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Transitioning to a sustainable energy system poses a massive challenge to communities,

nations, and the global economy in the next decade and beyond. A growing portfolio of

satellite data products is available to support this transition. Satellite data complement

other information sources to provide a more complete picture of the global energy

system, often with continuous spatial coverage over targeted areas or even the

entire Earth. We find that satellite data are already being applied to a wide range

of energy issues with varying information needs, from planning and operation of

renewable energy projects, to tracking changing patterns in energy access and use, to

monitoring environmental impacts and verifying the effectiveness of emissions reduction

efforts. While satellite data could play a larger role throughout the policy and planning

lifecycle, there are technical, social, and structural barriers to their increased use. We

conclude with a discussion of opportunities for satellite data applications to energy and

recommendations for research to maximize the value of satellite data for sustainable

energy transitions.
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INTRODUCTION

Actors across the energy system – from local, state, and national governments to electric utilities,
technology developers, and a wide variety of energy end users – are grappling with options to
limit the rise in global temperature to well below 2◦C (and preferably 1.5◦C) and achieve net-
zero carbon dioxide (CO2) emissions targets (Hultman et al., 2020; Klemun et al., 2020). Meeting
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these ambitious goals will require far-reaching energy transitions
in electricity, transportation, buildings, and industry (IPCC,
2018; Cui et al., 2019). Climate change is also shifting patterns
in energy demand and increasing disruptions in energy access
due to damage to infrastructure caused by extreme temperatures,
floods, droughts, hurricanes, and other disasters. New sources of
information are needed to support sustainable energy transitions
and evaluate whether energy planning and policy decisions are
effective and equitable (Carley and Konisky, 2020). By providing
observations of Earth from space, satellite data hold new potential
to address these global challenges.

Since the first satellite images were made publicly available in
1972, applications of satellite data have expanded significantly
(Davis, 2007; Inman et al., 2013). Satellite data vary in spatial
resolution (from tens of kilometers to less than a meter),
frequency of observations (from weeks to minutes), and
coverage (from continuous observations from geostationary
satellites to global coverage from polar-orbiting satellites)

Abbreviations: ABI, Advanced Baseline Imager; AHI, Advanced Himawari
Imager; AIMM, Alternative Approved Instrument Monitoring Method; AMEL,
Alternative Means of Emission Limitation; AMSR-E and AMSR2, Advanced
Microwave Scanning Radiometers; ARLs, Application Readiness Levels; ASAR,
Advanced Synthetic Aperture Radar; ASTER, Advanced Spaceborne Thermal
Emission and Reflection Radiometer; CEMS, Continuous Emissions Monitoring
System; CERES, Clouds and Earth’s Radiant Energy System; CO, Carbon
monoxide; CO2, Carbon dioxide; CO2M, Copernicus Carbon Dioxide Monitoring
mission; COP26, 2021 United Nations Climate Change Conference; DMSP-
OLS, Defense Meteorological Satellite Program-Operational Linescan System;
DNB, VIIRS Day Night Band; DOE, U.S. Department of Energy; EOSDIS,
Earth Observing System Data and Information System; EPA, U.S. Environmental
Protection Agency; EPRI, Electric Power Research Institute; ESA, European
Space Agency; ETM+, The Enhanced Thematic Mapper Plus; EUMETSAT,
European Organization for the Exploitation of Meteorological Satellites;
FIRMS, NASA’s Fire Information for Resource Management System; GEMS,
Geostationary Environmental Monitoring Spectrometer; GeoCarb, Geostationary
Carbon Cycle Observatory; GOES, Geostationary Operational Environmental
Satellite; GOME-2, Global Ozone Monitoring Experiment-2; GOSAT, Greenhouse
Gas Observing Satellite; IMEO, International Methane Emissions Observatory;
InSAR, Interferometric Synthetic Aperture Radar; ISS, International Space
Station; LANCE, Land, Atmosphere Near-real-time Capability for EOS; LDAR,
Leak Detection and Repair; MERRA-2, Modern-Era Retrospective analysis for
Research and Applications, Version 2; MODIS, Moderate Resolution Imaging
Spectroradiometer; MSG, Meteosat Second Generation; MSI, European Sentinel-
2 MultiSpectral Instrument; MTG, European Meteosat Third Generation; NASA,
National Aeronautics and Space Administration; NMVOC, Methane and Non-
methane Volatile Organic Compounds; NO, Nitric oxides; NO2, Nitrogen dioxide;
NOAA, National Oceanic and Atmospheric Administration; NOAA ASCAT,
National Oceanic and Atmospheric Administration Advanced Scatterometer;
NOX, Nitrogen oxides; NREL, National Renewable Energy Laboratory; NSRDB,
U.S. National Solar Radiation Data Base; NTL, Nighttime Light; OCO-2,
Orbiting Carbon Observatory-2; OLI, Operational Land Imager; OMI, Ozone
Monitoring Instrument; POWER, NASA Prediction Of Worldwide Energy
Resources project; PV, Photovoltaic; ROW, right-of-way; RSPO, Roundtable for
Sustainable Palm Oil; SAR, Synthetic Aperture Radar; SCIAMACHY, SCanning
Imaging Absorption spectroMeter for Atmospheric CHartographY; SMAP, Soil
Moisture Active Passive; SMMR, Scanning Multichannel Microwave Radiometer;
SRON, Netherlands Institute for Space Research; SSMI, Special Sensor Microwave
Imager; Suomi NPP satellite, Suomi National Polar-orbiting Partnership; TEMPO,
Tropospheric Emissions: Monitoring of Pollution; TRMM, Tropical Rainfall
Measuring Mission; TROPOMI, Tropospheric Monitoring Instrument; UNEP,
United Nations Environment Program; UVN, UV/Visible/Near-infrared; VCD,
Vertical ColumnDensity; VIIRS, Visible Infrared Imaging Radiometer Suite; VOC,
Volatile Organic Compounds; WHO, World Health Organization.

(Medina-Lopez et al., 2021). There are trade-offs across
these design features, with free, publicly available data from
government sources tending toward global coverage and
a growing number of private companies offering targeted
observations of particular locations. Cloud-computing services
further enhance the prospects for widespread use of satellite data
by allowing broad user communities to process large amounts
of data on the fly (Gorelick et al., 2017). Beyond the satellite
technology itself, research has also advanced applications of
satellite data to decision-making through comparisons with
other data sources, integration with models, and case studies
applying satellite data to particular contexts and examining
barriers to use (Milford and Knight, 2017; Holloway et al.,
2018)1,2.

Decisions related to energy supply, demand, impacts, and
resilience all stand to benefit from growing integration of satellite
data. Satellite applications for energy supply include mapping
renewable resource potential to support infrastructure siting,
development, and maintenance. Applications for energy demand
include assessing energy use patterns to predict future needs and
identify locations with unserved demand, both on an ongoing
basis and in the aftermath of power disruptions. Applications for
energy impacts include monitoring the effects of energy use on
climate, air quality, and water and land systems, as well as efforts
to reduce these impacts. Existing information sources used in the
past have often been limited in spatial coverage and accessibility
for a diversity of stakeholders and decision-making needs. These
stakeholders also frequently lack access to timely information
needed to support cross-cutting reliability and resilience goals, as
well as disaster response. Expanded use of satellite data can now
help address these information gaps.

This paper reviews the current state of satellite data for
energy applications and potential future directions for research.
We focus specifically on satellite tools for remote sensing
because of their broad scale and routine measurements, as
well as their underutilized potential for energy policy and
planning. Each section presents an overview of conceptual
and practical applications of satellite data, drawing primarily
from the peer-reviewed literature. Applications vary in their
level of maturity, from well-established uses with strong links
to decision frameworks to emerging areas where there are
significant technical, social, and/or structural barriers to applying
satellite data to decision-making. While previous work examines
satellite data for various energy applications in isolation, there
is significant potential to increase the value of satellite data for
energy decision needs by bridging insights across energy issues.
Understanding the value and potential of satellite data to address
energy-related challenges is particularly salient given the speed
and scale of energy transitions required to mitigate and adapt to
climate change.

1EPRI. Application of Image Processing Algorithms to Improve Predictive
Reliability Assessments: Identifying Physical Threats Using GIS and Satellite
Imagery. https://www.epri.com/research/products/000000003002018884.
2EPRI. Program on Technology Innovation: Using Hyperspectral Imagery and
Artificial Intelligence (AI) to Detect Stressed and Dead Trees. https://www.epri.
com/research/products/000000003002022770.
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The author team represents experts in a wide variety of energy
and satellite topics from academia, government organizations,
research institutions, and private companies. Following the
introduction, we discuss satellite data applications in energy
supply, energy demand, energy impacts, and energy resilience.
We then describe an example of a satellite data distribution
platform for energy users. We conclude with a discussion of
the potential and limitations of satellite data across energy
applications and recommendations for research to enhance the
usefulness of satellite data for energy stakeholders.

