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In the UK waste management systems biodegradable and compostable packaging

are not automatically detected and separated. As a result, their fate is

generally landfill or incineration, neither of which is an environmentally good

outcome. Thus, e�ective sorting technologies for compostable plastics are

needed to help improve composting rates of these materials and reduce the

contamination of recycling waste streams. Hyperspectral imaging (HSI) was

applied in this study to develop classification models for automatically identifying

and classifying compostable plastics with the analysis focused on the spectral

region 950–1,730nm. The experimental design includes a hyperspectral imaging

camera, allowing di�erent chemometric techniques to be applied including

principal component analysis (PCA) and partial least square discriminant analysis

(PLS-DA) to develop a classification model for the compostable materials plastics.

Materials used in this experimental analysis included compostable materials

(sugarcane-derived and palm leaf derived), compostable plastics (PLA, PBAT)

and conventional plastics (PP, PET, and LDPE). Our strategy was to develop a

classification model to identify and categorize various fragments over the size

range of 50 x 50mm to 5 x 5mm. Results indicated that both PCA and PLS-DA

achieved classification scores of 100% when the size of material was larger

than 10mm x 10mm. However, the misclassification rate increased to 20% for

sugarcane-derived and 40% for palm leaf-based materials at sizes of 10 x 10mm

or below. In addition, for sizes of 5 x 5mm, the misclassification rate for LDPE

and PBAT increased to 20%, and for sugarcane and palm-leaf based materials

to 60 and 80% respectively while the misclassification rate for PLA, PP, and PET

was still 0%. The system is capable of accurately sorting compostable plastics

(compostable spoons, forks, co�ee lids) and di�erentiating them from identical

looking conventional plastic items with high accuracy.
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1. Introduction

There has been a recent growth in the production and use

of compostable plastics in an attempt to reduce the impact of

conventional plastics on the environment (WRAP, 2022). These

types of plastics are designed to biodegrade at their end of life

in controlled systems such as industrial composting (Song et al.,

2009). Bioplastics production worldwide is projected to increase

from 2.23 million tons in 2022 to around 6.3 million tons in 2027

(Bioplastic, 2022). In 2019, the global compostable plastic market

was valued at $991.2 million and is predicted to reach $3,102.6

million by 2027 (AMR, 2022).

Typically, compostable plastics are manufactured fully or

in part from biomass and include polylactic acid polymers

(PLA), polybutylene adipate terephthalate (PBAT) and starch-

based polymers. PLA is typically used to produce cup lids, salad

boxes, tea bags, coatings for coffee cups, food containers and

cartons. PBAT and starch-based plastics are often used for plastic

films such as magazine wraps and caddy liners. Apart from

compostable plastics, other biomass-derived substances are also

used to produce packaging such as sugarcane and palm leaf.

The advantages of compostable packaging are realized when

these types of packaging are industrially composted and do not

enter the environment or pollute other waste streams or the

soil (Purkiss et al., 2022). Currently, most compostable plastics

are treated as a contaminant in the recycling of conventional

plastics such as HDPE and PET, reducing their value. Moreover,

when composting various types of organic residues, the finished

product always contains a certain amount of other materials such

as flakes of plastic film (REA, 2021). Therefore, contaminants have

to be eliminated in order to improve compost quality. Currently,

trommel and density sorting are applied to screen the compost

and reduce the presence of other materials. However, the levels of

contaminants from the current screening process is unacceptably

high (SEPA, 2019). To improve the accuracy of the current system

advanced sorting technologies need to be developed (Xu and

Gowen, 2020).

In this study we use hyperspectral imaging (HSI) in a one

step process to identify different materials. We apply shortwave

infrared (SWIR) in the range 950–1,730 nm to identify not

just only different types of conventional plastics (PP, PET, and

LDPE) and compostable plastic (PLA, PBAT) packaging but also

compostable materials (palm leaf and sugarcane-based materials)

with various sizes from 50 x 50mm to 5 x 5mm. The technique

we have developed is notably different to Moroni and Mei

(2020). The novelty arises from our use of machine learning

methods. We used mean centering (MC) and standard normal

variate (SNV) algorithms and applied these to reduce the impact

of possible external sources of variability and highlight sample

spectral differences that allowed a more accurate interpretation and

classification of the model. We have also used spectral information

to successfully develop unsupervised principal component analysis

(PCA) and partial least square discriminant analysis (PLS-DA)

to differentiate packaging material types and to classify unknown

packaging material samples. A detailed description of our HSI

method is presented, including the hardware and software

components. Results are shown at a laboratory scale where we use

this method to successfully identify different sorts of conventional,

compostable, and biodegradable packaging materials over a range

of sizes to a high degree of accuracy. We also discuss the real world

applicability of this technique in waste processing systems.

