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Minimizing Impacts of Future
Renewable Energy Development on
the World’s Desert Ecosystems

Maureen R. McClung' and Matthew D. Moran**

Department of Biology and Health Sciences, Hendrix College, Conway, AR, United States

Renewable energy development is rapidly increasing across the world, providing
affordable and more environmentally sustainable energy to many populations. However,
renewable energy, such as solar and wind, can have large land footprints through
conversion and modification of natural habitats. One of the more intact habitats on
Earth is the desert biome, which contains large areas of roadless regions and, in some
places, high biodiversity. Since they are often windy and sunny, desert regions also tend
to be rich in renewable energy resources. Using publicly available geospatial data, we
calculated that the highest resource areas for wind overlap with 79% of roadless areas
and the highest resource areas for solar overlap 28% of roadless areas, globally. High
resource wind and solar areas overlap high plant diversity regions by 56 and 79%,
respectively, but because high plant diversity desert areas are localized, these overlap
areas represent a tiny proportion of the total potentially economically valuable wind and
solar regions. These results suggest that desert regions remaining ecologically intact are
at risk from renewable energy development. However, strategic siting in abundant, lower
quality desert areas might mitigate this issue, especially when areas already impacted by
human activity are available. Selected regions presented in detail demonstrate the risks
to these habitats and strategies to minimize ecosystem damage. We urge governments
and industries to consider placement of wind and solar energy projects that minimize
environmental impacts to lands that, up to this point, remain relatively untransformed by
human activities.

Keywords: biodiversity, deserts, renewable energy, roadless areas, solar power, wind power

INTRODUCTION

The global energy industry is changing rapidly, with new production of renewable energy sources
growing at a faster rate than traditional fossil fuels (International Energy Agency, 2021). Some
fossil fuels, such as coal, appear to be in terminal decline (Mendelevitch et al., 2019), and efforts
are underway in some countries to reduce oil and gas use as a way to address global climate change
(Le Quéré et al., 2019). The most prominent renewable sources being developed are wind and solar,
whose production has grown exponentially in the last decade (Moriarty and Honnery, 2019). While
solar and wind power have limited carbon emissions, they still can have important impacts on land-
use, fragmentation, and ecosystem services provision by natural habitats (McDonald et al., 2009;
Hernandez et al., 2015; Grodsky and Hernandez, 2020; Rehbein et al., 2020). In some cases, solar
and wind power can have comparable levels on land-use impact as some fossil fuel generation,
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at least in the short-term (Jordaan et al., 2021). Finding ways
to mitigate this impact on natural ecosystems will be of prime
importance as these renewable sources continue to expand.

Deserts cover about 13% of the Earth’s surface (Costanza
et al,, 2014) and remain some of the least developed regions
on the planet (McClung et al, 2019), partly because they
are generally unsuitable for intensive agriculture, the largest
historical driver of land use change (Kanianska, 2016) until
recent times (Trainor et al., 2016). While deserts may be
low productivity environments, they can contain high species
diversity and have high rates of endemism (Johnston, 1977;
Safriel et al., 2005). Some deserts represent globally important
biodiversity hotspots (e.g., Karoo of South Africa and the
Sonoran/Chihuahuan regions of the U.S. and Mexico; Myers
et al.,, 2000) and support vibrant human cultures while providing
numerous local and global ecosystem services (Mucina et al.,
2006; Durant et al., 2012, 2014; Dimmitt et al., 2015; Taylor
et al,, 2017; McClung et al,, 2019). Because of the generally
low human population density, deserts remain some of the
least fragmented habitats, allowing landscape level ecological
interactions to continue in a time when most other habitats are
highly fragmented and modified (Jacobson et al., 2019).

