superior thyroid vascular pedicle. Although most bleeding occurs within 24 h, caution should be taken in patients who are in need of antiplatelet therapy, and close monitoring should also be advised at home after discharge.

KEYWORDS

hematoma, thyroidectomy, complications, antiplatelet therapy, case report

Introduction

Postoperative hematoma is a rare but potentially life-threatening and unpredictable complication of thyroid surgery (1-7). Its incidence is variably reported in the literature, ranging between 0.1% and 6.5%, but in major centers, it is commonly reported to be approximately 1% (1, 2, 6, 8-10). In our department, where > 150 thyroidectomies are performed per year, the incidence of postoperative bleeding in our case series is 0.7% (Scerrino et al. 2024, unpublished data).

However, identifying perioperative risk factors for the development of postoperative hemorrhage or hematoma after thyroidectomy is not really simple (7, 11, 12). Postoperative hematoma may have a multifactorial pathogenesis, including slipping of ligatures or clips, reopening of previously cauterized veins, and bleeding from residual thyroid parenchyma. Among predisposing factors, retching and bucking during recovery and perioperative increased blood pressure are considered the most significant (2, 4, 12, 13).

Although the length of stay after thyroidectomy is usually short, postoperative bleeding may be the limiting factor for early discharge from the hospital (11). While most hemorrhagic symptoms occur within 6 h after surgery, significant delays in symptoms have also been noted.

Nowadays, it is common to encounter patients on antiplatelet therapy who need surgery. According to guidelines, treatment should be discontinued 5–7 days before surgery and reintroduced 24 h after surgery (14).

Performing thyroid surgery in patients under anticoagulation/ antiplatelet therapy or with coagulopathy would therefore carry a substantial but unavoidable risk of surgical wound bleeding (1).

We report a case of late postoperative bleeding occurring on the eighth postoperative day (POD) in a patient treated with cardioaspirin in secondary prevention.

Patient information

A 58-year-old Caucasian man was referred to our department for surgical management of a toxic multinodular goiter. Surgical intervention was indicated after a routine endocrinological follow-up ultrasound revealed a suspicious nodule in the right thyroid lobe, which underwent fine-needle aspiration biopsy (FNAB) and was classified as TIR3B, according to the SIAPEC 2014 classification of thyroid nodules (15). His past medical history was significant for ischemic heart disease, with a myocardial infarction occurring approximately 5 years earlier, managed with coronary stent placement. He was maintained on chronic antiplatelet therapy with low-dose aspirin, which was discontinued 5 days prior to surgery following a cardiology consultation performed during the preoperative assessment.

Additional comorbidities included well-controlled arterial hypertension managed with an angiotensin-converting enzyme (ACE) inhibitor and hypercholesterolemia treated with a statin. No relevant family or psychiatric history was reported.

Clinical findings

Physical examination revealed a palpable multinodular goiter. Preoperative ultrasound showed a suspicious right lobe nodule, and FNAB reported a TIR3B lesion. Although thyroidectomy was initially indicated, a right hemithyroidectomy with isthmusectomy was performed due to type 2 signal loss detected by the nerve integrity monitor (NIM). During the operation, parathyroid glands were recognized and preserved; moreover, combined bipolar and ultrasound energy-based sealing devices and an adjunctive hemostatic patch (in particular a pad of collagen derived from cattle skin, and a crosslinked coating) were used to ensure an accurate hemostasis. The patient had restarted antiplatelet therapy on the first POD. The immediate postoperative course was uneventful. Specifically, the patient's blood pressure was monitored hourly during the first 4 h after surgery; subsequently, checks were carried out every 8 h for the entire duration of the hospital stay. No hypertensive peaks were observed during any of these checks. However, the patient resumed his normal ACE-inhibitor therapy on the first POD and was discharged on the second POD (as usual in our unit) in good general condition. At discharge, serum calcium was 9 mg/dL [normal range (nr): 8.6–10.2], and serum phosphorus was 3.4 mg/dL (nr: 2.5–4.5). At home, he continued his antiplatelet therapy as prescribed by his referring cardiologist.

Diagnostic assessment

The following 5 days postoperative discharge were characterized by regular wellness; however, on the eighth postoperative day, he was readmitted as an emergency with complaints of progressive anterior neck swelling and bleeding from the wound without respiratory distress (Figure 1). Vigorous coughing, sneezing, or other acute reasons for hemorrhage were not reported by the patient.