1.1. Background

Taneepanichskul et al. (2022) recently identified a variety

of suitable sorting technologies for compostable plastics such

as gravity-based sorting, triboelectric sorting, image based

identification, spectral based identification, hyperspectral imaging,

and tracer based sorting suitable for this task. The analysis showed

that each technique has its advantages and disadvantages in terms

of effectiveness, cost and environmental footprint. Hyperspectral

imaging technology was identified as one of the most suitable non-

destructive techniques to identify compostable packaging. It has

the potential to be integrated with existing waste sorting systems,

as well being economically feasible and a sustainable way to sort

compostable plastics (Biopak, 2022; Taneepanichskul et al., 2022).

For example, the power consumption for the identification process

is very low. When compostable plastics are comingled with other

materials such as recyclable plastics or food waste, HSI is one of the

most effective techniques for differentiating between them since it

combines imaging technology and spectroscopy into one approach.

Moreover, it is able to detect the spectral signature of each pixel

of the acquired image in different wavelength regions (visible, near

infrared, short-wave infrared, etc.) according to the characteristics

of the selected sensing device. One potential drawback however is

the large amount of spectral information collected by HSI from the

sample surfaces that must be processed in order to make sorting

decisions in real time.

For large pieces of plastic (50–500mm), Balsi et al. (2018)

have used shortwave infrared (SWIR) spectral imaging in the

range of 900–1,700 nm for the spectral characterization of polymers

including PS, PVC, PLA, PET, PC and three types of PE (LDPE,

HDPE and LLDPE). The absorption peaks of different types of

plastic were identified by a continuum removal method (Balsi et al.,

2018). Bonifazi et al. (2013) have applied hyperspectral imaging

to enhance the efficiency of polyolefin recycling systems (Bonifazi

et al., 2013). Recently Moroni and Mei (2020) used hyperspectral

imaging to separate PS, PET, and PLA samples at their different

stages of the life cycle (virgin to plastic waste). In order to separate

these three types of plastics they used a sequential method. The

first spectral index of 1,170–1,650 nm used hyperspectral imaging

to separate polymers with flame retardants to allow grouping of

plastics with the same polymer type and additive content necessary

for recycling. A decision tree that included a partial least square and

hierarchical models was then used to identify the types of plastic.

The accuracy was higher than 90% in all cases.

2. Materials and methods

2.1. Sample preparation

The packaging materials used in this experiment consisted

of virgin conventional plastic including PP, LDPE and PET,

compostable plastic namely PLA, PBAT and biodegradable

packaging—palm leaf derived packaging and sugarcane-derived

packaging. The materials were all sourced from commercial
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producers and are provided in Table 1. The sources of material are

also provided in Table 1.

The samples were cut into squares of various sizes and divided

into two sets, one for training and a testing dataset. The training

dataset was the dataset used to build the classification model. It was

an input into themachine learning algorithms to allow themodel to

associate spectral imaging data with known material classifications.

The testing dataset was the dataset that contains unseen data to

test the model accuracy in determining material classifications. It

was used to evaluate the performance of the model. The sizes of

materials in the training dataset and testing dataset ranged from

square samples cut from thin films 50 x 50 mm−20 x 20mm and

10 x 10 mm−5 x 5mm, respectively, as shown in Figure 1. These

are similar to those carried out in previous studies (Moroni et al.,

2015).

The population in these experiments was 210. We

used a krejcie-morgan table to calculate the sample size

in the training dataset, which was determined as 140

(Krejcie and Morgan, 1970). For the 140 samples in the

training dataset and 70 samples in the testing datasets,

the details are shown in Table 2. We adopted a random

TABLE 1 The details of materials tested.