While deserts remain mostly intact, new threats are emerging
that could drastically alter these lands (Hernandez et al.,, 2015).
The world is beginning an energy transition from fossil fuels
to renewable sources (Cameron et al., 2017; Ram et al., 2020;
Luderer et al., 2022), with wind and solar being two important
and rapidly expanding methods, in some cases already having
impacts on high biodiversity areas (Rehbein et al, 2020).
Deserts are, by their nature, generally sunny and windy, so
it is not surprising that much solar and wind development
has occurred (and continues to occur) in desert ecosystems
(Copeland et al., 2011; McClung et al., 2019). For example, the
American Southwest arid lands have become major suppliers of
power to the U.S. electrical grid in recent years (Parker et al,
2018). In some cases, these renewable energy developments have
occurred in areas that previously lacked significant industrial
activity (Parker et al., 2018; McClung et al., 2019).

While deserts have ubiquitous solar and wind potential, it
is unlikely that these resources are dispersed uniformly in the
environment (McClung et al., 2019). The same pattern holds
true for biological and ecological resources. Biodiversity and
unmodified desert habitat are likely to be aggregated in relatively
smaller areas compared to the vast coverage of deserts (Durant
et al, 2012), similar to patterns seen in other major biomes
(Myers et al., 2000). If emerging renewable energy development
could be sited in a way that avoids the most valuable desert
regions, future energy needs could be met while minimizing
losses to biological, ecological, and cultural resources. The goal of
this study was to identify the most intact and biologically valuable
desert environments globally by examining plant biodiversity
and roadless patterns. We then sought to identify the best wind
and solar resources in deserts to determine where they overlap
the most ecologically valuable desert regions. Our hope is that
by identifying these desert areas of high risk, recommendations
could be made on where to steer renewable energy development
to minimize impacts on biodiversity and unfragmented habitats.

MATERIALS AND METHODS

To answer the question of where the highest quality desert habitat
remains and its risk for future development, we first had to define
our quality and risk factors. We used two conservation categories
to identify high quality desert: roadless areas and vascular plant
diversity. Our justification for using roadless areas, defined as
all lands at least 1km from a road (Ibisch et al., 2016), was
that these areas are relatively unfragmented by human activities
that tend to degrade environments. While roadless is not an
exact measure of environmental integrity, roads are one of the
most destructive human activities and are known to degrade
biodiversity, increase invasive species, and provide easy access for
humans to further modify the environment (Selva et al,, 2015).
Our justification for using vascular plant diversity begins with the
fact that global biodiversity data on fine scales are not generally
available for most taxa, including taxa with high biodiversity
(e.g., arthropods). However, vascular plant diversity is, in general,
strongly correlated with overall biodiversity in terrestrial systems
(Brunbjerg et al., 2018), and so we used vascular plant species
richness as an indicator of overall biodiversity.

For future risks, we assumed that wind and solar are the main
energy systems that could rapidly expand into desert regions.
Most traditional energy sources (e.g., oil and gas, hydropower) in
desert areas are presumably already in production and have their
associated land use impacts in place. We assumed other sources
of energy besides wind and solar (e.g., geothermal) were either
too small a scale or localized to be of significant global impact on
these environments. Recent trends in wind and solar deployment
support this assumption (McClung et al., 2019).

We identified desert areas using ecoregions as defined by
Dinerstein et al. (2017). We excluded polar deserts (e.g.,
Antarctica) from our analysis because presumably they are
too distant from most population centers to be cost effective
renewable energy production areas. Using ArcGIS Desktop
(ESRI, 2020), we clipped layers for potential wind resources
(Technical University of Denmark, 2021), potential solar
resources (Solargis, 2021), roadless areas (Ibisch et al., 2016),
and vascular plant diversity (Kier et al., 2005) to our desert
boundaries. The wind and solar resources layers came from the
Global Wind Atlas 3.0 and Solar Wind Atlas 2.0, respectively.
These free, web-based applications are developed and owned
by the Technical University of Denmark (wind) and Solargis
(solar) and developed utilizing data provided by Vortex (wind)
and Solargis (solar), with funding provided by the Energy Sector
Management Assistance Program.