Therapeutic intervention

After approximately 2 h of continuous monitoring, during which active bleeding from the wound persisted, progressive cervical edema was observed. Vital signs showed clinical deterioration (SpO $_2$ 85%, non-invasive blood pressure (NIBP) 150/90 mmHg, HR 130 bpm), and the patient was taken to the operating room for emergency surgical intervention on the same day.

Under general anesthesia, cervical exploration was performed, allowing the detection of a hematoma situated in the right thyroid

FIGURE 1
Clinical appearance of the postoperative cervical wound demonstrating significant tumefaction with extensive hemorrhagic infiltration of the surrounding soft tissues and multiple blood clots within the surgical bed. The hematoma leads to visible neck bulging and compressive symptoms, requiring prompt evaluation and intervention.

bed and subhyoid region and an active bleeding of the superior thyroid artery that was arrested by selective ligation. Additional hemostatic control was performed by placing one vial of hemostatic collagen and human thrombin gel (floseal) in the right thyroid bed.

Antiplatelet therapy was restarted 24 h after surgery, and the patient was discharged 2 days after surgery in good condition, without symptoms and without any sign of further bleeding.

Follow-up and outcomes

Histopathological examination of the right thyroid lobe revealed a multifocal, encapsulated classical variant of papillary thyroid carcinoma (WHO 2022 classification), extensively involving almost the entire lobe and the isthmus, with surgical resection margins free of tumor infiltration. In the 20th POD, the complete recovery of right vocal fold motility was observed. In accordance with current clinical guidelines, the patient underwent a complete thyroidectomy 3 months later. Upon readmission, a left lobectomy was performed under ordinary inpatient care; a drain was placed in the thyroid bed and removed on the first postoperative day, and the patient was discharged on the third postoperative day in good condition. Histopathological examination of the left thyroid lobe demonstrated a 4 mm focus of classical variant papillary thyroid carcinoma (WHO 2022), located in the upper third of the lobe, with uninvolved surgical margins. Timeline of the surgical event was summarized in Table 1.

Discussion

Hematoma following thyroid surgery is a rare but potentially life-threatening complication, with a reported rate of 0.1%-4.7% (3, 6, 14).

Meticulous hemostatic techniques are necessary to prevent this complication; coagulation devices and hemostatic agents are currently the most deployed resources among surgeons (2, 16). Recent meta-analytic evidence indicates that energy-based devices outperform conventional clamp-and-tie ligatures in total thyroidectomy, providing more efficient hemostasis in highly vascularized areas and reducing the incidence of transient recurrent laryngeal nerve (RLN) palsy, hypocalcemia, and other

TABLE 1 Timeline.

Date/ event	Details
Day-5	Discontinued cardioaspirin
Day 0	Right hemithyroidectomy with isthmusectomy performed
Day 1	Cardioaspirin restarted
Day 2	Discharged in stable condition
Day 8	Presented with neck swelling and wound bleeding
Day 8	Emergency reoperation: active bleeding from the superior thyroid artery
Day 10	Discharged without complications
3 months later	Completion thyroidectomy performed after carcinoma diagnosis

postoperative complications, including cervical hematoma (17). In line with these findings, a comprehensive review highlighted that postoperative hematoma, which occurs in approximately 0.1%–1.1% of thyroidectomy cases—mostly within the first 6 h—remains a major surgical concern, and that the introduction of advanced bipolar and ultrasonic energy devices has significantly reduced operative time without increasing costs or complication rates (18, 19).

In addition, topical hemostatic agents have been shown to effectively control bleeding during thyroidectomy. A recent study involving 84 patients demonstrated that both oxidized regenerated cellulose (Oxitamp®) and fibrin glue (Tisseel®) provide reliable hemostasis, with fibrin glue exhibiting a more favorable ultrasound profile, thereby minimizing the risk of residual material being misinterpreted as thyroid tissue or tumor recurrence (20). Another randomized study of 155 patients undergoing total thyroidectomy compared Floseal with conventional hemostatic techniques and Tabotamp, reporting that Floseal significantly reduced operative time, enabled earlier drain removal, and shortened postoperative hospital stay, supporting its use as an effective adjunct in thyroid surgery (21). Furthermore, a large multicenter randomized trial of 206 patients demonstrated that the combination of Floseal and an ultrasound scalpel significantly reduced 24 h drain output and operative time compared with standard thyroidectomy, supporting its role as a complementary hemostatic strategy (22).