Material Sources

PP Retail samples, Vesey Arts and Crafts

LDPE Retail samples, Marks & Spencer

PET Production samples, Biopak

PLA Retail samples, Vegware

PBAT Production samples, Confidential

Palm leaf derived packaging Retail samples, Biopak

Sugarcane derived packaging Retail samples, Biopak

FIGURE 1

The size of samples PP, LDPE, PET, PLA, PBAT, sugarcane derived

packaging and palm leaf derived packaging in a Calibration Dataset

(50 x 50 mm, 40 x 40 mm, 30 x 30 mm, and 20 x 20 mm) and Cross

Validation Dataset (10 x 10 mm and 5 x 5 mm).

sampling strategy to select the sample order for the

training datasets.

2.2. Hyperspectral imaging equipment and
data acquisition

HSI acquisitions and analyses were carried out a laboratory

in the Department of Mechanical Engineering, University College

London. There are four main components of hyperspectral imaging

system which are a hyperspectral camera, light source, conveyor

belt and lens (Xiong et al., 2014) (Figure 2A).

In this study, hyperspectral images were collected by a HySpex

Baldur S-640i N covering the spectral range 950–1,730 nm, with

a spectral resolution of 3.36 nm, for a total of 232 wavelength

bands. The hyperspectral camera was used with a 1m working

distance 16◦ FOV (Hyspex, 2021). The images were acquired

by scanning the image line by line: the spatial pixels size was

0.44mm. Every sample scanned by the system produced image

information in the form of an x-y grid of pixels, and for each

pixel a spectrum was recorded, yielding a hyperspectral data

cube for each sample. The hyperspectral camera was adjustable

in height and angle. In this case, the height between lens and

objects was set at 100 cm. The angle between the lens and objects

was 90◦. The halogen lamp produced an intense and continuous

spectrum from 400 nm to 2,500 nm. The acquisition platform

also consisted of a conveyor belt (700 x 215 x 60mm) with

adjustable speed (Figure 2B). Acquisition was controlled by a PC

equipped with specialized acquisition and pre-processing software:

HyspexGround (Hyspex, 2019) which was used to perform

the acquisition, to collect spectra, and to perform preliminary

spectral analysis.

System calibrations were carried out by recording a black

and a white reference image. The black image (B) was acquired

to eliminate the dark current effect of the camera sensor. The

white reference image (W) was acquired adopting a standard white

ceramic tile under the same conditions as the raw image. Equation

1 describes the calculation used to perform for image correction:

I =
[I0 − B]

[W− B]
(1)

where I is the corrected hyperspectral image in a unit of relative

reflectance (%), I0 is the original hyperspectral image, B is the

black reference image (∼0%), and W is the white reference

image (∼99.9%).

2.3. Spectral data preprocessing

After image correction the background noise was removed by

an initial reduction of the range of the wavelengths investigated.

The first and last spectral bands were excluded in order to

reduce the size of data (spectral variable). Some spectral bands

that gave the noisiest data were also eliminated. Subsequently,

the background of each image was removed. After that the

hyperspectral data were preprocessed using mean centering (MC)
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TABLE 2 List of samples in the training dataset and testing dataset.

Types of material Material Description Size Number of
replicates

Type of data

Conventional plastics PP Polypropylene 50 x 50mm 5 Training

40 x 40mm 5 Training

30 x 30mm 5 Training

20 x 20mm 5 Training

10 x 10mm 5 Testing

5 x 5mm 5 Testing

PET Polyethylene terephthalate 50 x 50mm 5 Training

40 x 40mm 5 Training

30 x 30mm 5 Training

20 x 20mm 5 Training

10 x 10mm 5 Testing

5 x 5mm 5 Testing

LDPE Low density polyethylene 50 x 50mm 5 Training

40 x 40mm 5 Training

30 x 30mm 5 Training

20 x 20mm 5 Training

10 x 10mm 5 Testing

5 x 5mm 5 Testing

Compostable plastic PLA Polylactic Acid 50 x 50mm 5 Training

40 x 40mm 5 Training

30 x 30mm 5 Training

20 x 20mm 5 Training

10 x 10mm 5 Testing

5 x 5mm 5 Testing

PBAT Polybutylene adipate

terephthalate

50 x 50mm 5 Training

40 x 40mm 5 Training

30 x 30mm 5 Training

20 x 20mm 5 Training

10 x 10mm 5 Testing

5 x 5mm 5 Testing

Compostable materials Palm Leaf derived material Palm leaf 50 x 50mm 5 Training

40 x 40mm 5 Training

30 x 30mm 5 Training

20 x 20mm 5 Training

10 x 10mm 5 Testing

5 x 5mm 5 Testing

Sugarcane derived material Sugarcane 50 x 50mm 5 Training

40 x 40mm 5 Training

30 x 30mm 5 Training

20 x 20mm 5 Training

10 x 10mm 5 Testing

5 x 5mm 5 Testing
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FIGURE 2

Images of hyperspectral camera system. (A) Components of HSI system. (B) Dimension of HSI system.

