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Plastic is a ubiquitous material that has caused major environmental impacts.

Ecosystem damage from improperly disposed plastic waste is the most

visible of these impacts; however, plastic also has less visible environmental

impacts throughout its supply chain. At the same time, plastic is not unique

in possessing severe, often invisible, environmental impacts that occur

throughout its life cycle. Life cycle assessment (LCA) is a helpful tool can

be used to contextualize the environmental impacts of plastic compared

with alternative solutions or material substitutes. LCA can broaden our

understanding of the environmental impacts of a product beyond what is

the most obvious and visible, taking a comprehensive view that encompasses

raw material extraction, manufacturing, transportation, use, and end-of-life.

LCA can be used to target specific areas for improvement, understand and

evaluate tradeo�s among di�erent materials, and can be helpful to avoid

environmental problem-shifting. This review provides an overview of the LCA

process and describes the benefits and limitations of LCA methods as they

pertain to plastic and plastic waste. This paper summarizes major trends that

are observed in prior LCA studies, along with a discussion of how LCA can best

be used to help resolve the plastics problemwithout causing other unintended

issues. The life cycle perspective analyzes the environmental impact associated

with a specific product, often comparing the environmental impacts of one

alternative to another. An alternative perspective analyzes the aggregated

environmental impacts of the entire plastic sector, analyzing the full scope and

scale of plastics in the environment. Both perspectives providemeaningful data

and insights, yet each provides an incomplete understanding of the plastics

problem. The comparative LCA perspective and the aggregated environmental

impact perspective can complement one another and lead to overall improved

environmental outcomes when used in tandem. The discussion highlights

that reduced consumption of the underlying need for plastic is the only

way to ensure reduced environmental impacts, whereas interventions that

promote material substitution and or incentivize shifts toward other kinds of

consumption may result in unintended environmental consequences.
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Introduction

Life cycle assessment (LCA) is a tool to systematically

evaluate the environmental impacts of products or systems

(Vignon et al., 1992). It is often used to support design or policy

decisions related to improving the sustainability of a product, to

select among alternative materials, or identify consequences or

tradeoffs that are not immediately obvious. Life cycle methods

and datasets have evolved significantly over the past decades

to improve overall data availability, robustness, and usefulness

(Laurin, 2017); however, LCA practitioners widely acknowledge

its imperfections and the need to continually improve the tool

(Huijbregts et al., 2001; Reap et al., 2008; McKone et al., 2011;

Hauschild et al., 2013; Bergerson et al., 2020).

Plastic, and plastic waste specifically, is an environmental

issue that is studied by multiple intellectual communities, each

with different research traditions and perspectives. Recently,

there have been conversations in the scientific literature and

popular press debating the extent and severity of the plastic issue.

The debates include whether public perception of ecosystem

risk corresponds to scientific evidence (Burton, 2017; Backhaus

and Wagner, 2020; Völker et al., 2020; Catarino et al., 2021;

Zhou et al., 2021), as well as the relative importance of plastic

waste to other pressing environmental challenges (Stafford and

Jones, 2019a; Ford et al., 2022). There have also been debates

surrounding the potential effectiveness and impact of proposed

solutions such as implementation of plastic bans (Lewis et al.,

2010; Martinho et al., 2017; Wagner, 2017; Herberz et al., 2020;

Macintosh et al., 2020; Völker et al., 2020; Meert et al., 2021;

Gómez and Escobar, 2022; Huang and Woodward, 2022). Some

researchers studying the impacts of plastic waste have critiqued

life cycle thinking approaches for inappropriately analyzing the

impact of plastic waste (Walker andMcKay, 2021).While certain

perspectives may never be fully resolved, this review seeks to

provide insights on the usefulness and limitations of LCA to

evaluate the plastic challenge and contrast the LCA perspective

with an aggregated environmental perspective that focuses on

the magnitude of total impact.

Specifically, this review seeks to (1) summarize major

insights from the LCA community regarding the environmental

impact of plastics and plastic waste; (2) discuss the limitations

of LCA as it relates to plastic waste and identify where

improvements can be made; and (3) discuss how different

perspectives can lead to different conclusions and how to

integrate these perspectives.