ENERGY SUPPLY

Many studies have quantified the enormous expansion in
renewable energy needed to achieve global climate policy goals
(IPCC, 2022). Satellite data can support the development,
deployment, and forecasting of renewable energy sources such
as bioenergy, hydropower, solar photovoltaics, wind turbines,
and geothermal energy. Beyond assessing the potential for new
systems, satellite data can also help optimize performance and
track the rate of technology adoption.

Bioenergy Resources and Production
Satellite data are a leading source of information for policy
and planning decisions related to bioenergy feedstock supply
and productivity. Space-based data routinely inform assessments
of biofuel feedstock availability and land use impacts, as well
as potential competition with food production and impacts
on other ecosystem goods and services. Productivity can be
quantified from satellite observations of vegetation greenness
and further constrained or refined using indirect satellite-
based information on climate, soil conditions, and other co-
determinants of productivity. Satellite-based estimates of land
availability and supply have been used by industry, policymakers,
and other bioenergy stakeholders in the evaluation and design of
production systems and regulations.

Data on land cover have been used to identify abandoned
agricultural lands with potential to support bioenergy feedstock
production (Zumkehr and Campbell, 2013; Baxter and Calvert,
2017; Goga et al., 2019; Næss et al., 2021) and to screen for
land that may be deemed as marginal for food production
(Nalepa and Bauer, 2012; Kang et al., 2013; Khanna et al., 2021)
due to economic instability (Jiang et al., 2021), environmental
sensitivity (Wang et al., 2020), and biophysical limitations in
climate, soils, or topography (Gelfand et al., 2013; Gu and Wylie,
2016). For example, satellite-based productivity thresholds on
low-yielding lands have been used to identify marginal areas
for second generation bioenergy production (Longato et al.,
2019). From local to global scales, estimates of the maximum
potential production of bioenergy can support energy planning
and policy (Cai et al., 2011; Smith et al., 2012; Haberl et al.,
2013). Bioenergy producers or investors can also use estimates of
local feedstock supply (e.g., corn) to identify locations for siting
future biorefineries.

Satellite-constrained estimates of total bioenergy production
potential have also been used to project the contribution that
bioenergy might make toward global climate policy goals or

to meet national pledges to the Paris Agreement (IPCC, 2018;
Creutzig et al., 2021). Policies such as the Low Carbon Fuel
Standard and the Renewable Fuel Standard in the U.S. have
used satellite-based estimates of land use change associated with
bioenergy to measure and regulate greenhouse gas emissions
intensity associated with different bioenergy systems, as well as
to determine the eligibility of various fuels in each regulation (US
EPA, 2010; Leland et al., 2018). Other work has used field-level
remote sensing data to analyze changes in bioenergy feedstock
supply caused by these policies, finding that the U.S. Renewable
Fuel Standard, for example, led to an 8.7% increase in U.S. corn
cultivation (Lark et al., 2022).

New data sources and advances in data science will open
the door for highly detailed and precise ground-based data
to complement data from satellites. For example, parcel-
level data on land ownership and sales could enable a more
refined understanding of how producers respond to policy and
market incentives, and productivity measurements collected
directly from agricultural equipment could significantly expand
data availability. Nonetheless, satellite data will continue to
provide irreplaceable information on bioenergy production
that covers large geographic extents in a consistent manner
over time, particularly with the increased availability of high-
quality, high-resolution, and low-cost commercial and small-
satellite platforms.

Hydropower and Water Supply
Satellite data are commonly used in water resource assessment
for planning hydropower projects, monitoring reservoir size, and
evaluating the environmental impacts of rerouting or damming
water. Hydrological and hydrometeorological variables, such
as precipitation, snow extent, soil moisture, runoff, and
evapotranspiration, influence the availability of water resources
to support power generation. Hydropower currently accounts
for ∼60% of global renewable electricity production and is
projected to play a major role in flexible power systems as
the world transitions to cleaner energy sources (International
Hydropower Association, 2021). Planned hydroelectric projects
also dominate the renewable energy sector in sub-Saharan Africa,
where significant untapped potential exists (Stiles and Murove,
2019), offering opportunities for new uses of satellite data
products (Leibrand et al., 2019). Tracking and monitoring water
resources is critical to ensuring and managing future water
supply, especially given projected changes in water resources due
to climate change (Fletcher et al., 2019).

Landsat and Terra satellites have been collecting
environmental and climate data for several decades and
provide a long historical record to help identify trends and
spatial patterns in river flow, snow melt, land cover, and other
variables that impact water availability, which is useful in
decision-making for hydropower operations (see Figure 1 for an
example). Other satellites provide data in near real time, such as
the National Aeronautics and Space Administration’s (NASA’s)
Soil Moisture Active Passive (SMAP) mission, which measures
global soil moisture in increments as short as 3 hours, with a
latency of 24 hours and a revisit time of 2–3 days, thus reducing
the need for field evaluation.
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FIGURE 1 | Tracking the impact of drought on a hydropower reservoir at the Alto Lindoso Dam in Portugal from March 6, 2021 (L) to February 5, 2022 (R), using

Landsat 8 data [Credit: NASA Earth Observatory image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey (NASA Earth Observatory, 2022)].

Satellite-based data on groundwater, surface water
height and extent, and precipitation may be used to assess
seasonal and historical changes in water storage. Freeze-
thaw data derived from satellite microwave radiometry
from NASA’s Scanning Multichannel Microwave Radiometer
(SMMR), Special Sensor Microwave/Imager (SSM/I), and
Advanced Microwave Scanning Radiometers (AMSR-E
and AMSR2) have been used to evaluate the dynamics
of seasonal snow, ice melt, and soil thaw as a proxy for
measuring water mobility over time (Kimball and McDonald,
2020). Taken together, satellite-derived hydrological and
hydrometeorological data can identify trends in water
availability, potential for flooding and drought, and other
environmental aspects for improved decision-making in the
hydropower sector.

Machine learning and data assimilation are advancing data
analysis to improve observations for hydropower in areas where
ground-based data are scarce. For example, machine learning
has been combined with near-real-time rainfall data from
NASA’s Tropical Rainfall Measuring Mission (TRMM) and soil
moisture data from the National Oceanic and Atmospheric
Administration’s (NOAA’s) Advanced Scatterometer (ASCAT)
to simulate streamflow in India (Kumar et al., 2021). Machine
learning with various satellite-derived hydrometeorological
variables has also been used to calculate streamflow in the
Hanjiang River in China (He et al., 2021). Data assimilation,
another approach to data fusion, has also improved land
surface model predictions of water storage, particularly when
multiple satellite data products are combined (Khaki et al.,
2020).

There are new opportunities to use satellite data for
hydropower planning and management (International
Hydropower Association, 2020). NASA, NOAA, the European
Space Agency (ESA), and other Earth observing organizations
provide open-source data and offer training on how to
apply data to real-world decisions, working to reduce
barriers to use and accessibility. The value of these data is
especially high in regions with gaps in ground-based data
and with high climate variability, where uncertainties in

water resources present challenges for hydropower planning
and operations.

Solar Photovoltaic Systems
Satellite data have long been used to measure annual solar
insolation in conjunction with ground-based pyranometer
data (Perez et al., 2013). For example, the U.S. National
Solar Radiation Data Base (NSRDB) from the National
Renewable Energy Laboratory (NREL) uses data from the NOAA
Geostationary Operational Environmental Satellite (GOES),
NASA Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument, and NASA’s Modern-Era Retrospective
analysis for Research and Applications Version 2 (MERRA-2)
assimilation model to create a dataset that shows historical levels
of solar energy resources in any location in the U.S. (Sengupta
et al., 2018). The multiple source dataset goes back to 1998 at a
temporal resolution of half an hour. Additionally, global solar
radiation data are made available back to the early 1980’s using
fused geosynchronous and polar orbiting satellites, including
data products available since 2020 from NASA’s Clouds and
Earth’s Radiance Energy System (CERES) (Zhang et al., 2004;
Rutan et al., 2015; Karlsson et al., 2017; Stackhouse et al.,
2021).

With increased penetration of variable wind and solar power
on the grid, there is a new focus on system performance and
short-term wind and solar resource forcasting (Janjai et al., 2011;
Pfenninger and Staffell, 2016; Peters et al., 2018). For example,
machine learning has been used to predict cloud velocities to
understand where drops in photovoltaic (PV) system production
might occur (Cheng et al., 2022), and satellite-derived aerosol
levels may be used to assess the impact of air pollution on PV
arrays (see example in Figure 2) (Li et al., 2017). Local decision-
makers can also use satellite-derived maps to inform cost-
effective renewable energy project upkeep, such as vegetation
management (Yu et al., 2018).