and standard normal variate (SNV) algorithms to reduce the impact

of possible external sources of variability and highlight sample

spectral differences that allowed a more accurate interpretation

and classification of the model. For mean centering, the first

stage is often to subtract the average from each variable. The

objective of mean centering is to ensure that all results will

be interpretable in term of variation around the mean. This

is especially crucial if the variables differ significantly in their

relative magnitudes, otherwise the values with the greatest variance

will be favored in regression analysis. For SNV analysis this

technique removes the multiplicative interferences caused by

scatter and particle size effects from spectral data. SNV removes

scatter effects by centering and scaling each individual spectrum.

The method assumes that the absorbance of each wavelength

point in the spectrum meets a certain distribution such as a

Gaussian distribution. Each spectrum was calibrated based on this

assumption. The average value of a spectrum was subtracted from

the original spectrum, and then the result was divided by the

standard deviation.

2.4. Spectral data analysis

The SWIR region gives chemical information about the

investigated materials (sugarcane and palm leaf derived packaging,

PLA, PBAT, PET, PP and LDPE) since most absorption bands

in this range arise from overtones of N-H, C-H and O-H

vibration. Spectra were analyzed using Breeze software version

2022.1.5 (Hyspex, 2019). After a spectral data preprocessing

step, principal components analysis (PCA) was applied to

explore the data, to define classes and to evaluate the best

algorithms for further classification model development, setup,

and implementation. The chosen method for classification

and validation was the partial least-squares discriminant

analysis (PLS-DA).

2.4.1. Principal component analysis (PCA)
PCA converts an observational dataset from potentially

correlated variables into linearly uncorrelated variables, namely a

principal component (PC). The first PC accounts for the highest

variability in the dataset. Therefore, most of the information are

captured in PC1. The remaining amount of variance become

subsequent principal components in descending order (Farrugia

et al., 2021). In hyperspectral imaging, this technique is applied

directly to the pixel of hyperspectral image. In the data pre-

processing step the data cube is rearranged. The pixels of region

of interest are considered as a set of correlated variables to which

PCA is applied. The score matrix Z is given by Equation 2:

Z = XW (2)

where the rows of the input matrix X ∈ R
K×L represent the

spectral values for K = M × N (pixels) over L spectral bands

(λ). W ∈ R
L×Ppixels is the loading matrix, the columns of

which represent the eigenvectors of the covariance matrix of X.

The columns of W provide the transformation functions that

map the pixel spectral vectors into PCs. The columns of Z ∈

R
K×Prepresent the PC scores which are the representations of

X in the PC space (Figure 3). Each PC image is the product

between the pixel spectral vectors of X and a column of W. Each

PC image is obtained by reshaping each PC making up Z, to

a two-dimensional representation (Abdi and Williams, 2010). In

this study 120 samples of different types and sizes of plastics

were used in the training dataset. Subsequently, a PCA was
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FIGURE 3

Reshaping of hyperspectral datacube and PCA method.

applied for visualizing and confirmation of good clustering (Jolliffe,

2005).

To summarize, the PCA method can be divided into six major

steps as shown in Figure 3. The hyperspectral data is imported and

then reshaped.

There are many techniques for PCA to transform the data

such as hotelling transformation but all of them have the same

mathematical model: the eigenvalues are computed, sorted in

descending order and used to create a PCA plot where materials

that are similar are located close together (Serranti et al., 2011, 2015,

2019).