Background

Environmental impacts of plastic

Plastic products are ubiquitous in society. The use of

plastic has rapidly increased over the past decades due to

relatively inexpensive production costs and a range of physical

properties that have allowed technological advances across

various industrial and product sectors (World Economic Forum,

2016). As with anymaterial, plastics contribute to environmental

impacts throughout their life cycle (APME, 2003): impacts

associated with drilling for natural gas of which they are

derived, manufacturing into the product or product pre-

cursor, transportation, potential fugitive emissions during use,

and end-of-life (Dormer et al., 2013). In addition to the

emissions associated with energy use during all of these phases,

plastics also contribute to resource depletion, consuming fossil

fuel reserves through the conversion to plastics, even when

recycling is available (Geyer et al., 2016; Zink and Geyer,

2019). Finally, plastics contribute to environmental impacts

at their end-of-life, both in terms of waste management or

recycling (Hou et al., 2018), or via leakage into ecosystems

(Scagnetti and Lorenz, 2022).

As of 2015, plastics were responsible for 1,781 Mt CO2-

eq throughout their entire life cycle, consisting of production

(1,085Mt), conversion (535Mt) and end-of-life (161Mt), which

represents over 3% of overall global GHG emissions (Zheng and

Suh, 2019). Although the majority of plastic is landfilled with a

much smaller portion recycled, between 4.8 and 12.7 million Mt

of plastic waste was estimated to enter the ocean from coastal

countries in 2010 (Jambeck et al., 2015). In the United States,

it is estimated that ∼2% of plastic “leaks” into the environment,

either through improper disposal or abrasion ofmaterials during

their normal use (i.e. tire wear, shedding from textiles) (Heller

et al., 2020). Roughly 30% of plastics are considered durable,

with an intended long-term use in construction, electrical, or

consumer product use (Heller et al., 2020). Many plastics,

particularly those used in the packaging sector, are designed for

a single use with very short lifespans prior to end-of-life (Heller

et al., 2020).

What is LCA and how is it used?

LCA is a tool that provides a framework for a

comprehensive, systematic analysis of the environmental

impacts of a product or process. LCA can be used to understand

the full scope of impacts of a single product in its entirety or

can be used to compare multiple products. It is used to evaluate

all aspects of a product from raw feedstock extraction through

its end-of life (i.e. cradle-to-grave) or can focus on specific

portions of a supply chain, such as the environmental impacts

before a product reaches the market (i.e. cradle-to-gate). Taking

a holistic and systematic approach throughout the entire life

cycle is critically important when trying to find solutions to

specific environmental problems because there are numerous

instances where the intended solution to one environmental

problem caused a different kind of environmental issue (Davis

and Thomas, 2006).
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The major elements of an LCA are (1) goal and scope;

(2) life cycle inventory; (3) life cycle impact assessment; (4)

interpretation (Vignon et al., 1992). The goal and scope phase

defines the research questions the assessment intends to answer,

the environmental impacts that will be included, the data that

will be collected, and the boundaries of the analysis. The life

cycle inventory phase consists of data collection, verification,

and sensitivity analysis. The life cycle impact assessment phase

translates the material, energy, and emissions data compiled

during the inventory phase into appropriate metrics to quantify

the environmental impacts of interest. The interpretation phase

discusses the overall results of the study, including helping

to contextualize the results and highlighting the assumptions

and limitations of the study. The phases of an LCA are

often conducted iteratively to best tailor the assessment to its

specific purpose.

LCA methods have become significantly more robust since

their inception, with larger numbers of datasets becoming

available from which to draw inventory data and increasing

levels of sophistication and complexity. Nevertheless, some of

the harshest critics of LCA methods are LCA practitioners

themselves, with multiple formal and informal working

groups seeking to improve challenges that persist in LCA’s

implementation (SETAC, 2001; Rosenbaum et al., 2008;

Sonnemann and Valdivia, 2017; Bergerson et al., 2020). While

the LCA method has specific requirements that are dictated by

the International Organization for Standardization (ISO) (2006),

much of the guidance within ISO allows a degree of flexibility

to allow practitioners to make methodological choices that align

with the goals of a particular study. This flexibility allows an LCA

to be suited to a given purpose but can have a confounding effect

where different LCAs of the same product produce seemingly

different results. Much of the criticism levied at LCA tends to

focus on one of three major issues: the boundaries of the analysis

(Matthews and Small, 2000; Frijia et al., 2012; Choudhary et al.,

2014; Kakadellis and Harris, 2020), data uncertainty and data

quality (Huijbregts et al., 2001; SETAC, 2001; von Bahr and

Steen, 2003; Lo et al., 2005; Tan et al., 2007; Hung., 2009; Mullins

et al., 2011; de Kleine et al., 2014; Pernollet et al., 2017; Xue

et al., 2017), and appropriately capturing the environmental

impacts (Knoepfel, 1996; Notarnicola et al., 1998; Goedkoop

and Spriensma, 2001; Bare et al., 2003; Rosenbaum et al., 2008;

Hauschild et al., 2013; Ernstoff et al., 2019; Saling et al., 2020).