Satellite data can also be used to track renewable energy
deployment, assess solar access disparities, and potentially
support third party validation of renewable energy adoption
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FIGURE 2 | (L) Impact of aerosols on the average amount of radiation reaching the land surface of China between 2003 and 2014 [Credit: Joshua Stevens, NASA

Earth Observatory, using data from Li et al. (2017)]. (R) Natural-color image of haze over eastern China from the Visible Infrared Imaging Radiometer Suite (VIIRS) on

the Suomi National Polar-orbiting Partnership (NPP) satellite on January 25, 2017. (Credit: Jeff Schmaltz, NASA, LANCE/EOSDIS).

FIGURE 3 | Satellite images of a 500 MW solar power plant on the Iberian Peninsula. (L) shows imaging before installation in 2020, (R) shows imaging after

installation (Credit: NASA Earth Observatory image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey).

under climate agreements (see example in Figure 3)3. Standard
solar PV accounting methods generally focus on limited regions
and often miss smaller systems. Satellite image processing offers
an efficient method for tracking growth in solar energy across
large geographic areas (Kruitwagen et al., 2021), but smaller

3United Nations. Net Zero Coalition. https://www.un.org/en/climatechange/net-
zero-coalition.

residential and microgrid systems are still difficult to track
(Ishii et al., 2016).

Offshore Wind Projects
Using traditional in-situmeasurements such as buoys to measure
offshore wind resources is expensive, time consuming, and
limited in its geographic coverage. As an alternative, synthetic
aperture radar (SAR) data from satellites is being used to estimate
wind power from wave heights and direction. Recent efforts
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have focused on improving the SAR method’s accuracy. For
example, calibrating satellite data on sea winds can help improve
estimates of wind speeds (Soukissian and Papadopoulos, 2015),
and advanced data analysis methods like machine learning can
help predict wind energy production (Majidi Nezhad et al.,
2021a). To estimate wind energy at actual wind hub heights
(∼100m), near sea-surface (∼10m) wind readings from the ESA
Envisat Advanced Synthetic Aperture Radar (ASAR) are used
to extrapolate wind speeds at greater elevations (Badger et al.,
2016). In areas impacted by wake effects, SAR data available
from missions such as the Envisat ASAR and Sentinel 1 can also
measure wind speeds (Ahsbahs et al., 2018).

Although satellites cannot “see” future winds, satellite data can
be used to improve forecasts of wind resource availability for
wind projects (Inman et al., 2013). In offshore applications, SAR
data can be used to constrain short-term weather predictions
and provide temporally and spatially expansive estimates of
wind speeds and wave heights (Zen et al., 2021). Both measures
are important for the design, planning, and operation phases
of offshore wind projects, including efficiently screening for
promising offshore wind resource areas and reducing uncertainty
around installation weather windows. Future areas for research
include improving the spatial resolution of wave and wind
detection, as the current practice is to assume similar conditions
across an entire wind farm based on a limited set of estimates
(Medina-Lopez et al., 2021). Additionally, inter-hour offshore
wind resource forecasting is becoming more critical as coastal
power grids rely on greater penetration of offshore turbines,
which recent satellite products, such as ESA’s Aeolus mission, will
help improve (Medina-Lopez et al., 2021).

Geothermal Energy
Satellite data is supporting the exploration and monitoring of
geothermal energy sources, which have the potential to provide
non-emitting baseload power (Vargas et al., 2022). Remotely
sensed thermal infrared data has been used since the 1980’s
to detect geothermal activity and identify potential sites for
geothermal plants, providing a less costly data source than
field investigations (Majidi Nezhad et al., 2021b). Thermal
infrared bands that are sensitive to surface temperatures are
used to identify anomalies that are potentially the result of
subsurface geothermal activity. Instruments that have been
used for geothermal prospecting include MODIS, the Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), Landsat’s Enhanced Thematic Mapper Plus (ETM+),
and SAR (Howari, 2015). For example, one recent study used
ASTER data to map geothermal potential along a section of the
East African Rift System, where previous mapping coverage was
limited, using a combination of surface temperature estimates
and indicator minerals (Hewson et al., 2020).

The coarse resolution of thermal sensors provides a means to
target field activities but limits their usefulness to broader scale
detection of geothermal anomalies. However, satellite data can be
useful for studying geothermal potential and ground temperature
recovery because of the ability to construct long-term datasets. A
key tool that allows for this type of analysis is the Interferometric
Synthetic Aperture Radar (InSAR) technique, which can map

ground deformation through clouds and at night, providing
expansive temporal and spatial coverage (Mellors et al., 2018;
Majidi Nezhad et al., 2021b). For example, two years of Sentinel-
1 SAR data was used to analyze Iceland’s untapped geothermal
energy, as well as pressure changes from geothermal fluid
extraction for a new power plant (Receveur et al., 2019). Future
research can look to relate satellite-derived prospecting with
existing geothermal data (or exploratory drilling) to improve
data relevance to future geothermal applications (Howari,
2015).

ENERGY DEMAND

Tracking energy demand, both temporally and spatially, is critical
to a just and sustainable energy transition. Nighttime lights
(NTL) data have been actively used to monitor energy use and
electrification and identify gaps for further policy development.
With 770 million people worldwide without access to electricity,
and many others lacking reliable and affordable heat and power
(Hernández, 2015; Reames, 2016; IEA, 2021c), NTL data may be
the most important data product to inform decisions to support
energy access and restoration.

Energy Use and Infrastructure
Nighttime lights are a widely used indicator of energy use and
infrastructure (NASA Earthdata, 2021) and have been correlated
with economic activity, urbanization, population density, and
energy consumption and access (Falchetta and Noussan, 2019).
There are two principal datasets that provide NTL. The first
digital NTL dataset is available from 1992-2013 through the
Defense Meteorological Satellite Program-Operational Linescan
System (DMSP-OLS). However, each pixel in these images has
only 64 potential values, a consequence of the 6-bit radiometric
resolution of the satellite instrument. Due to this limited range,
the data become saturated when NTL levels are high, especially
in urban areas, limiting NTL applications to planning and policy
at the city scale. Limited low-light detection also curtails NTL
utility in dimly lit regions such as rural areas. The 2.7 km
spatial resolution further limits energy-related applications at
local scales.

The second and more recent NTL dataset is developed
from the VIIRS Day Night Band (DNB) onboard the Suomi-
NPP satellite, launched in 2011. VIIRS NTL is a significant
improvement over DMSP-OLS NTL in two ways: the spatial
resolution is much improved at 750m, and the sensor has a
larger dynamic range, with improved calibration that allows for
accurate measurements of very low and high intensity nighttime
lights. Recent advances to harmonize the DMSP and VIIRS NTL
data have made them easier to access and integrate for wider
applications (Li et al., 2020a).

For scientific studies, the most robust NTL dataset is
Black Marble, which uses raw VIIRS data and corrects for
atmospheric and radiometric issues (Romn et al., 2018). These
data are calibrated across time, validated against ground-based
data, and available at daily resolution. NASA scientists are
currently working on a high-definition version of Black Marble,
which will allow researchers to downscale NTL data at finer
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spatial resolutions by integrating Landsat and Sentinel Earth
observations and street-level GIS data into the Black Marble
product, and thereby improve NTL visualization in dense urban
areas (NASA Goddard Space Flight Center, 2021). In 2021, the
World Bank created the Light Every Night dataset, which is a
complete archive of all NTL data collected over the past three
decades (Min et al., 2021)4. Higher-resolution NTL images are
available via photographs taken from the International Space
Station (ISS) and the private company NOKTOsat (de Miguel
et al., 2014; Noktosat, 2021). Additional sources of NTL data
exist, but many are not publicly accessible (Li et al., 2019).

The combination of finer spatial, radiometric, and temporal
resolutions, as well as integration of new data sources and
processing techniques, can provide near-real-time estimates
of energy use. To evaluate energy access, NTL data may be
combined with on-the-ground information from utilities, GIS
data, and local knowledge of energy access (Zhao et al., 2019).
Fusing satellite data products with data from mobile phones
can also support assessments of energy use, energy poverty, and
disaster response (Steele et al., 2017), while NTL data combined
with census data, national household surveys, or meter data can
help users better understand and address inequities in energy
infrastructure and access at scale (Mann et al., 2016; Pandey et al.,
2022). Satellites can also identify changes in energy demand, such
as those associated with COVID-19 or holidays from different
cultures (Román and Stokes, 2015; Elvidge et al., 2021; Stokes and
Román, 2022).

There are several important limitations to the use of NTL
as an indicator of energy and other socioeconomic variables to
inform policy. Broadly, NTL are an imperfect proxy for energy
use and access. Current satellite data products cannot accurately
measure energy use at smaller scales relevant for many policy
questions, such as at household, street, or neighborhood levels,
especially in high-density areas (Falchetta et al., 2020a). NTL
data are less accurate for measuring electrification in areas where
energy supply is intermittent, as conventional uses of NTL and
other satellite observations are often binary (i.e., the lights are
on or off) (Dugoua et al., 2017). Streetlights, car lights, and LED
lighting may also make an area appear more or less electrified
than it truly is (Zhao et al., 2019). Finally, NTL data may be more
appropriate for estimating energy and other variables in some
regions than others (Zhu et al., 2019a). For example, in areas with
fires or oil and gas flaring, NTL may reflect these sources rather
than electrification.