2.4.2. Partial least square and discrimination
analysis (PLS-DA)

PLS-DA is considered as a supervised method of PCA in the

sense that this method achieves dimensionality reduction but it

takes the class label in consideration. It combines partial least

square (PLS) and discriminant analysis (DA). The PLS regression

technique is applied to find latent variables (LVs) with maximum

covariance with Y variables. The main difference between PLS

regression and PLS-DA is that the dependent variable in PLS-

DA has a categories scales whereas the dependent variable has a

continuous scale in PLS regression. Thus PLS-DA can be applied

as a classifier. In PLS-DA, the linear equation is modeled by latent

variables. This allows graphical visualization and the understanding

of the relations by LV scores and loadings (Wold et al., 2001).

There are six data processing steps that were used to form

a PLS-DA analysis. Firstly, latent variables are computed based

on an original dataset. Next the computed latent variables are

plugged into a linear regression model to calculate a prediction

value and then the cut off value is selected to classify types

of material. Normally, we selected 0.5 as a cutoff point. If the

prediction score is <0.5, it is classified as 0. If the prediction score

is more than one, it is classified as 1 (Serranti et al., 2011, 2015,

2019). Each class of material is displayed as a different color. After

calibration, the performance of the model was assessed using a

test dataset. In this study, there were 80 samples in the testing

FIGURE 4

Raw absorbance spectra of sugarcane derived packaging, PP, PLA,

PET, LDPE, PBAT and palm leaf derived packaging acquired by

hyperspectral camera (HySpex Baldur S-640i N).

dataset containing 8 different types of plastics with small size

(10 x 10mm and 5 x 5 mm).

3. Results

The experiments were carried out with a range of different

packaging materials using hyperspectral imaging (Table 2). The

purpose of the experiments was to generate PCA and PLS-DA

classification models and assess the performance of model. Figure 4

shows the raw absorbance spectra of sugarcane derived packaging,

PP, PLA, PET, LDPE, PBAT and palm leaf derived packaging

acquired by hyperspectral camera (HySpex Baldur S-640i N).

The pre-processed data using mean centering (MC) and

standard normalized variation (SNV) normalization is shown in

Figure 5.
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3.1. Principal component analysis

For each of the training samples, after collecting a hyperspectral

data cube and the pre-processing step, the PCA was applied to

reshape the data cube and reduce data dimensionally. For each

sample, a PCA score plot was generated allowing the identification

of seven different groups of materials according to the material

spectral signature (Figure 6).

FIGURE 5

Pre-processed spectra using mean centering (MC) and standard

normalized variation (SNV) normalization of sugarcane derived

packaging, PP, PLA, PET, LDPE, PBAT and palm leaf derived

packaging.

In this experimental set up, the majority of variance was

captured by the first two principal components (PCs), where PC1

and PC2 explains 56% and 24.4% of the variance, respectively. The

PCA model results shows the separability of the different classes

of materials. From the PCA score plot, the compostable material

(palm and sugarcane derived), compostable plastic (PLA, PBAT)

and conventional plastic (LDPE, PP, PET) shows the high level of

separability. There is no overlap between each type of material in

training dataset although palm is the least clustered.

3.2. Partial least square discriminant
analysis (PLS-DA)

The PLS-DAmodel of 7 classes of various sizes ofmaterials built

on the training dataset showed a captured variance of 80% with two

latent variables.

Subsequently the value of accuracy, misclassification rate, R2 (R

square) and RMSE (Root-mean-square deviation), sensitivity and

specificity of each type of materials were calculated to measure

the performance and robustness of the classification model. The

sensitivity and specificity value ranged from 0 to 1. These values

provide the information about model performance. The higher the

values are, the better the model. From Table 3, it illustrated that

the performance model on training dataset was very high because

sensitivity and specificity values of all materials were 1. Moreover,

the accuracy model was 100% and misclassification rate was 0%

for all types of materials. R2 and RMSE values also proved the

robustness of classification model. R2 was >96% and RMSE was

lower than 0.07 for all types of materials in the training dataset.

After we ensured that the performance and robustness of the

classification of model were adequate, we applied it to the testing

FIGURE 6

P1-PC2 score plots of palm leaf derived packaging, sugarcane-based packaging, PBAT, PLA, PE, PET, and PP after the application of SNV and mean

center pre-processing.
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TABLE 3 Accuracy, misclassification rate, specificity, and sensitivity values.