Defining the boundaries and functional unit of an LCA

is one of the most critical decisions of the process and can

greatly influence the overall results of a particular analysis (Deng

and Williams, 2011; Frijia et al., 2012; Ng et al., 2013). While

most LCA examine the full supply chain of a product “from

cradle-to-grave” that include all stages of resource extraction,

transportation, manufacturing, use, and disposal, there are valid

reasons to truncate the analysis. For example, some LCA may

focus on the “cradle-to-gate” boundary that do not include the

consumer use or disposal phases in order to focus on impacts

within the scope of a manufacturer’s control. Similarly, different

boundaries can be drawn associated with “attributional” and

“consequential” impacts (Brander et al., 2009; Earles and Halog,

2011). An attributional boundary definition only includes the

materials and energy that are directly associated with a given

product. Meanwhile, a consequential boundary also includes

estimation of indirect impacts that can result from changes that

are induced by adoption of the product. In each of these cases,

different boundary choices are likely to lead to different results

(Bamber et al., 2020; Schaubroeck et al., 2021).

Lack of quality data is an issue frequently cited in the LCA

literature (Miì A I Canals et al., 2011; Hetherington et al., 2013;

Sanju?n et al., 2013; Fernando Morales-Mendoza and Azzaro-

Pantel, 2017). Data may not be available because the product

is new and there is not a sufficient basis for data collection

or there may be an inventory flow that is particularly difficult

to measure, such as fugitive emissions. Fugitive emissions are

unmeasured releases of an emission to the environment that

occur outside of the designed flow ofmaterials (Wanichpongpan

and Gheewala, 2007; Brandt, 2011; Wang et al., 2018; Grubert

and Brandt, 2019). Also termed “leakage”, fugitive emissions

of plastic are the primary mechanism for plastic debris to

enter aquatic environments and one of the current challenges

of LCA for plastic products (Chitaka and von Blottnitz, 2021;

Scagnetti and Lorenz, 2022). Marine litter often originates from

communities where modern waste collection infrastructure is

lacking or by inefficient capture of plastics by waste collection,

leading to significant amount of plastic leakage in some contexts

(Jambeck et al., 2015; Geyer et al., 2017).

Finally, much discussion has surrounded the methods

that LCA practitioners use to characterize the environmental

impacts of a product, which is particularly relevant for the

case of plastic emissions73. The life cycle inventory phase of

LCA collects raw data regarding energy and material inputs

and emissions and wastes, but raw emissions data does not

provide a full picture of actual environmental impact. The

life cycle impact assessment phase is needed to translate the

raw inventory data into a measure of environmental impact

(Goedkoop and Spriensma, 2001; Norris et al., 2001; Jolliet

et al., 2003; Bare and Gloria, 2006; Hauschild et al., 2013).

A subset of the LCA research community has dedicated

efforts to developing appropriate methods and tools to

perform environmental impact assessment, characterizing and

quantifying the environmental impacts associated with specific

emissions and the causal linkages between emissions and impact

(Jolliet et al., 2003; Landis and Theis, 2008; Rosenbaum et al.,

2008; Hauschild et al., 2013; Speck et al., 2015; Huijbregts

et al., 2017; Wenning et al., 2017). Life cycle impact assessment

highlights that “environmental impact” is not a singular entity,

but multiple categories of impact that affect the environment

differently. LCA practitioners must select the environmental

impact categories they will measure in the context of the

study (van Hoof et al., 2014). Different studies may elect to focus
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on a subset of impact categories that are deemed the most

relevant or for which data are known to be available. Common

environmental impact categories include climate change, energy

use, eutrophication, smog formation, ozone depletion, human

toxicity, ecotoxicity, acidification, ozone depletion, and natural

resource depletion (Bare, 2011). Additional impacts categories,

such as methods to estimate the impacts of marine litter, are

actively in the process of development and discussed in greater

detail below.

There are methods to translate different kinds of emissions

into a metric associated with a specific environmental impact

category, which are known as midpoint indicators (Jolliet et al.,

2004). For example, carbon dioxide, methane, and nitrous

oxide are all greenhouse gas emissions, but nitrous oxide

is much more powerful than carbon dioxide. Therefore, all

greenhouse gas emissions have a conversion factor to translate

each kind of emissions into a similar midpoint indicator, in

this case, a global warming potential measured as mass of

CO2-equivalents (IPCC, 2014). Endpoint indicators aggregate

midpoint environmental impact categories into overall damage

categories such as human health, biodiversity, and resource

scarcity (Huijbregts et al., 2017).