Global Energy Access
Over the past few decades, countries around the world havemade
large investments to support the goal of universal energy access
and improve the reliability of electricity supply (Aklin et al.,
2018), yet access to electricity and modern cooking fuels and
technologies remains low in some regions (World Bank, 2019).
The main gaps are found in sub-Saharan Africa (570 million
lacking electricity), Central and Southern Asia (103 million),
and Southeast Asia (40 million) (World Bank, 2019). While

4World Bank - Light Every Night. Registry of Open Data on AWS https://registry.
opendata.aws/wb-light-every-night/.

these regional statistics provide a general understanding of the
existing gap, it is critical to develop tools to map the geographic
distribution and temporal dynamics of these populations to
provide a fine-grained, up-to-date understanding of electricity
access across the world.

Tracking of energy poverty and access has generally been
carried out through household surveys administered by national
governments and international organizations. Satellite-based
NTL data can serve as a proxy for electricity access to
support electrification planning, complementing traditional
survey methods (see example in Figure 4) (Min et al., 2013;
Burlig and Preonas, 2016; Dugoua et al., 2017; Fobi et al., 2018;
Avtar et al., 2019). These data are often combined with data on
population density and other socioeconomic indicators (Stokes
and Seto, 2019; Zhao et al., 2019; Falchetta et al., 2020b). NTL
data have shown that lack of electrification is most pronounced
in countries where a large proportion of the population lives
in dispersed, rural settlements with few resources (Doll and
Pachauri, 2010). However, these data also suggest that energy
access can decline in urban areas that were once more reliably
electrified as utilities struggle to keep pace with increasing energy
needs associated with rapid urbanization, especially peri-urban
areas and informal settlements (Falchetta et al., 2020b).

Nighttime lights have also been combined with utility data to
inform renewable energy and microgrid infrastructure planning,
as well as electrification of essential services such as healthcare
facilities (Korkovelos et al., 2019; Moner-Girona et al., 2019,
2021). If utility data are unavailable (e.g., after a natural disaster
or in rural or low-resource settings), NTL data can be used as
a proxy to estimate energy access (Fragkias et al., 2017). The
stability of NTL radiance over time has also allowed it to be
used to evaluate supply reliability and to measure the impact
of hydroelectricity disruptions due to drought events (Arderne
et al., 2020; Falchetta et al., 2020b). These studies seek to go
beyond the binary classification of energy access and lack of
access, which is crucial as energy poverty is a multi-dimensional
challenge (Pelz et al., 2018, 2021). Thus, despite limitations
of NTL data, its usefulness for understanding energy access
continues to grow.

Sub-Saharan Africa stands to particularly benefit from the use
of NTL data for electrification planning. Lack of energy access
and unreliable electricity have hampered economic growth, and
policymakers across the region face the challenge of expanding
energy access to almost half the continent (IEA, 2019). Using
NTL, population, and settlement data, one study estimated that
between 2014 and 2019, 115 million people in sub-Saharan
Africa gained access to electricity. However, in some cases,
energy access did not equate to energy use, and some countries
that had made strides in expanding access saw limited use in
newly electrified households (Falchetta et al., 2019, 2020a). These
studies highlight that increases in access must be accompanied
by increases in generation and grid infrastructure to improve the
quality and reliability of electricity that is delivered to households
(Falchetta et al., 2020b).

Improvements to NTL data, primarily via increases in
resolution and reductions in uncertainty as instruments
and algorithms advance, will enable broader data use by
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FIGURE 4 | Estimate of the number of people without access to electricity in East Africa using data from the VIIRS instrument on the NOAA-NASA Suomi NPP

satellite, land cover type data from NASA’s MODIS instrument, and data from Oak Ridge National Laboratory’s LandScan. [Credit: NASA Earth Observatory image by

Lauren Dauphin, using data from Falchetta et al. (2019, 2020a) (NASA Earth Observatory, 2021a)].

policymakers, utility managers, emergency response personnel,
and other stakeholders. Usefulness of NTL data can be further
improved with integration of GIS maps and geoprocessing
tools (Dugoua et al., 2017). Data at finer resolutions will also
increase the usability of NTL and expand applications in which
it can be used. With higher spatial and radiometric resolution,
and finer time scales of collection, researchers can start to
examine a range of issues related to the quality and consistency
of energy availability – not just whether energy infrastructure
exists, but the frequency (reliability) of lighting and how quickly
lighting is restored after a major disaster such as a hurricane
(Romn et al., 2019), blackout, or conflict. Similarly, these data
can be used to track the urban development process and to
identify locations that have inadequate energy infrastructure
(Stokes and Seto, 2019).

Urban Areas and Urbanization
Urban areas account for approximately 75% of global final
energy use, and this demand is strongly correlated with urban
form and structure (Seto et al., 2014). Therefore, characterizing
urban areas can inform estimates of energy demand, even at
the global scale, and can be useful in planning future energy
investments to support sustainability and other goals. Urban
expansion can lead to categorical changes in land cover, such
as when agricultural areas become urban, as well as magnitude
changes, such as urban intensification. The distinction between
measurement of categorical vs. magnitude changes is important

because the optimal methods and reliability of estimates differ
between the two. Measuring categorical change is typically easier
than measuring the magnitude of urban change.

The majority of published studies have focused on mapping
two-dimensional urban expansion, or outward urban growth
(Zhu et al., 2019b; Reba and Seto, 2020). It is only in the
past decade that the research community began to examine
volumetric growth of urban areas (see Figure 5 for an example).
Three-dimensional characterization of the built environment
reveals more about urban form, structure, and resource use,
such as the demand for reinforced steel and concrete or
embodied and operational energy use. Backscatter data from the
QuikSCAT SeaWinds scatterometer have been shown to be able
to characterize urban volumetric infrastructure growth for large
cities (Frolking et al., 2013; Creutzig et al., 2016; Mahtta et al.,
2019; Li et al., 2020b). The recent development of a time series
with ERS, QuikSCAT, and ASCAT backscatter data covering
three decades will enable new studies of urban built structures
and their energy implications (Frolking et al., 2022).

A recent review of algorithms to detect, characterize, and
monitor urban land changes found that most methods have been
developed and applied for only a few regions (e.g., the U.S. and
China), with 75% of studies focused on high-income or upper-
middle-income countries (Reba and Seto, 2020). Furthermore,
while 11% of the world’s urban population lives in cities with
populations greater than 5 million, 41% of studies have focused
on these very large cities, whereas most future urban growth
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FIGURE 5 | Estimated spatial patterns in building heights in seven U.S. cities using Sentinel-1 data, compared to reference (non-satellite) measurements and

Advanced Land Observing Satellite (ALOS) data (unit: m). Measurements are presented at 500 m resolution with a spatial extent of 20 × 20 km. Areas outside the

study domain are colored as gray. [Credit: Li et al. (2020b)].

will occur in towns and cities with populations of less than 1
million (Seto et al., 2014). Applying satellite data to urban growth
at smaller scales could support urban planning and policies
related to these growing sources of urban energy demand and
resource use.

ENERGY IMPACTS

Energy impacts on land, water, and air quality have long
histories of regulation and management in environmental
policy. Even for these well-established contexts, satellite data
introduce new opportunities and challenges in connecting
with decision frameworks. Extending the relevance of satellite
data to greenhouse gas emissions is a growing area of
research, recognizing the complexities in connecting space-
based detection of gases with on-the-ground decision needs
(Esparza and Gauthier, 2021).

Land and Water Impacts
Land use and water represent two of the largest impacts of
crop-based bioenergy production as well as mining and other
infrastructure for fossil fuels and nuclear energy. Satellites
offer the potential to track and monitor energy-related impacts
on land and water, which are key to successful resource
management and disaster response. Because bioenergy
systems rely on large amounts of biomass feedstocks,
typically grown on land, they can result in particularly
large land and water impacts. These impacts include direct
changes in land use as well as indirect impacts via price
effects that lead to expansion or contraction of crops used
for biofuels or other purposes. Land use associated with
bioenergy systems can also have ensuing consequences for
biodiversity, water quality and use, and CO2 emissions

(Berndes et al., 2013; Popp et al., 2014). Satellite data can
inform assessments of these impacts, as well as emissions from
bioenergy and fossil fuel infrastructure, including refineries and
power plants.