An increasing number of ambulatory and 1-day surgery thyroidectomies have been performed in the last several years (2). Postoperative bleeding is one of the limiting factors that preclude early discharge (9).

It is not simple to predict the risk of developing a hematoma after thyroid surgery among patients (2). However, some factors that can be associated with a higher risk of bleeding seem to be as follows: male gender, hyperthyroidism, intrathoracic goiters, and reoperative surgery (2, 7, 8, 11, 23, 24). Recent studies have identified key risk factors for postoperative cervical hematoma: in a multicenter cohort of 8,839 patients, male sex, older age, higher body mass index, unilateral lateral neck dissection, drain placement, and shorter operative times were associated with hematoma, which occurred in 3.15% of cases, mostly within 6 h (25). UK registry data similarly highlighted male sex, older age, redo surgery, retrosternal goiter, and total thyroidectomy as significant predictors, although overall bleeding remains difficult to predict (26). In a single-center analysis of 5,900 thyroidectomies, cervical hematoma occurred in 1.1% of patients, with the inferior thyroid artery and superior thyroid vessels as the most common bleeding sources; older age, concurrent lymph node dissection, and chronic lymphocytic thyroiditis were significant contributors (27).

However, one of the most likely causes of bleeding seems to be due to postsurgical hypertension. Therefore, very close monitoring of pressure during the first 24 h after surgery and prompt treatment of all manifestations of hypertension with appropriate drugs are recommended (2). It has also been associated with the administration of anticoagulants or coagulation alterations, such as hemophilia, von Willebrand's disease, and chronic renal failure (2).

The perioperative management of low-dose aspirin (cardioaspirin) in patients undergoing thyroid surgery requires a careful balance between minimizing thromboembolic events and reducing hemorrhagic complications. Current guidelines, such as those from the American College of Cardiology (ACC) and American Heart Association (AHA), recommend continuing low-dose aspirin therapy in patients with coronary artery disease undergoing non-cardiac surgery when the bleeding risk is acceptable to the surgical team. Specifically, for patients with bare-metal stents, it is advised to continue aspirin therapy through the perioperative period unless the surgical bleeding risk is considered too high.

In procedures with elevated bleeding risk, some authors suggest withholding aspirin 5–10 days before surgery (28, 29). Clinical evidence in thyroid surgery suggests that continuing aspirin does not significantly increase the risk of intraoperative or postoperative bleeding, although some studies report no difference in bleeding complications between patients who continue or withhold therapy (30). Therefore, the decision to continue or suspend low-dose aspirin should be individualized, considering the patient's cardiovascular risk, the type of surgery, and collaboration between cardiology and surgical teams is recommended to optimize perioperative management and ensure patient safety (28–30).

However, the decision to continue or discontinue low-dose aspirin should be individualized, considering the patient's cardiovascular risk profile and the specific surgical procedure. In patients undergoing thyroid surgery, particularly those with coronary artery disease or recent stent placement, continuing

low-dose aspirin therapy may be beneficial in preventing thromboembolic events without significantly increasing the risk of bleeding. Collaboration between cardiology and surgical teams is essential to optimize perioperative management and ensure patient safety.

Although many studies only focus on the risk factors of bleeding after thyroid surgery, it is important to also pay attention to the most frequent sources of bleeding, so that more attention can be paid to them during surgery.

According to a study that analyzed multiple cases of reoperation due to bleeding after thyroid surgery, although it is not always possible to identify a precise or single source, the most common are listed in Figure 2. Particularly in our case, the bleeding resulted from a leakage of the superior thyroid artery (thus finding ourselves in 13.1% of all cases) (31).

Paying attention to possible sources of bleeding is very important to prevent the dreaded complications associated with bleeding and reoperation that are summarized in Figure 3 (31).

In conclusion, we can affirm that this clinical case is relevant as the bleeding occurred at home in a period in which such a complication was unpredictable; fortunately, timely treatment led to a resolution without further consequences, even if bleeding appearing so late has a slower evolution.