When interpreting the results of an LCA, it is important

to remember that all materials require energy and create

emissions throughout their life cycle. All materials have some

level of electricity-related and transport emissions, as well as

environmental impacts that are specific to the material. Plastics

are derived from fossil fuels and do not degrade easily, which

lead to various ecological issues. Meanwhile, metals and glass

require mining during their raw material extraction process

and high temperatures during their manufacture. Pulp & paper

production has significant aquatic loading of COD and BOD,

whereas bio-based products (cotton, natural fibers, bioplastics)

tend to consume large quantities of fresh water and land, while

also contributing to aquatic nutrient and pesticide pollution.

These tradeoffs are inherent and real and cannot be fully

rectified by LCA or any other assessment tool. There is no

manufactured material that is devoid of environmental impact;

therefore, it is relatively rare to find comparative LCA where

one alternative is better in all measured impact categories unless

an alternative is able to reduce or eliminate consumption of

materials. While plastic is certainly responsible for a host of

environmental impacts including damage to marine life, LCA

methods highlight that substituting alternative materials for

plastic without an actual reduction in consumption are likely to

create different environmental impacts elsewhere (Miller, 2020).

For proper interpretation of any LCA study, it is important

to know what environmental impact categories are being

measured and included in the study. Some impacts are relatively

easily captured and have a direct, linear relationship with

inventory emissions. This is the case with GHG emissions,

where: (1) GHG emissions are relatively straightforward to

estimate within the context of life cycle inventory data collection;

(2) there are well established relationships between GHGs with

different radiative properties to be able to translate into CO2

equivalents (i.e., methane is 25 stronger than CO2); (3) the

relationship between emissions and impact can be reasonably

approximated as linear (i.e., 100 kg CO2-eq has ten times greater

impact than 10 kg CO2-eq). In addition, GHG emissions are

not location specific; a kg of CO2 emitted in on geography

has the same overall impact as a kg of CO2 emitted elsewhere.

Even so, GHG emission inventories can be highly uncertain in

specific contexts. For example, estimating the fugitive methane

emissions from natural gas extraction are highly variable and

are difficult to quantify without direct measurement (Howarth

et al., 2011; Alvarez et al., 2012). Also, because CO2-eq are a

midpoint impact category that are used as a proxy for overall

damage, an LCA that reports climate emissions in terms of CO2-

eq is generally not accounting for the full damage associated with

CO2 emissions, including impacts of elevated GHG on oceans

due to increased temperatures and acidification.

Environmental impacts not related to climate change tend

to be more difficult to capture within LCA, due to both data

availability and the nature of specific impacts. Although marine

litter is a great example, it is not the only case where impacts

are difficult to estimate from inventory results. For example,

forest fragmentation that can be associated with some bio-

based products has similar challenges (Seager et al., 2009).

Similarly, quantifying noise pollution’s impact to ecosystem

and human health is difficult to quantify (Meyer et al., 2017).

Fugitive emissions occur in many common pathways and are

not often reported in LCA, for example coal dust that causes

air pollution during rail transport or infrequent events such as

coal ash or fracking fluid spills (Vengosh et al., 2009; Chen et al.,

2017). Despite the challenges, there have been major efforts to

improve characterization of a variety of environmental impacts

beyond climate change (Knoepfel, 1996; Notarnicola et al., 1998;

Goedkoop and Spriensma, 2001; Bare et al., 2003; Rosenbaum

et al., 2008; Hauschild et al., 2013; Ernstoff et al., 2019; Saling

et al., 2020), including efforts to create an impact indicator for

marine litter.

Development of metrics to appropriately
assess marine litter

In contrast to GHG emissions, marine litter associated with

a single-use plastic application is (1) highly variable and difficult

to measure (Malli et al., 2022); (2) the relationship between

marine litter and physical ecosystem damage is complicated

and the science surrounding environmental impact is still being

debated (Salieri et al., 2021); (3) does not necessarily exhibit

linear behavior between amount of discarded plastic and damage

to ecosystems (Woods et al., 2016). A kg of plastic discarded in a

coastal community with poor waste management infrastructure

Frontiers in Sustainability 04 frontiersin.org

https://doi.org/10.3389/frsus.2022.1007060
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Miller 10.3389/frsus.2022.1007060

will have a different probability of ecosystem damage compared

to a kg of plastic discarded in an inland community with well-

developed management capabilities. In addition, estimating the

probability that a given piece of discarded plastic will eventually

cause ecosystem damage is difficult to measure directly. Finally,

there is likely a non-linear relationship between marine litter

and ecosystem damage. Marine litter can damage ecosystems

in multiple ways, including physical damage associated with

strangulation or ingestion of larger plastic debris, accumulation

of microplastics in the digestive system, and toxicity associated

with microplastic.