We identified areas of economically viable wind and solar
resources by using the extract by mask tool in ArcMap to create
raster datasets with values above 5.8 m/s (at 100-m) for wind
(U.S. Department of Energy, 2008) and 6.5 kWh/m? (DNI) for
solar (National Renewable Energy Laboratory, 2012). We then
used the extract by mask tool once again to find the regions of
these energy raster datasets that overlapped with desert roadless
areas and desert areas in four categories of plant diversity. These
four categories represented 0-25, 25-50, 50-75, and 75-100% of
the total number of plant species found in deserts, which ranged
from 0 to 6,300 plant species. Once these energy raster datasets
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FIGURE 1 | Maps showing (A) the world’s deserts and overlap with economically valuable solar resources, (B) detail for North American deserts, roadless areas, and
solar resources, and (C) detail for southern African deserts with economically valuable solar resources and with the highly diverse Karoo ecoregion outlined.
Red-yellow shaded areas represent high solar resource levels in all panels and as described in the legend for (A).

were extracted by conservation category (i.e., roadless areas or
four categories of plant diversity), their values were converted
to integers so that we could use the zonal histogram tool to
calculate the number of cells for each conservation category on
each continent. This number of cells was then multiplied by
the cell area (250 m?) and summed to get total areas for each
conservation category on each continent. We then calculated the
proportion of total global desert area and the proportion of the
total global conservation category occupied by each energy type
on each continent by dividing the area for each of these categories
by the total global area of deserts and the total global area of each
conservation category, respectively.

RESULTS

As expected, many desert regions have abundant wind and
solar resources (Figures 1A, 2A). Interestingly, the southern
hemisphere deserts tend to have higher solar potential while the
northern hemisphere deserts in Africa and Asia have the windiest
regions. Perhaps surprisingly, the vast Sahara Desert has more
high wind than high solar resource areas.

Most of the desert areas of the world remain roadless (defined
as lands more than 1km from a road, Ibisch et al, 2016;
Table 1) and, therefore, relatively unfragmented. While deserts
are sometimes known for their high biodiversity, only a small
proportion of desert areas contain this high diversity. In total,

only 0.4% of desert areas occupy the highest 75% of percent plant
species richness while almost 90% of desert lands contain the
lowest 25% of plant diversity (Table 1). Therefore, plant species
richness is highly concentrated in small regions of the biome.
Even the top 50% areas of plant diversity are limited to the Karoo
Desert of southern Africa, the Chihuahuan Desert of North
America, and small isolated regions of East Africa, the Middle
East, and South Asia. More than three-quarters of the roadless
areas are regions that have the economically valuable wind
resources while about one-quarter of the roadless areas contain
regions of high solar potential (Table 2). However, almost all the
best wind and solar areas fall in the low plant richness areas,
which is not surprising considering the proportional dominance
of the lowest 25% of richness areas (Table 2). Nonetheless, the
highest 75% of plant diversity area (all in the Karoo Desert) has
56 and 79% of its area located in high resource wind and solar
regions, respectively. While there is much overlap between high
quality desert areas (both roadless and high diversity) and high
renewable resource regions, there are also vast areas of lower
quality desert available that have high solar and wind potential
(Figures 1B,C, 2B,C).

There is continental variation in desert resources and potential
impacts, with Africa and Asia having most roadless land at risk
from wind development (Supplementary Table 1), representing
about two-thirds of such areas. Australia and Africa have the
greatest amount of solar potential areas that overlap with roadless
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FIGURE 2 | Maps showing (A) the world’s deserts and overlap with economically valuable wind resources, (B) for Middle Eastern deserts, roadless areas, and wind
resources, and (C) detail for southern African deserts with economically valuable wind resources and with the highly diverse Karoo ecoregion outlined. Blue-shaded
areas represent high wind resource levels in all panels and as described in the legend for (A).

TABLE 1 | Total area (km?) and proportion of deserts that fall into the two
methods of assessing conservation value: roadless areas and vascular plant
diversity categories.

Plant diversity
Roadless 0-25% 25-50% 50-75%  75-100%
Area (km?) 22,048,667 22,133,601 1,995,558 658,071 94,523
Proportion 0.886 0.889 0.080 0.026 0.004

areas. For higher plant diversity areas (>50% of species richness),
most of which are found in Africa, Asia, and North America, no
continent stands out as at disproportional risk from either wind
or solar (Figures 1, 2, Supplementary Table 1) except for the
>75% plant diversity region of southern Africa which is almost
entirely overlapping with high solar and/or wind resources
(Figures 1C, 2C).