Satellite data have been instrumental in tracking patterns
in land use and land cover change associated with existing
bioenergy development. For example, the expansion of corn
ethanol production in the U.S. has led to increases in corn
cultivation, with satellite data being used to monitor resulting
changes in crop rotations, land conversion, and participation
in land conservation programs (Brown et al., 2014; Motamed
et al., 2016; Wright et al., 2017). These changes may also
contribute to shifts in water quality, which can be monitored
directly by satellites or modeled using satellite data on land
use, climate, and other environmental determinants (Haag et al.,
2009; Hendricks et al., 2014). Similarly, satellite data have been
used to track the expansion of palm oil, intended for biodiesel
and other market uses, across the tropics (Koh et al., 2011;
Carlson et al., 2012). These data have helped identify solutions
to stymie the widespread environmental consequences of palm
oil on rainforests, biodiversity, and local communities (Rose
et al., 2015; Leidner and Buchanan, 2018; Meijaard et al.,
2020).

Satellite data can also support interventions to minimize
the environmental impacts of energy infrastructure on natural
habitats and existing land conditions. For example, a pilot study
from the Electric Power Research Institute (EPRI) tested the use
of satellite data in identifying the effects of energy infrastructure
on monarch butterfly habitats and wetlands (Madsen, 2021)5.

5EPRI Program on Technology Innovation: New Frontiers in Milkweed Detection
— Evaluating the Potential of Satellite Data and Machine Learning. https://www.
epri.com/research/products/000000003002016599.
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Another analysis used satellite data to monitor impacts along
Azerbaijan gas and oil pipeline right-of-ways (ROW) spanning
10 million square miles (Bayramov, 2013).

Satellite data have also been used to assess the impacts
of energy systems on water quality, particularly those arising
from thermal power plants (i.e., bioenergy, fossil fuels, and
nuclear). For example, studies have used satellite data to estimate
water demand (Luo et al., 2018), monitor thermal discharge
from power plants (Wu et al., 2007), detect turbidity (Alkan,
2009), and estimate water quality impacts (Sridhar and Vincent,
2009). Remotely sensed data have also been used as inputs to
advanced modeling and prediction of water quality outcomes
from bioenergy production. Off the coast of the U.S., the
size of the Gulf of Mexico hypoxic zone, the world’s second
largest oxygen-depleted “dead zone” (Dybas, 2005), can be
tracked and modeled using satellite data (Haag et al., 2009), and
contributions from changes in bioenergy-related land use can
be estimated using satellite-based inputs (Donner and Kucharik,
2008; Hendricks et al., 2014). Similarly, satellite data have been
used to track the size and occurrence of harmful algal blooms
(Klemas, 2012; Shen et al., 2012) and estimate the contribution
of bioenergy to water quality impairments (Hamada et al., 2015;
Lin et al., 2015; Chen et al., 2017). Satellite data have also been
critical in real-time monitoring of oil spills (see Figure 6).

Satellite-based assessments can inform water resources
conservation and planning for energy and other uses
(Bastiaanssen et al., 2012). For example, analyses of
evapotranspiration can inform estimates of potential water
use associated with bioenergy feedstock production (Bhattarai
et al., 2017; Wagle et al., 2017). These estimates can also be
compared to the evapotranspiration of alternative (e.g., food)
crops or native ecosystems, and inform assessments of the overall
water use intensity of bioenergy feedstocks relative to other
energy systems and land uses (Sanders and Masri, 2016).

The ability of satellites to capture frequent observations of
changes in land and water use creates exceptional opportunities
to evaluate the causal outcomes of energy policies, many of which
began after routine satellite data collection (Blackman, 2013;
Donaldson and Storeygard, 2016). Publicly available, space-based
data can provide transparency and credibility for certification
schemes that go beyond industry-reported results. For example,
the Roundtable for Sustainable Palm Oil (RSPO) certification
schemes rely on satellite technology to strengthen fire prevention
efforts and protect forests (RSPO, 2021). Bonsucro’s certification
scheme for sugarcane production, which is used as a feedstock
for ethanol, also relies on satellite data to map changes in land
use (Bonsucro, 2021).

Health and Air Quality Impacts
A wide range of gas and particle species are emitted from fossil
fuel combustion in the energy system, especially nitrogen oxides
(NOx), carbon monoxide (CO), and sulfur dioxide (SO2), as well
as suspended liquid and solid particles, referred to as particulate
matter (PM). These traditional air pollutants represent the most
direct linkage between energy policy and health outcomes. The
World Health Organization (WHO) estimates that 92% of the
global population lives in areas where air quality levels exceed

WHO limits (World Health Organization, 2016), and 4.2 million
people die each year due to outdoor air pollution6.

In many ways, the experience of the air quality and health
communities serves as a success story for satellite data integration
into existing energy-related decision frameworks (Holloway
et al., 2021). As satellite technology advanced to detect gases
and particles in the atmosphere, early research highlighted the
potential for these datasets to inform model evaluation, support
improved emission inventories, and assess surface abundance
of health-relevant pollutants. In 2011, NASA launched the first
Applied Sciences team around the theme of air quality (Jacob
et al., 2014), which was expanded to address health and air
quality in 2016 (Holloway et al., 2018) and renewed in 2021. The
three generations of these teams represent a systematic research
and outreach enterprise, wherein applied research projects have
advanced rapidly over the past 10 years, in collaboration with
stakeholder partners.

These experiences highlight key areas where satellite data can
inform energy-related air quality and health issues (WorldHealth
Organization, 2016). Nitrogen dioxide (NO2) has emerged as
perhaps the most useful air quality indicator from satellites,
which has been used as an indicator of NOx emissions, including
trends in NOx emissions associated with emission controls on
power plants as well as transportation patterns, fuel shifts,
and economic changes. As an example, satellite NO2 from the
TROPOMI instrument was used as an indicator of energy use
changes during the early stage of the COVID-19 lockdowns in
early 2020 (see Figure 7) (NASA Earth Observatory, 2020).

Because most NO2 in the troposphere is emitted near the
surface, the column abundance detected by satellites is well-
correlated with concentrations detected by ground monitors
(Goldberg et al., 2021). Furthermore, the short atmospheric
lifetime of NO2 limits mixing of the pollutant in the atmosphere,
such that satellite images capture the sources of emissions
and track closely with spatial patterns in combustion activities
at the ground level. Satellite NO2 has been used to evaluate
health outcomes from NO2 (Anenberg et al., 2022) and
environmental justice dimensions of air pollution exposure
(Kerr et al., 2021). NO2 is also a key ingredient in ozone
production near the surface, and thus an important factor in
ozone control strategies (Duncan et al., 2010; Witman et al.,
2014).

Many other chemical species observed from space bear
relevance to energy emissions, air quality, and health. For
example, satellite-derived SO2 can be an important indicator of
power plant emissions (Lu et al., 2013), satellite observations
of CO show the impact of global pollution transport (NASA,
2015), and satellite observations of “aerosol optical depth”
have been used quantify global exposure to fine PM (van
Donkelaar et al., 2010). Beyond tracking fuel combustion,
satellite data have been used to assess upstream emissions
from energy processes, such as dust impacts of cropland
expansion from bioenergy (Lambert et al., 2020) and air
emissions associated with the pre-harvest sugarcane field

6World Health Organization. Air pollution. https://www.who.int/westernpacific/
health-topics/air-pollution.

Frontiers in Sustainability | www.frontiersin.org 10 October 2022 | Volume 3 | Article 910924

https://www.who.int/westernpacific/health-topics/air-pollution
https://www.who.int/westernpacific/health-topics/air-pollution
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainability#articles


Edwards et al. Satellite Data for Sustainable Energy

FIGURE 6 | Satellites were able to spot an oil slick from a major oil spill in Southern California in 2021. (L) is an image from October 2, 2021, from OLI on Landsat 8,

and (R) is a SAR image from the ESA Sentinel-1B satellite. [Credit: NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological

Survey and modified Copernicus Sentinel data processed by the ESA (NASA Earth Observatory, 2021b)].

FIGURE 7 | Changes in NO2 concentration due to COVID-19 lockdown in China using data collected from TROPOMI from ESA’s Sentinel-5P satellite (Credit: NASA

Earth Observatory images by Joshua Stevens, using modified Copernicus Sentinel 5P data processed by the ESA).
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burning phase of ethanol production in Brazil (Tsao et al.,
2012).

Oil and Gas Emissions
Oil and gas operations release a wide range of chemical emissions,
including volatile organic compounds (VOCs, associated with
ozone formation and also posing direct health risks) and the
powerful greenhouse gas methane. Both the federal government
and some states in the U.S. are beginning to consider satellite
data to assess oil and gas VOC emissions for regulatory purposes.
A proposed rule in New Mexico incentivizes the use and
development of new technologies for leak detection and repair
(LDAR) such as remote monitoring via satellites or aircraft,
aiming to increase the accuracy and speed of reporting as
part of their ozone control effort. Colorado provides operators
with the opportunity to submit an Alternative Approved
Instrument Monitoring Method (AIMM) for identifying VOC
ozone precursors. These changes provide the opportunity to
include other monitoring methods as an alternative to current
ground-based measurement approaches.