Multiple efforts to better estimate “plastic leakage”

are ongoing to improve life cycle inventories and impact

assessments of plastic materials. The Medellin Declaration

on Marine Litter in 2017 established a commitment by the

LCA community to provide evidence-based guidance for

inclusion of plastic pollution in LCA, including both improved

methods for calculating the fraction of plastics that are released

into the environment and methods to estimate the resultant

environmental damage (Sonnemann and Valdivia, 2017). The

Marine Impacts in LCA working group was formed to help

coordinate and disseminate efforts to reduce this gap in LCA

methods (Boulay et al., 2021). Multiple efforts to integrate

marine litter impacts alongside more long-standing impact

categories are ongoing and vary in levels of complexity and

robustness (Civancik-Uslu et al., 2019; Saling et al., 2020;

Boulay et al., 2021; Lavoie et al., 2021; Stefanini et al., 2021;

Woods et al., 2021; Corella-Puertas et al., 2022; Maga et al.,

2022; Tang et al., 2022). The purpose of this review is not

to discuss or debate different impact assessment metrics for

plastic waste, but instead to highlight differences in scientific

viewpoints that are likely to continue to occur in the use

of LCA for evaluating the plastic challenge, irrespective

of the development of suitable LCA impact metrics for

marine litter.

Review of results from prior plastic
LCA studies

Numerous LCA studies have evaluated the environmental

impacts of plastic, which have been synthesized via a

number of existing reviews (Al-Salem et al., 2009; Miandad

et al., 2016; Deviatkin et al., 2019; Schwarz et al., 2019;

Walker and Rothman, 2020; Alhazmi et al., 2021; Anshassi

et al., 2021; Bishop et al., 2021; Davidson et al., 2021;

Rodrigues Da Silva et al., 2021; Gómez and Escobar,

2022; Kan and Miller, 2022). It is not possible to make

universal statements about the relative environmental

impacts of different kinds of materials, since a material’s

physical properties may be more suitable for different

functions, which in turn affects performance and subsequent

environmental impact (Weidema et al., 2004). Nevertheless,

some general trends and observations emerge in the context of

the reviews.

Tradeo�s among di�erent environmental
impact categories

As discussed above, “environmental impact” is not a

single entity but multiple different kinds of environmental

impact categories. Many comparative LCA uncover tradeoffs

among different impact categories, often finding that there

is not one product that is universally superior in all impact

categories (Prado et al., 2022). Ultimately, the extent to

which a decision-maker prioritizes different impact categories

often guides the decision toward particular alternative.

The extent to which a decision-maker values the tradeoffs

uncovered in LCA is an inherently subjective process. Although

though there are some methods available to help a decision

maker better evaluate the tradeoffs, the fundamental issue

of tradeoffs are not eliminated (Hertwich and Hammitt,

2001).

The overall plastic sector is responsible for significant

global GHG emissions (Zheng and Suh, 2019); however, the

climate impacts of an individual plastic product compared to an

alternative using different materials is often lower on an LCA

basis (Kouloumpis et al., 2020; Kelly and Dai, 2021). A recent

cross-sector study found that plastics had lower GHG emissions

than non-plastic alternatives in 13 of 14 cases, representing

GHG savings from 10 to 90 percent (Helmcke et al., 2022).

Meanwhile, multiple LCA studies on food containers show that

plastic often exhibits a lower environmental impact relative to

non-returnable glass and metal on a variety of environmental

impact categories (Humbert et al., 2009; Saleh, 2016; Boesen

et al., 2019). The results when comparing plastics to returnable

glass, paperboard, and bio-based materials are mixed (Xie et al.,

2011; Scipioni et al., 2013; Abejón et al., 2020). Although

climate impact is often smaller for plastic, there are additional

environmental impact categories to consider, including the

impact on ecosystems.

The small number of studies that quantify marine litter or

physical ecosystem damage have indicated that plastic tends to

be the worst option with respect to that environmental impact

category (Civancik-Uslu et al., 2019; Gao and Wan, 2022).