The specific regions we present in detail show the challenges
and possibilities of wind and solar development. First, the deserts
of southern Africa contain the highest diversity desert, but the
high diversity region is mostly limited to the Karoo ecoregion,
while other areas of the region have much lower diversity
(Figure 1C). If the Karoo desert can be avoided, there are ample
wind and solar resources elsewhere that could supply the regional
human population with clean energy without impacting this

biodiversity hotspot (Figures 1C, 2C). The sunniest portions of
these deserts are actually outside the Karoo (mostly north and
west of the biodiversity hotspot), so it would probably be most
cost effective to site solar arrays outside of the most ecologically
valuable areas.

Similarly, the North American Deserts (Chihuahuan,
Sonoran, Great Basin, and Mojave) are heavily fragmented in
the northeastern and far west regions, while virtually all the
areas south of the U.S. border in Mexico and to a lesser extent,
northwestern parts of the U.S. area remain intact. Concentrating
wind and solar development in currently developed areas could
spare the most ecologically intact regions (Figure 1A).

The Middle Eastern desert is another region with abundant
wind resources overlapping large areas of unfragmented desert.
In general, fragmentation is limited to lands near cities and
oil producing regions, which also tend to be some of the best
wind resource areas (Figure 2B). In particular, Kuwait, Qatar,
eastern Iraq, and coastal Saudi Arabia (Persian Gulf side) have
significant fragmentation but could also support economically
viable wind production.

DISCUSSION

Our analysis shows that deserts contain a large amount of
unfragmented land and that a large proportion of it could be at
risk for alternative energy development. The high biodiversity
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TABLE 2 | Total area, proportion of total global desert area, and proportion of total desert conservation category area that contain economically viable wind and solar

resources for each desert conservation category.

Wind Solar
Area (km?) Prop. global Prop. desert Area (km?) Prop. total Prop. desert
desert conservation desert conservation
category category
Roadless 17,390,685 0.675 0.789 6,079,894 0.244 0.276
Plant diversity 0-25% 16,789,952 0.675 0.759 5,158,555 0.207 0.233
25-50% 416,635 0.017 0.209 496,667 0.020 0.249
50-75% 131,010 0.005 0.199 350,244 0.014 0.532
75-100% 52,838 0.002 0.559 74,392 0.003 0.787

desert areas are very small but have a large amount of
overlap with high resource wind and solar energy regions.
Fortunately, the overlap areas of high wind and solar resources
with high biodiversity represent only a small portion of good
potential renewable energy resources. Therefore, preventing
energy development impacts on the most biological valuable
regions will be relatively simple and practical compared to
preventing impacts to the larger (gross and proportional)
roadless areas. Nevertheless, we urge governments, energy
industries, and private conservation groups to utilize our analysis
to plan future alternative energy development. It seems almost
certain that solar and wind energy production will continue to
grow into the near and midterm future (Moriarty and Honnery,
2019), a process that is probably necessary to meet the mid-
twenty-first century climate goals set forth by the U.N. to prevent
more than 1.5°C warming (Fawzy et al., 2020). So, the question is
probably not, will it happen, but where will it happen?

A good example from our analysis is the desert regions of
Africa, which are largely roadless and contain some of the highest
plant richness areas of deserts in the world (southern Africa)
but could easily see rapid renewable energy development. To
meet human development needs, the African continent generally
needs a massive upgrade in energy production (Aliyu et al., 2018;
Ouedraogo, 2019). North Africa has also been discussed as a
likely place to generate renewable energy to provide parts of
Europe and help that region decarbonize (Trieb et al., 2012).
That puts the African deserts, which up until now have been
somewhat immune to intensive development, at great future risk.
Nonetheless, there are considerable areas of African deserts that
are already impacted by human activity and/or relatively low
diversity areas that could be utilized without damaging more
ecologically sensitive regions. Furthermore, small areas of high-
quality renewable energy production can supply a large piece of
the vast energy needs of region (Trieb et al., 2012), supporting the
argument that concentrating development in the relatively small
areas already heavily impacted would be practical.