Methane emissions from oil and gas systems have been
the subject of significant recent policy action. At the 2021
United Nations Climate Change Conference (COP26), more
than 100 countries joined the U.S. and EU in launching
the Global Methane Pledge, an initiative to reduce methane
emissions by at least 30% from 2020 levels by 2030 (European
Commission, 2021). Satellite-based inventory methodologies can
play a crucial role in achieving these goals by providing timely
data for monitoring and verifying country commitments. The
UnitedNations Environment Program (UNEP) is supporting this
effort through the International Methane Emissions Observatory
(IMEO), which will use multiple data sources from satellites,
ground-based sensors, and national and company inventories
(UN Environment Programme, 2021). These data can be
combined to identify and reconcile gaps and inconsistencies and
enable global stakeholders to track whether emissions reductions
are being achieved and take targeted action.

Satellites can monitor oil and gas infrastructure on a
frequent basis with an emphasis on high-risk areas, quickly
detecting very large emissions sources. The natural gas
supply chain is characterized by super-emitter behavior,
where a small percentage of sources are responsible for the
majority of emissions. A meta-analysis of approximately 15,000
measurements from 18 individual studies in the U.S. showed that
the largest 5% of methane leaks typically contribute over 50% of
the total emissions by volume (Brandt et al., 2016), and similar
phenomena have been observed for individual production sites
(Zavala-Araiza et al., 2017) and across sources and sectors
(Duren et al., 2019). A recent study also used satellite data to
identify large methane releases from “ultra-emitters” worldwide
(Lauvaux et al., 2022).

Policies targeting super-emitters could be a cost-effective
strategy for reducing overall emissions (Ravikumar et al.,
2020; Edwards et al., 2021). Multiple types of measurements
can work together to assess methane emissions in a tiered
system-of-systems approach, integrating space-based
platforms with airborne instruments and ground sensors

(Esparza and Mattson, 2021). This tiered approach can
enable more complete monitoring, detection, and repair of
emissions sources without the need to deploy an impracticably
large number of ground-based sensors, consistent with
other examples of using satellite data to complement other
measurement approaches.

In recent years, greenhouse gas monitoring satellites from the
private sector have complemented technology from government
space agencies7. For example, the company GHGSat currently
has three methane sensing satellites in orbit with spatial
resolutions as low as 30m, allowing for detection of point
sources such as individual oil and gas wells. GHGSat has an
ongoing collaboration with the Netherlands Institute for Space
Research (SRON) whereby elevated methane levels detected by
TROPOMI, which makes measurements in 2,600 km swaths at
7 km resolution, are followed up with high-resolution GHGSat
imagery that can attribute these methane hot spots to specific
facilities (European Space Agency, 2020).

In early 2019, a GHGSat satellite was imaging a natural source
of methane emissions known as a mud volcano in the western
part of Turkmenistan when it serendipitously discovered an
enormous methane leak – assessed to have been 10,000 to 43,000
kg/h – from a compressor station at the nearby Korpezhe oil
and gas field. Other nearby leaks of similar magnitudes were
also identified. These were some of the largest methane leaks
ever detected by satellite at the time. Archived TROPOMI data
confirmed the magnitude of these emissions sources going back
at least 14 months (Varon et al., 2019). GHGSat worked with
the diplomatic community to identify the industrial operator and
contact the relevant authorities, and for a period of time the
leaks were stopped. However, in February 2021, another GHGSat
satellite detected new leaks from eight natural gas pipelines and
unlit flares in the Galkynysh gas field in Turkmenistan (see
Figure 8) (Malik Naureen, 2021).

There are barriers to increasing the use of satellite data to
inform policy on oil and gas emissions. For example, the EPA
has had an alternative means of emission limitation (AMEL)
program since 1977 (42U. S., and Code § 7401, 1977), but
the current AMEL application process is complex and requires
EPA review prior to public notice and public hearing events.
This complexity may limit the use of satellite data in satisfying
regulatory requirements, such those targeting methane and VOC
emissions from new and existing sources in the oil and gas sector.

Energy-Related CO2 Emissions
Accurate estimates of the distribution and magnitude of
CO2 emissions from energy systems are important for
improving predictions of climate change, designing policies
to reduce emissions, and monitoring and verifying their
effects. Historically, anthropogenic CO2 emissions have been
inferred through bottom-up approaches using reported or
estimated data on fuel consumption, emission factors, and

7Group on Earth Observations, Climate TRACE and World Geospatial Industry
Council. Greenhouse Gas Monitoring from Space: A Mapping of Capabilities
Across Public, Private, and Hybrid Satellite Missions. GEO Observations Blog
http://www.earthobservations.org/geo_blog_obs.php?id=533.
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FIGURE 8 | Eight separate methane plumes captured by GHGSat in a single image, representing a total emission rate of about 10,000 kg/hour. Four of the larger

plumes on the left are emissions from pipelines (likely problems with valves), with the remaining emissions from unlit flares.

fuel properties for thermal power plants, transportation,
and industry. However, there are uncertainties in these data,
even in high-income economies (Wheeler and Ummel, 2008;
Gurney et al., 2019). For example, there is generally about a
20% difference between U.S. thermal power plant emissions
estimated from fuel usage and those reported from a continuous
emissions monitoring system (CEMS) program (Ackerman
and Sundquist, 2008). Data uncertainties and gaps have
prompted policymakers to look to satellite data to enhance
tracking of greenhouse gas emissions and to monitor and verify
reduction efforts.

The first space-based measurements of the global distribution
of near-surface greenhouse gases were performed by an
instrument called SCIAMACHY (European Space Agency, 2005),
which operated aboard the ESA’s Envisat satellite between
2002 and 2012. The first satellites dedicated to greenhouse
gas measurements were GOSAT, launched by the Japan
Aerospace Exploration Agency in 2009, and the Orbiting
Carbon Observatory-2 (OCO-2), launched by NASA in 2014
(see example in Figure 9) (Yokota et al., 2009; Crisp, 2015).
These were followed by TROPOMI aboard the ESA Sentinel-
5P satellite, which has been in operation since 2017, as well
as the GOSAT-2 satellite launched in 2018 and the OCO-3
instrument that was installed on the ISS in 2019. Tracking
of greenhouse gas emissions with satellites is set to expand
in the upcoming years: the Environmental Defense Fund
(MethaneSat), the State of California (Carbon Mapper), and
NASA (Geostationary Carbon Cycle Observatory, or Geocarb)
are all planning launches of satellites to track emissions between
2022 and 2025 (Dennis, 2021). The growth in new dedicated
satellite instrumentation, combined with existing measurements,
may allow for easier independent monitoring, verification, and
enforcement of the national emissions reduction commitments
under Paris Agreement (Ganesan et al., 2019; Kaminski et al.,
2022).

FIGURE 9 | Tracking human contribution to atmospheric CO2 using data from

NASA’s OCO-2 satellite. Here, anomalies are shown from between

2014-2016. [NASA Earth Observatory maps by Joshua Stevens, using OCO-2

anomaly data courtesy of Hakkarainen et al. (2016) (NASA, 2016)].

Satellite observations of column-averaged CO2

concentrations have demonstrated that, in some circumstances,
satellites can provide top-down constraints on source emissions,
but the capabilities of current satellite instruments are limited
(Nassar et al., 2017, 2021; Hill and Nassar, 2019; Zheng
et al., 2019; Wu et al., 2020). Data from GOSAT and OCO-
2 do show statistically significant CO2 enhancements over
metropolitan regions (Kort et al., 2012; Schneising et al.,
2013; Janardanan et al., 2016; Buchwitz et al., 2018; Wang
et al., 2018; Reuter et al., 2019), and top-down methods
have been applied to a few large thermal power plants
(Bovensmann et al., 2010; Velazco et al., 2011), which are
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some of the largest point sources of anthropogenic CO2

(Janssens-Maenhout et al., 2019). A recent analysis presented
the first quantification of CO2 emissions from individual power
plants using OCO-2 observations (Nassar et al., 2017). However,
because of the narrow swath (∼10 km at nadir) and 16-day
repeat cycle of the sensor, the number of clear-day overpasses is
too few for the development of a global CO2 emissions inventory
(Kiel et al., 2021; Nassar et al., 2021). The sparse sampling of
the OCO-2 sensor will partly be overcome by the planned CO2

imaging satellites that have denser spatial coverage, such as the
CO2 Monitoring mission (CO2M) and the GeoCarb instrument
(Moore et al., 2018; Sierk et al., 2019).