This sets up a tradeoff where substituting plastic with another

material such as glass may lead to reductions in marine litter at

the expense of greater greenhouse gas emissions (Kouloumpis

et al., 2020). That doesn’t mean that the substitution shouldn’t

occur; but it is important for decision makers to be cognizant

of that tradeoff. One study indicated that when included in a

larger impact framework weighing multiple impact categories,

marine litter does not change the overall rankings of products

(Gao and Wan, 2022); however, the extent of the tradeoff will be
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FIGURE 1

1 kg of glass and plastic to be used to produce 12 oz beverage containers, assumed to contain 10.3 g of PET for plastic and 180g of glass and

yielding 5.6 and 97 containers respectively. Assumes 2.3 kg CO2-eq/kg PET and 0.63 kg CO2-eq/kg glass.

different depending on the specific product system analyzed and

prioritization of the impacts.

Different prioritizations of environmental impact categories

can lead to different decisions. On one hand, those who value

plastic pollution as the primary issue will likely prioritize any

solution that reduces plastic pollution (Lavers et al., 2022).

On the other side of the argument, those who prioritize

climate change or another environmental impact may argue that

alternative solutions should be promoted, even if they do not

lead to a decrease in plastic production (Stafford and Jones,

2019a; Abejón et al., 2020). Some have argued that it is essential

to develop solutions that do both–mitigate climate change and

reduce the quantity of plastic waste (Stafford and Jones, 2019b;

Miller, 2021; Ford et al., 2022). And certainly, there are some

solutions–such as minimizing overall consumption–that can

achieve win-win scenarios by getting at the root cause of many

environmental issues simultaneously. Reduced consumption is

often one of the only ways to reduce environmental impact

across all environmental impact categories without resulting

tradeoffs. Nevertheless, some level of material consumption will

always need to occur. As LCA has consistently shown, it is

relatively rare to find an option that reduces all environmental

impacts at the same time. In these instances, the tradeoffs

will be present and preferred “least damage” scenarios need

to be chosen. Ignoring the tradeoffs that arise with a solitary

focus on plastic waste reduction will likely lead to unintended

consequences (Miller, 2020), and has the potential to distract

from finding more holistic solutions. The following section

describes some of the potential unintended consequences and

how LCA is used to identify them.

Unintended consequences of plastic
elimination or substitution

Every LCA is suited to a particular purpose and system,

so it is not possible to make universal assertions regarding

the life cycle results of one material vs. another. One of the

foundational requirements of LCA is to define a “functional

unit” that can provide a comparison based on commensurate

performance. Common measures of mass or volume are not

always appropriate functional units. As an example, 1 kg of steel

has very different physical properties when compared to 1 kg of

a plastic polymer, which has very different physical properties

to 1 kg of glass. Depending on the ultimate application and

performance of these materials, the functional unit of a product

may require more or less mass than other materials. Figure 1

demonstrates this concept, showing the relative number of

12 oz bottles that can be made from similar masses of

glass and plastic and the subsequent difference of reporting

GHG emissions on a functional unit basis. Even though the

GHG emissions associated with producing 1kg of glass is

lower than those associated with producing 1 kg of plastic

(0.63 kg CO2-eq/kg glass vs. 2.3 kg CO2-eq/kg plastic), the

impacts per product are lower for plastic because 1 kg of

plastic produces 17 times the containers than a similar mass

of glass.

LCA ensures that alternatives be compared on an

appropriate functional unit basis, so as not to derive

inappropriate conclusions. While a kg of polymer may

generate more GHGs than a kg of glass, it is not an appropriate

conclusion that glass has less climate impact than plastic. LCA
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methods highlight the importance of evaluating alternatives on

a systematic basis.

LCA can also highlight potential unintended consequences

of proposed alternatives. One specific proposed solution

to plastic waste pollution is the implementation of plastic

bag bans. A few recent LCA studies have evaluated the

potential outcomes of bag bans, including a recent review

that summarized the comparative impacts of reusable bags

with single-use plastic bags (Gómez and Escobar, 2022).

Although data is still relatively scarce, the review discusses the

potential impact of plastic bag bans on consumer behavior,

identifying three possible scenarios. First, fewer bags may

be used overall as consumers forgo the need for any bag

in certain circumstances. Second, single-use carrier bags of

alternative materials (i.e., paper) may be used as a substitute.

Finally, plastic bag bans may incentivize greater use of

reusable carrier bags by customers. In all likelihood, any

bag ban will result in some mixture of these outcomes

(Martinho et al., 2017).