Even though quality desert habitat is at risk from increasing
energy development, there are likely ways to mitigate the
damage by wusing existing infrastructure. For instance,
the U.S. portion of the Chihuahuan Desert is about one-
third heavily impacted by development (energy, urban,
and agriculture) and about two-thirds ecologically intact

(McClung and Moran, 2018; McClung et al., 2019). If the heavily
developed portion, mostly now impacted by the oil and gas
industry, was utilized for wind and solar, wider impacts to the
ecosystem could be minimized. Considering that much of the
oil and gas infrastructure (e.g., roads and powerlines) is also
useful for other energy types, it could also be cost effective to
utilize currently developed areas while sparing higher quality
habitat. This recommendation would be a way to limit further
ecosystem services loss for the region (Jordaan et al, 2021)
and maintain an ecologically well-functioning landscape.
Furthermore, restoration of lands on defunct infrastructure (e.g.,
inactive oil and gas wells) in select regions could be an effective
mitigation strategy to further strengthen connectivity on high
quality regions while energy development continues or expands
in currently heavily impacted areas (McClung and Moran, 2018;
Haden Chomphosy et al., 2021; Jordaan et al., 2021).

In the North American example (Figure 1B), there is a stark
difference between the U.S. side of the border that has intense
development and the Mexican side of the border which is largely
intact. While encouraging development on the U.S. would limit
further damage to this desert region, it also illustrates potential
inequity between communities on both sides of the border who
have a right to clean power. Creative development plans, such as
cost and power sharing agreements between the U.S. and Mexico
should be considered so that clean energy and environmental
protection benefits are available to all people of the ecoregion.

The Middle East is another intriguing example. Because
of the abundant oil and gas deposits, the region produces,
either directly or indirectly, and large proportion of the world’s
greenhouse gases. Some authors have suggested that this region
could produce and export vast quantities of renewable resources
(Aslani et al, 2012), and with the strong history or energy
production, would have the infrastructure and knowledge to
make the transition profitably. Our analysis shows that the
existing population centers and petroleum producing landscapes
are also ideal for renewable energy production. This strategy
would allow future energy development to reduce the region’s
carbon footprint while sparing many of the unfragmented deserts
that characterize the area.

While this paper provides a global view of desert energy
resources and risks, our examples above demonstrate the need
for region-specific plans. Each desert area of the world contains
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unique ecological, biological, and cultural interactions that make
generalized recommendations difficult. Detailed local plans, such
as the ones that have been produced in some regions (e.g.,
southern California, U.S. Bureau of Land Management, 2016),
will need to be developed in other desert landscapes targeted
for development if energy needs of the world (i.e., “affordable,
reliable, sustainable, and modern energy for all,” United Nations,
2015) can be met while protecting unique irreplaceable resources.

Deserts remain one of more intact biomes on Earth, and while
often considered as less desirable, low productivity landscapes,
in reality they contain myriad unique ecosystems. While the
impacts of grazing and traditional energy development (ie.,
oil and gas) have impacted some areas (Moran et al., 2017;
McClung et al., 2019) and defaunation remains an issue (Durant
et al., 2014), deserts have largely been spared the drastic physical
transformation of other habitats (e.g., conversion of grasslands
to intensive agricultural landscapes; Bardgett et al., 2021). With
the rapidly expanding renewable energy industry focusing on
solar and wind, two resources that are abundant in desert
regions, the status quo is not guaranteed. With careful planning
though, our analysis shows that it would be possible to develop
renewable energy resources that will help address climate change
but, at the same time, not cause irreparable harm to these
unique environments.

CONCLUSION

There is no doubt that energy needs will increase throughout
much of the world in the future and that non-carbon energy
sources, both for new energy and to replace existing carbon
intensive energy, will be necessary to prevent catastrophic
climate change (United Nations, 2015). These changes will
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