An alternate method uses auxiliary satellite data, such as co-
emitted NOx, as a proxy for CO2 emissions. Recent studies
have shown that using NO2 data for plume detection improves
quantification of annual CO2 emissions from point and urban
sources as compared to CO2 data alone (Kuhlmann et al., 2019,
2021; Reuter et al., 2019). This method takes advantage of the
higher spatial resolution and spatiotemporal coverage of satellite
NO2, from which NOx emissions are inferred, and have been
shown to compare well to independent observations (Beirle et al.,
2011; Duncan et al., 2013, 2016; de Foy et al., 2015; Lu et al.,
2015; Krotkov et al., 2016; Liu et al., 2016, 2017; Goldberg et al.,
2019). This approach is particularly useful for identifying new
combustion sources as they come online and changes in existing
point sources and urban areas (Duncan et al., 2016; Krotkov
et al., 2016). The highest resolution satellite instrument for NO2

is TROPOMI (2017-present) (Levelt et al., 2006, 2018; Veefkind
et al., 2012; Munro et al., 2016; Krotkov et al., 2017). NO2 and
satellite-based CO and CO2 data can also provide constraints on
emissions inventories and be useful in monitoring trends and
understanding regional-scale combustion (Silva and Arellano,
2017; Goldberg et al., 2019; Liu et al., 2020; Park et al., 2021).

CO2 emissions from individual power plants and large cities
may also be inferred from satellite NO2. For power plants,
these calculations have been performed using linear relationships
between reported NOx and CO2 emissions by coal type, firing
method, and emission control device (Liu et al., 2020). Ratios of
NOx to CO2 emissions derived from U.S. power plants, where
power plants have CEMS stack-height emissions monitors, offer
a reasonable approximation for power plants in other countries,
especially where coal type is known (Zoogman et al., 2017;
Kim et al., 2019; Timmermans et al., 2019). City-scale emissions
may be inferred through related statistical approaches to fit a
collection of satellite-observed NO2 plumes and inferred CO2

emissions (Goldberg et al., 2019). While conducted and validated
in the U.S., these approaches show potential for estimating CO2

emissions in other countries as well.
Moving forward, a synergistic combination of bottom-up

and top-down approaches would likely provide the greatest
constraint on global anthropogenic CO2 emissions. CO2M will
carry instruments to observe both NO2 and CO2, which will
allow for the estimation of NOx/CO2 ratios, although these
ratios may have large regional and technological uncertainties
(Kuhlmann et al., 2021). It has been shown that satellite NO2 and
CO2 data could be used to infer a ratio to allow the estimation
of CO2 emissions using TROMPOMI and OCO-2 data for an

individual power plant (Hakkarainen et al., 2021). Thesemethods
ideally would be complemented by a database with region-
specific NOx/CO2 ratios from CEMS measurements or other
bottom-up sources.

ENERGY RESILIENCE

Extreme weather events have long been a major risk factor
for energy infrastructure, with climate change worsening these
risks. Satellite data can provide a cost effective means for
tracking vulnerable energy infrastructure, planning for new
climate normals, and providing real-time support for operations
and maintenance.

Energy Resilience and Global Change
Power outages, infrastructure damage, and challenges with
adequately managing energy demand are well-known
consequences of extreme weather and weather-related
disruptions, including storms, heat waves, wildfires, and
flooding (IEA, 2021a). In the U.S., for example, blackouts from
extreme weather events cost an estimated $20 to $55 billion
annually (Nik et al., 2021), and hurricanes are a major cause
of power outages that have contributed to substantial loss of
life and infrastructure (Alemazkoor et al., 2020). Extreme heat
stresses the electric grid, resulting in increased demand for
air conditioning and a loss in transmission and distribution
efficiency (Añel et al., 2017). In February 2021, historic snowfall
and ice across Texas led to blackouts that left millions of people
without power (Nazir, 2021). Transmission line failure caused by
extreme wind or heat can also result in wildfires, as in the 2009
Australian “Black Saturday” fires, where line failures ignited one
of the most disastrous bushfires in Australian history, resulting
in 173 deaths and $4 billion (Australian) in property damage
(Mitchell, 2013).

Within the energy management sector, there is a strong
push to design climate-resilient infrastructure that can continue
operating or recover quickly after immediate shocks and adapt
to long-term changes in climate and environmental conditions
(IEA, 2021b). In the U.S., increased emphasis on embedding
climate adaptation and resilience into federal programs could
support investments in the energy sector. Efforts currently
underway include the Biden Administration’s Executive Order
14008 on Tackling the Climate Crisis at Home and Abroad,
Build Back Better Agenda, Infrastructure Investment and
Jobs Act, and Justice40 Initiative, which focus on shifting
energy supply to reduce environmental and health risks and
support economic development for communities impacted by
energy transitions (The White House, 2021a,b). Complementing
these efforts, the Department of Energy (DOE) is deploying
climate-resilient energy technologies nationwide, including in
underserved communities (U.S. Department of Energy, 2021).

Satellite data can be used to better understand the impacts
of a changing climate on energy infrastructure, advance the
development of forecast models, and reduce the effort needed
to assess environmental risks, which in turn can improve site-
specific resilience planning (Leibrand et al., 2019). To support the
climate adaptation and resilience efforts underway in the Biden
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FIGURE 10 | Baseline (pre-storm) view of San Juan, Puerto Rico, nighttime lights (L) and average nighttime lights two months (Sep. 20 - Nov. 20, 2017) after

Hurricane Maria (R). (Credit: Kel Elkins, NASA Scientific Visualization Studio).

Administration, NASA and NOAA are planning to provide data
and services to stakeholders to increase understanding of threats
and vulnerabilities due to climate change (Margetta, 2021; US
Department of Commerce, 2021). Satellite data can be used to
inform planning to mitigate various energy infrastructure risks
(Hauer and Miller, 2021). For example, several utility companies’
wildfire mitigation plans use satellite data to monitor wildfire
risks (Horizon West Transmission, 2021; Idaho Power, 2021;
Pacific Gas and Electric Company, 2021; San Diego Gas and
Electric Company, 2021; Southern California Edison Company,
2021), and satellite data has been used to identify vegetation
encroachment and stressed or dead trees (Matikainen et al., 2016;
Mahdi Elsiddig Haroun et al., 2020)4,8.

Satellite data are also already being used to support disaster
response in the energy sector. For example, in 2004, Eskom,
South Africa’s largest energy company developed a mobile fire
alert system to mitigate line faults and provide near-real-time
fire information. This system relies in part on NASA MODIS
data and Meteosat Second Generation (MSG) data from the
European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) and is still in use today (Davies et al.,
2008)9. MODIS data are also an integral part of NASA’s Fire
Information for Resource Management System (FIRMS), which
integrates data from both MODIS and VIIRS instruments to
deliver global active fire and hotspot data in near real time, within
three hours of satellite observation (NASA, 2021).

Following Hurricane Maria’s devastating impacts on Puerto
Rico in 2017, NTL data from NASA’s Black Marble product
were used to understand the extent of power outages and
characteristics of areas that withstood the greatest impact.
These data were later used to monitor the effects of electricity
restoration policies (see example in Figure 10), including how
these policies can exacerbate inequality and unintentionally
burden vulnerable populations (Romn et al., 2019). The

8EPRI Identification of At-Risk Trees Using Satellite Imagery. https://www.epri.
com/research/products/000000003002019050.
9Advanced Fire Information System (AFIS). AFIS. http://www.afis.co.za/.

high spatial resolution of Black Marble enables researchers
to overcome four primary limitations of power outage data:
timeliness, continuous data collection, consistent data across
large geographic areas, and availability of data at a very fine
spatial resolution (Romn et al., 2019).

DATA DISTRIBUTION

Distribution of satellite data for use by decision makers and
researchers is a continuing challenge, especially as the number
and complexity of data products grows. While researchers and
high-end data users may choose to navigate data distribution
platforms, many stakeholders prefer GIS-enabled web interfaces
developed for their application area. The most developed
energy-specific platform for satellite data distribution is the
NASA Prediction Of Worldwide Energy Resources (POWER)
project. POWER has provided Earth observation data for
energy applications since 2002, with the goal of improving
the accessibility and use of NASA data to support community
research in three focus areas: (1) renewable energy development,
(2) building energy efficiency and sustainability, and (3)
agroclimatology applications (Zell et al., 2008; Eckman and
Stackhouse, 2012). POWER allows users to select community-
specific parameters, units, time periods, and output formats to
efficiently retrieve data. The output data can then be directly
applied in decision support tools, modeling and forecasting
packages, and as inputs to scientific research.

The solar energy parameters in POWER are compiled using
multiple satellite data sources. Hourly to long-term averaged
parameters are provided for each parameter and can be used to
support applications such as solar cooking, sizing solar panels,
and designing battery backup systems. The daily and hourly time
series include the basic solar and meteorological parameters as
well as additional calculated parameters such as diffuse and direct
normal radiation. For example, a community solar installation
in a rural village in West Africa appeared to be working poorly.
POWER data revealed that the solar array was in fact performing
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up to specifications, but cloudiness affected the available solar
energy. Local management made the necessary adjustments to
power usage and billing, drawing from data only available via
satellite (NASA POWER and NASA ARSET, 2021). Similarly, a
consultant responsible for solar installations at various locations
in North Carolina uses the low latency data products to help
assess changes in output (NASA POWER and NASA ARSET,
2021).