Decreased overall consumption of bags without any direct

or indirect substitution will result in lower environmental

impact. The other potential scenarios identified are more

nuanced. The review found that substitution to single-

use paper or other alternatives will result in greater

global warming and ecotoxicity (Gómez and Escobar,

2022). In addition to direct changes associated with

potential bag substitutes, there may be indirect changes to

consumption patterns, such as greater consumer purchases

of more durable garbage bags to compensate for the lack

of single-use thin film plastic bags reused as waste bags

(Martinho et al., 2017).

For reusable bags, consumers need to reuse the reusable

bags a sufficient number of times in order to realize an

environmental benefit over the single-use item to account

for the greater material intensity that causes its durability.

The number of reuses that are required for a reusable bag

to “break even” with its single-use plastic counterpart is

highly variable and depends on the type of material used, the

environmental impact category in question, and a variety of

other assumptions (Lewis et al., 2010). While not specifically

focused on carrier bags, a number of LCA studies have

highlighted the importance of consumer reuse to demonstrate

environmental benefits of reusables over single-use plastic

(Woods and Bakshi, 2014; Potting and van der Harst, 2015;

Blanca-Alcubilla et al., 2020; Fetner et al., 2021). Certain reusable

items may never break even with single-use plastic on certain

impact categories, due to the impacts of washing the reusable

alternative being greater than the single-use item (Fetner et al.,

2021).

There are also numerous case studies in the LCA

literature dedicated to the use of plastic in food packaging

and potential tradeoffs that can arise between packaging

and food loss (Silvenius et al., 2014; Wohner et al., 2019).

One of the most difficult aspects of LCA of food packaging

is to appropriately capture the performance of packaging

materials with respect to food waste (Heard et al., 2019;

Heller et al., 2019; Kan and Miller, 2022). With unique

physical properties to be able to product preservation, plastics

can often improve the shelf life of specific foods better

than other packaging alternatives, and food production

can be environmentally intensive, particularly in the

context of meat or dairy. Therefore, in addition to merely

analyzing the environmental impacts of the packaging, an

appropriately conducted LCA should also examine any change

in performance.

Discussion

When considering the plastic waste problem, there are

generally two perspectives that are used to categorize the extent

and severity of environmental impacts of plastic. The life cycle

perspective analyzes the environmental impact associated with

a specific product, often comparing one product alternative to

another and assessing which has lower impact (Abejón et al.,

2020; Helmcke et al., 2022). An alternative perspective analyzes

the environmental impacts of the plastic sector in aggregate,

analyzing the full scope and scale of plastics in the environment

(Jambeck et al., 2015; World Economic Forum, 2016; Geyer

et al., 2017). Both perspectives provide meaningful data and

insights, yet each provides an incomplete understanding of the

plastics problem. These differing perspectives may exacerbate

some of the divisions in discussions surrounding solutions to

plastic waste. When evaluating only comparative impacts, it

may be easy to overlook the bigger picture and the aggregated

impacts of the plastics industry (Walker and McKay, 2021).

When evaluating only the aggregate impacts of plastic, it

may be easy to overlook other environmental issues that

may be created by well-intended solutions (Miller, 2021).

Understanding and integrating these perspectives may be

necessary to come up with satisfactory solutions to plastic

waste challenges.

Researchers working specifically on the issue of plastic

pollution tend to focus on the aggregate current and future

impacts of plastics on aquatic systems (Jambeck et al., 2015;

Verma et al., 2016; Kubowicz and Booth, 2017; Schnurr et al.,

2018; Kosior and Crescenzi, 2020; Saling et al., 2020; Walker and

McKay, 2021). Researchers who focus on the aggregate impact

of plastic highlight the magnitude of environmental impacts

for which the plastic sector is responsible. As earlier discussed,

plastic is ubiquitous and the industry is responsible for major

environmental impact given the size of the industry (Jambeck

et al., 2015; Zheng and Suh, 2019). Anticipated exponential

growth in the plastics industry will only exacerbate the impacts

of plastic across a range of environmental impact categories.
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As the transportation and electricity industries undergo large-

scale transitions to lower carbon futures, the proportion of

climate emissions associated with the plastic sector is expected

to increase significantly (World Economic Forum, 2016). This

aggregate perspective highlights the overall damage for which

the plastic sector is responsible and underscores the need to

reduce the impacts of the industry. At the same time, the

aggregate perspective does not usually account for the potential

consequences that may occur as a result of material substitution

away from plastic (Miller, 2020). Focusing only on reducing

the aggregate impact of plastics without also assessing the

potential consequences of increases in alternative materials

may cause a different suite of environmental issues. It may

be easy to develop simple heuristics that imply any reduction

of plastic will result in environmental improvement. While

reduction in plastic use will reduce the specific environmental

impact of marine litter, the overall system is complicated

and requires a more holistic approach (Gao and Wan, 2022).