Adequate patient education is crucial in the context of early or very early discharge following thyroid surgery. Providing clear, structured postoperative instructions, including guidance on recognizing warning signs such as neck swelling, dyspnea, dysphonia, or symptoms of hypocalcemia, is essential to ensure

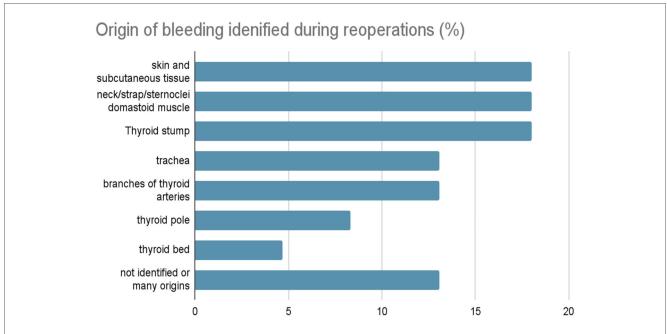
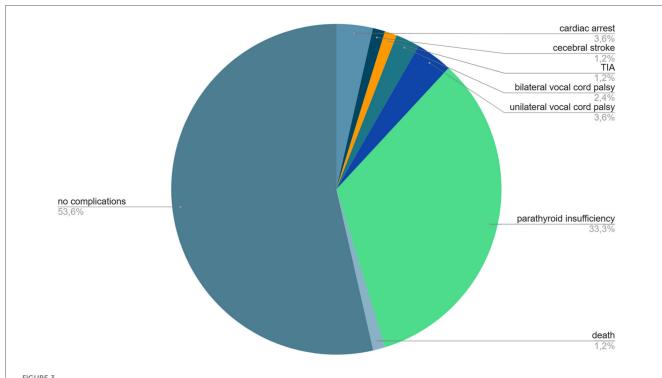



FIGURE 2

Bar chart illustrating the distribution of bleeding sources identified during reoperations for postoperative cervical hematoma following thyroid surgery. The most frequently identified bleeding origins were the skin and subcutaneous tissue, strap and sternocleidomastoid muscles, and the thyroid stump (each accounting for approximately 18%–19% of cases). Bleeding from branches of the thyroid arteries and the trachea was observed in approximately 13%–14% of cases, while the thyroid pole represented approximately 8% and the thyroid bed approximately 5%. In nearly 15% of cases, the bleeding source could not be precisely identified or was attributed to multiple origins.

Distribution of complications related to postoperative bleeding and reoperation following thyroid surgery. Over half of the patients (53.6%) had no complications, while parathyroid insufficiency was the most common adverse outcome (33.3%). Less frequent complications included unilateral (3.6%) and bilateral (2.4%) vocal cord palsy, cardiac arrest (3.6%), cerebrovascular events such as stroke (1.2%) and transient ischemic attack (1.2%), and death (1.2%).

patient safety after discharge. Emphasis should be placed on the potential timing of late complications, such as hematoma formation or hypoparathyroidism, to facilitate prompt medical intervention when necessary. The use of standardized educational materials, combined with effective communication between the surgical team and the patient, can significantly improve postoperative outcomes and reduce the risk of delayed complication detection.

This case illustrates that postoperative hematoma can, in rare circumstances, occur even beyond the first postoperative week. As prolonged hospitalization for all thyroidectomy patients is neither feasible nor justified, the key lesson is the importance of a patient-centered strategy. Such an approach should include thorough risk stratification, extended postoperative observation (at least 6–8 h in outpatient settings), provision of both verbal and written discharge instructions, and individualized perioperative management of antiplatelet therapy. Empowering patients and their caregivers to promptly recognize and act on warning signs is critical to reducing morbidity and mortality associated with delayed bleeding.

In consideration of all the above reasons, we believe that, although most bleeding occurs within 24 h, caution should be taken in patients on oral antiaggregant treatment and close monitoring should be advised at home after discharge, particularly if the therapy has just restarted.

While the primary surgical challenge in thyroidectomy remains the prevention of bleeding, equal emphasis must be placed on strategies to minimize other procedure-related complications, particularly RLN injury. Identification of the laryngeal nerves can be extremely challenging during emergency procedures, especially in operative fields with clots, as in our case. Intraoperative neuromonitoring (IONM) is increasingly employed to preserve the RLN during thyroid and parathyroid surgery. A meta-analysis of eight randomized trials involving 2,521 patients found no statistically significant difference in RLN injury rates between IONM and visual identification, although a trend toward reduced risk with IONM was noted (32). Similarly, a prospective study in high-risk patients reported no significant reduction in RLN injury but demonstrated shorter operative times and reduced hospital stays, supporting its potential cost-effectiveness (33). Overall, anatomical visualization remains the gold standard, while IONM serves as a valuable adjunct in complex or high-risk procedures.