POWER data products have also been used to support a
variety of energy system operation and maintenance decisions.
For example, the Ottawa Renewable Energy Cooperative used
the RETScreen Expert Clean Energy Technology software suite,
which directly links the POWER web suite, to assess the potential
benefits of paying for snow removal for a rooftop PV system
by comparing lost generation to the building’s actual load
(NASA POWER and NASA ARSET, 2021). NASA’s Office of
Strategic Infrastructure also uses RETScreen for building energy
management (Rosenzweig et al., 2014). Additionally, satellite
estimates suggest that increases in the solar irradiance in the
maize growing regions of the U.S. from the late 1980’s through
about 2012 were responsible for 27% of the productivity increase
observed during this time period, relevant to corn-based biofuels
(Tollenaar et al., 2017). Finally, the value of packaging correlated
solar, wind, and other meteorological parameters has been
demonstrated for a smart energy management system for hybrid
solar-wind-biomass systems (Bhattacharjee and Nandi, 2021).

DISCUSSION

Applications of satellite data are growing across a wide range
of energy policy and planning problems. Recent developments
are increasing the potential for satellite data to support energy
decision-making, with new public and private satellites being
launched, advances in data processing techniques, and efforts
by government and private organizations to increase uptake
in new user communities. With more complete spatial and
temporal coverage, satellite data can fill gaps in traditional
data sources. Often the value of space-based data is greatest
through integration with existing data and decision tools. Many
types of satellite data have been collected for years, enabling
analysts to track changes in energy supply, demand, and impacts
over time and evaluate the effectiveness of policy interventions.
While collecting satellite observations entails high fixed costs,
the marginal costs are generally low, especially for datasets
that are freely available to the public. Since data collection is
remote, it also does not directly disturb local communities or
the environment.

Our review points to many applications and opportunities for
further use of space-based measurements. For energy supply, this
includes resource potential and risk assessment to inform siting,
development, and maintenance of energy infrastructure as well
as real-time resource availability to support grid management
and ensure reliability of supply. For energy demand, it includes
energy use patterns to predict energy needs and identify locations
with unserved demand. For energy impacts, it includes the
effects of energy use on climate, air quality, and water and land

systems, as well as monitoring efforts to reduce these impacts.
Satellite data are also playing an increasing role in supporting
investments in energy resilience, both in advance and in the
aftermath of disruptions to energy access. The expansive coverage
of many measurements allows for global indexing of critical
metrics, and the increase in temporal resolution of new products
means that satellite data can be used to track progress toward
policy commitments to reduce energy-related emissions, increase
energy access, and support sustainable energy transitions around
the world.

The technical limitations in the use of satellite data for
energy applications are primarily driven by insufficient spatial
and temporal resolution. For example, polar orbiting satellites
such as the Landsat 8 Operational Land Imager (OLI) and
the recently launched Landsat 9 Operational Land Imager 2
(OLI-2) provide radiance measurements that are high spatial
resolution (30m) and multispectral (visible, near-infrared, and
shortwave infrared bands). These measurements are suitable for
land use characterization at urban and individual agricultural
field scales. However, the 16-day repeat cycle, relatively narrow
swath width (165 km), and likelihood of cloudy scenes limits
temporal sampling to typically a single observation at one
location each month, which does not allow for rapid responses
to changing conditions. The European Sentinel-2 MultiSpectral
Instrument (MSI) partially addresses these limitations with a 5-
day repeat cycle and higher spatial resolution (10m for the visible
channels and 20m for near-infrared and shortwave infrared).
Other polar orbiting instruments, such as VIIRS, have more
channels and larger swath widths (3000 km) and can observe the
entire planet each day. However, VIIRS has significantly lower
spatial resolution than either Landsat or Sentinel-2.

Unlike polar orbiting satellites, geostationary satellites
continuously observe the same area and consequently have very
high temporal sampling, and a constellation of geostationary
satellites can allow for near global, continuous sampling of the
Earth throughout the day. The U.S. Advanced Baseline Imager
(ABI) on GOES East and West, Japanese Advanced Himawari
Imager (AHI), and European Meteosat Third Generation (MTG)
are all third-generation geostationary instruments with similar
retrieval capabilities as VIIRS but even coarser spatial resolution.
A new generation of instruments such as the recently launched
Geostationary Environmental Monitoring Spectrometer
(GEMS), Tropospheric Emissions: Monitoring of Pollution
(TEMPO), and the European UltraViolet/Visible/Near-Infrared
(UVN) instrument will provide the first geostationary hourly
ultraviolet radiance measurements suitable for a wide variety of
energy applications, from tracking photosynthetic activity for
biofuel production to monitoring NO2 emissions from fossil
fuel combustion. The GeoCarb instrument will provide similar
measures of photosynthetic activity as well as geostationary CO2,
CO, and CH4 retrievals over North America.

Combining high spatial resolution polar orbiting
measurements with high temporal resolution measurements
from geostationary satellites will create unprecedented
opportunities for energy policy and planning. For example,
accurate short-term cloud forecasts are critical for optimizing
electric power generation and load balancing. Improved use
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of geostationary cloud measurements for solar PV forecasting
could include data assimilation for short-term surface irradiance
forecasts and advanced pattern recognition estimates of
cloud motion. Using satellite data for improved monitoring
and prediction of droughts (in particular, flash droughts)
and resulting changes in photosynthetic activity could have
significant impacts on improving biofuel production efficiency.
Satellite data with high spatial and temporal resolution also
can uncover patterns of energy injustice. For example, new
satellite-based research can help us understand who has access to
energy infrastructure and the reliability, quality, and impacts of
energy services for different groups. With the ability to monitor
changes over time, we can also assess equity in energy transitions.

Beyond spatial and temporal resolution, analysts must also
carefully consider the appropriateness of satellite data for energy
policy and planning applications. It is particularly important
to understand the distribution of potential errors in satellite
measurements when they are used as a proxy for energy-
relevant variables, and how these errors affect causal inference
(Jain, 2020). For example, NTL datasets measure nighttime
luminosity but are often used to estimate energy use and access,
economic activity, and other variables. This approach can lead
to biased inferences on the effects of policies if NTL data
undercounts energy access in areas with intermittent service
or underestimates economic activity in high luminosity areas
due to saturation effects. Other types of errors can also be
systematic, such as when agroforestry or plantations are classified
as tree cover or when small-scale logging is undetected, which
may lead to an underestimate of the effects of policies on
forest loss. These challenges underscore the importance of data
validation and the value of combining other types of data with
satellite measurements to create a more complete picture of the
energy system.

While researchers are actively working to address the technical
limitations of satellite data for energy applications, addressing
social and structural barriers will be equally important. While
social science studies specifically on the use of satellite data for
decision-making are more limited, in the case of air quality
– especially for policy organizations implementing the Clean
Air Act in the U.S. – a range of social and structural as well
as technical barriers impede data use relative to traditional
monitoring and assessment methods (Milford and Knight, 2017).
Satellite data do not fit with decision and policy frameworks
in a clear manner, and users have expressed uncertainty about
whether data will be accepted for regulatory purposes. Research
also indicates a number of social barriers to satellite data
use, including difficulty finding data, data formats that are
unfamiliar or difficult to use, and lack of staff time, training,
and expertise to acquire and process data. Two-way dialogue
between end-users and satellite experts has helped identify
specific areas where space-based data can contribute effectively
to information needs.

Collaboration between researchers with expertise in satellite
data analysis, energy systems and policy, and a broader set of
social science disciplines will be essential to realizing the potential
for satellite data to support energy decision-making. Research

has pointed to the importance of active communication between
experts and decision-makers and investing in translational
work to bridge the gap between scientific data and decision
processes (Cash et al., 2003; Klemun et al., 2020). Researchers
themselves can engage in this boundary work – for example,
NASA encourages engagement with the full satellite data
application process through its Application Readiness Levels
(ARLs), which range from initial discovery to full integration
of satellite data into a partner’s decision-making systems and
processes. However, research also points to the vital role of
boundary organizations and boundary objects (including
data portals, interactive maps, and training workshops)
in facilitating this work. Several organizations are actively
working to enhance the usability of satellite data for energy
applications.

Satellite applications for energy planning and policy are
growing rapidly, with novel information needs to support
sustainable energy transitions, a suite of new satellites recently
launched or planned to be launched soon, and advances in
methods for analyzing satellite data products and translating the
results into useful information for energy decision-making. Our
review suggests that, while there are many energy application
areas where satellite data are already playing an important role,
there is significant untapped potential to apply satellite data
to support decision-making around energy supply, demand,
impacts, and resilience. As advances in satellite data analysis
open up new opportunities to support decision-making, active
dialogue between experts in satellite data and energy planning
and policy, as well as decision-makers across energy sectors,
will be essential to maximize the usefulness of satellite data for
sustainable energy transitions.
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