When elimination of plastic results in actual reduction of

consumption, there is likely an environmental benefit (Ford

et al., 2022). When reducing plastic increases the consumption

of another material, there are likely tradeoffs that will occur

(Lindh et al., 2016). When material substitutes or indirect

consequences occur as a result of plastic elimination (i.e.,

increased food waste), the aggregate impact on the environment

is not guaranteed to be favorable (Silvenius et al., 2014; Heller

et al., 2019).

In contrast to the aggregate approach, LCA practitioners

tend to focus on the environmental impacts of plastic in

comparison to other alternatives rather than the aggregate

impacts of plastic. Most LCA compare the impacts of plastic

relative to other alternatives to perform a similar function.

This comparative perspective is useful to help inform design

decisions about a specific product, answering questions such

as “Is it better to make this cup out of metal or plastic?”

(Millet et al., 2007). Comparative LCA provide insights

into the material(s) that produce the fewest environmental

impacts for a given product function and identify tradeoffs

among environmental impact categories, such as marine litter

and GHG emissions (Hertwich and Hammitt, 2001; Gao

and Wan, 2022). LCA can also offer insights into how

to resolve potential tradeoffs or where to focus efforts to

result in the greatest improvement potential across emission

categories. At the same time, the life cycle perspective does

explicitly discuss the aggregate impact of individual product

choices. The comparative life cycle perspective can identify

an alternative with fewer environmental impacts; however,

that alternative may still cause a great deal of environmental

damage. Just because one alternative is “better” in a given

impact category does not actually mean that it is “good”

(McDonough and Braungart, 2002; Schnitzer and Ulgiati, 2007).

Therefore, LCA information that indicates that a preferred

alternative can be potentially misleading or misinterpreted,

where the actual environmental impact of plastics is not

fully considered.

In order to find effective solutions to the plastic problem,

it will be essential to understand both the aggregated impacts

of the entire plastic economy and the comparative impacts of

plastic relative to other materials. Neither of the aggregate

or relative perspective is better or worse; both can be

useful. Ideally, they complement one another. One major

question to ask should be, “If it’s better, will it matter?”

This involves understanding the overall size of a product’s

market and the aggregate scale of environmental impact

(Bergerson et al., 2020). A 2% reduction in emissions

associated with something that is responsible for 10% of

the aggregate impact is going to have greater effectiveness

than something with a 10% reduction of 1% of the

aggregate impact.

Conclusions

To summarize, LCA has the potential to make valuable

contributions to the overall plastic debate by helping to identify

potential unintended consequences of proposed solutions

that could cause environmental problem shifting. While

an imperfect tool, LCA can be used to place the effects

of environmental policy and design decisions into context

and provide rigorous and systematic analysis. LCA will

never be able to rectify systemic tradeoffs among different

materials, such as the marine litter pollution of single-

use plastic compared to the additional BOD/COD loading

from paper. Nevertheless, LCA can quantify the impacts of

individual materials and help provide a framework to discuss

those tradeoffs.

Certain LCA studies may point out tradeoffs associated

with material substitution, particularly since relative to other

materials, plastics tend to consume relatively low amounts of

energy, which tends to translate to lower overall emissions.

On an aggregate basis, the GHG emissions associated with

plastics are large; but the relative GHG emissions of individual

products tend to be quite small. Although LCA may be

able to identify alternatives with fewer environmental impact,

the aggregate impacts of plastic use cannot and should not

be ignored. Just because a product alternative has fewer

environmental impacts does not actually mean that the

alternative is actually sustainable.

The comparative LCA perspective and the aggregated

environmental impact perspective can complement one another

and lead to overall improved environmental outcomes when

used in tandem.While material substitution may not necessarily

lead to improved outcomes, there are ways to reduce

both marine litter and GHG emissions simultaneously. The
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plastic waste issue highlights the need to focus on reduced

overall consumption rather than material substitution at

a similar level of consumption. Interventions that lead

to a true reduction of consumption will reduce overall

environmental impact. Merely shifting away from plastic

as a priority area of focus without understanding the full

consequences of a material substitution has the potential

to create environmental problem shifting and not achieve

sustainable outcomes.
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