Although uncommon, late bleeding after thyroidectomy has been described in several reports. Calò et al. (34) reported two cases of bleeding on postoperative day 13 in patients treated with low-molecular-weight heparin. Lang et al. (11) analyzed over 5,900 thyroidectomies and found that approximately one-quarter of hematomas occurred >6 h postoperatively, with a minority presenting after 24 h. Burkey et al. (8) and Godballe et al. (24) also included delayed hematomas in their series, while Campbell et al. (35) confirmed that rare events can occur days after discharge. More recently, pseudoaneurysms of the superior thyroid artery have been described as causes of delayed bleeding (19, 36). In addition, randomized trials and observational studies investigating the perioperative management of aspirin

therapy occasionally reported late hematomas as secondary outcomes (29, 30). These reports confirm that delayed postoperative hematoma, though exceptional, is a recognized phenomenon and should be considered in patients undergoing thyroidectomy, particularly those resuming antiplatelet or anticoagulant therapy.

Take-away lesson: Delayed bleeding, although rare, should be considered in thyroidectomy patients resuming antiplatelet therapy. Extended post-discharge monitoring may prevent life-threatening complications.

Patient perspective

"After the surgery, I was feeling well and relieved to return home. When I noticed the swelling and bleeding from the wound several days later, I became very anxious, especially since I had no trouble breathing. I'm grateful for the quick response of the medical team, who explained everything clearly and took immediate action. The second surgery was unexpected, but it went smoothly, and I felt well taken care of. I'm now doing fine and feel reassured knowing the issue was handled promptly. I understand now how important it is to follow up closely, even after you think you're out of the danger zone."

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.

Author contributions

MM: Investigation, Supervision, Software, Conceptualization, Writing – review & editing, Funding acquisition, Writing –

References

- 1. Abboud B, Sleilaty G, Braidy C, Melkane A, Nasr F. Thyroidectomy in patients at high-risk of bleeding: can it be safely performed? *Minerva Chir.* (2009) 64:565–71.
- 2. Calò PG, Pisano G, Piga G, Medas F, Tatti A, Donati M, et al. Postoperative hematoma after thyroid surgery. Incidence and risk factors in our experience. *Ann Ital Chir.* (2010) 81:343–7.
- 3. Chin CJ, Franklin JH, Turner B, Sowerby L, Fung K, Yoo JH. Ketorolac in thyroid surgery: quantifying the risk of hematoma. *J Otolaryngol Head Neck Surg.* (2011) 40:196–9.
- 4. Harding J, Sebag F, Sierra M, Palazzo FF, Henry JF. Thyroid surgery: post-operative hematoma—prevention and treatment. *Langenbecks Arch Surg.* (2006) 391:169–73. doi: 10.1007/s00423-006-0028-6

original draft, Formal analysis, Project administration, Data Methodology, Visualization, curation, BV: Validation, Conceptualization, Resources. Project administration, Data curation, Supervision, Methodology, Writing - original draft, Investigation, Resources, Visualization, Funding acquisition, Formal analysis, Software. GO: Writing review & editing. GM: Writing - review & editing. IC: Writing - review & editing. GSa: Writing - review & editing. GSc: Writing - review & editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence, and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

- 5. Leyre P, Desurmont T, Lacoste L, Odasso C, Bouche G, Beaulieu A, et al. Does the risk of compressive hematoma after thyroidectomy authorize 1-day surgery? *Langenbecks Arch Surg.* (2008) 393:733–7. doi: 10.1007/s00423-008-0362-y
- 6. Morton RP, Mak V, Moss D, Ahmad Z, Sevao J. Risk of bleeding after thyroid surgery: matched pairs analysis. *J Laryngol Otol.* (2012) 126:285–8. doi: 10.1017/S0022215111001460
- 7. Rosenbaum MA, Haridas M, McHenry CR. Life-threatening neck hematoma complicating thyroid and parathyroid surgery. Am J Surg. (2008) 195:339–43. doi: 10.1016/j.amjsurg.2007.12.008
- 8. Burkey SH, Van Heerden JA, Thompson GB, Grant CS, Schleck CD, Farley DR. Reexploration for symptomatic hematomas after cervical exploration. *Surgery*. (2001) 130:914–20. doi: 10.1067/msy.2001.118384

- 9. Promberger R, Ott J, Kober F, Koppitsch C, Seemann R, Freissmuth M, et al. Risk factors for postoperative bleeding after thyroid surgery. *Br J Surg.* (2012) 99:373–9. doi: 10.1002/bjs.7824
- 10. Shaha AR, Jaffe BM. Practical management of post-thyroidectomy hematoma. J Surg Oncol. (1994) 57:235–8. doi: 10.1002/jso.2930570406
- 11. Lang BHH, Yih PCL, Lo CY. A review of risk factors and timing for post-operative hematoma after thyroidectomy: is outpatient thyroidectomy really safe? *World J Surg.* (2012) 36:2497–502. doi: 10.1007/s00268-012-1682-1
- 12. Bononi M, Bonapasta SA, Vari A, Scarpini M, De Cesare A, Miccini M, et al. Incidence and circumstances of cervical hematoma complicating thyroidectomy and its relationship to post-operative vomiting. *Head Neck.* (2010) 32:1173–7. doi: 10.1002/hed.21313
- 13. Lee HS, Lee BJ, Kim SW, Cha YW, Choi YS, Park YH. Patterns of post-thyroidectomy hemorrhage. *Clin Exp Otorhinolaryngol.* (2009) 2:72–7. doi: 10. 3342/ceo.2009.2.2.72
- 14. Halvorsen S, Mehilli J, Cassese S, Hall TS, Abdelhamid M, Barbato E, et al. 2022 ESC guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. *Eur Heart J.* (2022) 43(39):3826–924. doi: 10. 1093/eurhearti/ehac270
- 15. Tartaglia F, Giuliani A, Tromba L, Carbotta S, Karpathiotakis M, Tortorelli G, et al. Fine needle aspiration cytology of 650 thyroid nodules operated for multinodular goiter: a cyto-histological correlation based on the new Italian cytological classification (SIAPEC 2014). *J Biol Regul Homeost Agents*. (2016) 30(4):1187–93.
- 16. Calò PG, Pisano G, Medas F, Tatti A, Tuveri M, Nicolosi A. The use of the harmonic scalpel in thyroid surgery. Our experience. *Ann Ital Chir.* (2012) 83:7–12.
- 17. Cirocchi R, Matteucci M, Lori E, D'Andrea V, Arezzo A, Pironi D, et al. Sutureless FOCUS harmonic scalpel versus clamp-and-tie techniques for thyroidectomy: a meta-analysis of 43 randomized controlled trials. *Int J Surg.* (2024) 110(12):8083–96. doi: 10.1097/JS9.0000000000002113
- 18. Materazzi G, Ambrosini CE, Fregoli L, De Napoli L, Frustaci G, Matteucci V, et al. Prevention and management of bleeding in thyroid surgery. *Gland Surg.* (2017) 6(5):510–5. doi: 10.21037/gs.2017.06.14
- 19. Scerrino G, Richiusa P, Graceffa G, Lori E, Sorrenti S, Paladino NC, et al. Editorial: recent advances in thyroid surgery. *J Clin Med.* (2022) 11(23):7233. doi: 10.3390/jcm11237233
- 20. Dolcetti V, Lori E, Fresilli D, Del Gaudio G, Di Bella C, Pacini P, et al. US evaluation of topical hemostatic agents in post-thyroidectomy. *Cancers (Basel)*. (2023) 15(9):2644. doi: 10.3390/cancers15092644
- 21. Testini M, Marzaioli R, Lissidini G, Lippolis A, Logoluso F, Gurrado A, et al. The effectiveness of FloSeal matrix hemostatic agent in thyroid surgery: a prospective, randomized, control study. *Langenbecks Arch Surg.* (2009) 394(5):837–42. doi: 10.1007/s00423-009-0497-5
- 22. Docimo G, Tolone S, Conzo G, Limongelli P, Del Genio G, Parmeggiani D, et al. A gelatin-thrombin matrix topical hemostatic agent (Floseal) in combination with harmonic scalpel is effective in patients undergoing total thyroidectomy: a prospective, multicenter, single-blind, randomized controlled trial. *Surg Innov.* (2016) 23(1):23–9. doi: 10.1177/1553350615596638
- 23. Calò PG, Pisano G, Medas F, Tatti A, Tuveri M, Nicolosi A. Risk factors in reoperative thyroid surgery for recurrent goitre. *G Chir*. (2012) 33:335–8.

- 24. Godballe C, Madsen AR, Pedersen HB, Sørensen CH, Pedersen U, Frisch T, et al. Post-thyroidectomy hemorrhage: a national study of patients treated at the Danish departments of ENT head and neck surgery. *Eur Arch Otorhinolaryngol.* (2009) 266:1945–52. doi: 10.1007/s00405-009-0949-0
- 25. Canu GL, Medas F, Cappellacci F, Rossi L, Gjeloshi B, Sessa L, et al. Risk factors for postoperative cervical haematoma in patients undergoing thyroidectomy: a retrospective, multicenter, international analysis (REDHOT study). *Front Surg.* (2023) 10:1278696. doi: 10.3389/fsurg.2023.1278696
- 26. Doran HE, Wiseman SM, Palazzo FF, Chadwick D, Aspinall S. Post-thyroidectomy bleeding: analysis of risk factors from a national registry. *Br J Surg.* (2021) 108(7):851–7. doi: 10.1093/bjs/znab015
- 27. De Carvalho AY, Gomes CC, Chulam TC, Vartanian JG, Carvalho GB, Lira RB, et al. Risk factors and outcomes of postoperative neck hematomas: an analysis of 5,900 thyroidectomies performed at a cancer center. *Int Arch Otorhinolaryngol.* (2021) 25(3):e421–7. doi: 10.1055/s-0040-1714129
- 28. Thompson A, Fleischmann KE, Smilowitz NR, de las Fuentes L, Mukherjee D, Aggarwal NR, et al. 2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM guideline for perioperative cardiovascular management for noncardiac surgery. *Circulation*. (2024) 150(19):e351–442. doi: 10.1161/CIR. 0000000000001285
- 29. Raggio BS, Devereaux PJ, Chan MT, Villar JC, McClelland RL, Hsu PY, et al. Preoperative aspirin use and bleeding complications in patients undergoing thyroid surgery. *JAMA Otolaryngol Head Neck Surg.* (2018) 144(3):237–44. doi: 10.1001/jamaoto.2017.3262
- 30. Canu GL, Medas F, Cappellacci F, Giordano ABF, Casti F, Grifoni L, et al. Does the continuation of low-dose acetylsalicylic acid during the perioperative period of thyroidectomy increase the risk of cervical haematoma? A 1-year experience of two Italian centers. *Front Surg.* (2022) 9:1046561. doi: 10.3389/fsurg.2022.1046561
- 31. Wojtczak B, Aporowicz M, Kaliszewski K, Bolanowski M. Consequences of bleeding after thyroid surgery—analysis of 7805 operations performed in a single center. *Arch Med Sci.* (2018) 14(2):329–35. doi: 10.5114/aoms.2016.63004
- 32. Davey MG, Cleere EF, Lowery AJ, Kerin MJ. Intraoperative recurrent laryngeal nerve monitoring versus visualisation alone: a systematic review and meta-analysis of randomized controlled trials. *Am J Surg.* (2022) 224(3):836–41. doi: 10.1016/j. amjsurg.2022.03.036
- 33. Princi P, Gallo G, Tempera SE, Umbriano A, Goglia M, Andreoli F, et al. The impact of intraoperative nerve monitoring in a tertiary referral center for thyroid and parathyroid surgery. *Front Surg.* (2022) 9:983966. doi: 10.3389/fsurg.2022. 983966
- 34. Calò PG, Medas F, Tatti A, Pittau MR, Pisano G, Nicolosi A. Late bleeding after thyroidectomy: report of two cases occurring 13 days after operation. *Clin Med Insights Case Rep.* (2013) 6:CCRep.S12415. doi: 10.4137/CCRrep.S12415
- 35. Campbell MJ, McCoy KL, Shen WT, Carty SE, Lubitz CC, Moalem J, et al. A multi-institutional international study of risk factors for hematoma after thyroidectomy. *Surgery*. (2013) 154(6):1283–90. doi: 10.1016/j.surg.2013.04.058
- 36. Malasree S, Dutta S, Chandramohan A. Pseudoaneurysm of the superior thyroid artery: a rare cause of post-thyroidectomy hemorrhage. *Ann R Coll Surg Engl.* (2023) 105(8):646–9. doi: 10.1308/rcsann.2023.0010