Accuracy Misclassification rate Specificity Sensitivity R2 RMSE

Training dataset

Palm leaf derived packaging 100% 0% 1 1 98% 0.05

Sugarcane based packaging 100% 0% 1 1 98% 0.04

LDPE 100% 0% 1 1 97% 0.06

PLA 100% 0% 1 1 100% 0.02

PBAT 100% 100% 1 1 96% 0.07

PP 100% 0% 1 1 99% 0.03

PET 100% 0% 1 1 100% 0.02

TABLE 4 Accuracy, misclassification rate, specificity and sensitivity values

for seven classes PLS-DA model in testing dataset obtained for the seven

classes PLS-DA model on training dataset.

Quantity Accuracy Misclassification
rate

Palm leaf derived

packaging

5 80% 20%

Sugarcane derived

packaging

5 100% 0%

LDPE 4 100% 0%

PBAT 5 100% 0%

PLA 5 100% 0%

PP 6 100% 0%

PET 5 100% 0%

dataset (10 x 10mmand 5 x 5mm) to classify types ofmaterials. The

accuracy, misclassification rate, sensitivity and specificity values

determined are shown in Table 4.

For both compostable plastic (PLA, PBAT) and conventional

plastics (PP, PET and LDPE), these values were very high (>90%).

However, the sensitivity value of compostable materials (palm and

sugarcane derived) was 40%.

Figure 7 illustrates PLS-DA seven classes’ model applied to the

cross validation set to predict the type of materials that shows

the corresponding classified hyperspectral images. It appears that

in the 7-classes model, sugarcane, palm, PLA, PBAT, LDPE, and

PET are recognized with 100% accuracy. Even if some pixels are

misclassified, the majority of them belong to the correct class

in each object. These sporadic errors in prediction are probably

due to the surface roughness of the sample, highlighting the

scattering effect of the light, or to the presence of dirtiness on

the sample surface. In this study, PLS-DA was used to perform

a good discrimination among classes of materials and to define

predictions in new hyperspectral images, adopting pre-processing

algorithms defined in the PCA step. Each category is independently

modeled on the others and a sample can be assigned to only a

class or even to more classes or can be rejected by all classes. The

PLS-DA model obtained, instead, assigns only one of the available

categories, based on its spectral signature, to each unknown

sample in the hyperspectral image, making interpretation of the

results easier. The results of PLS-DA, applied to hypercubes,

are prediction maps, where each class is defined by a different

color.

The size of samples also has a tremendous effect on the accuracy

of the model. In training datasets, the size of sample is bigger than

the testing dataset. Therefore, the overall accuracy of the model

is higher than the testing set. For example, the accuracy of palm

leaf derived packaging on the training dataset was 100% while

the accuracy of the testing dataset dramatically decreases to 40%.

However, the accuracy level of conventional plastic (PP, LDPE and

PET) and compostable plastic (PLA, PBAT) on the testing dataset is

still very high. It can identify and differentiate types of plastic when

the size is 5 x 5 mm.

3.3. Real world applications

The PLS-DA classification model was also applied to classify

and detect compostable materials in the market—black plastic

cutlery and white PP plastic cutlery, sugarcane-based packaging

and a white PLA lid. All of these materials we loaded onto the

conveyor belt in a random jumbled arrangement. Figure 8 shows

the PLS-DA model applied to detect compostable materials in the

market (plastic plate, plastic lid and cutlery). The result shows that

the model correctly identified white PP plastic cutlery and PLA lid

and sugarcane-based packaging as shown in Figure 8B. Black plastic

cutlery could not be detected because the pigments they contain

absorbed toomuch light (Figure 8B), and no detectable signal could

be evaluated for material identification.

The model has also been applied to classify overlapping small

sized materials (10mm), and it provided perfect classification

result as demonstrated in Figure 9 and Table 5. Most pixels of

the materials were predicted correctly but some pixels (red) were

misclassified due to surface roughness and the scattering of light.

Thus, the acquisition conditions such as angle of the halogen lamp,

integration time, frame rate and speed of conveyor belt has an

impact on the quality of hyperspectral images and accuracy of

the system.

The other issues that affect the real-world application of this

technique are the time required to classify each sample and the cost

of the system. The system provides real time analysis which makes

high throughput possible, the classification rate being determined
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FIGURE 7

PLS-DA seven classes’ model applied to cross validation set to predict type of materials. (A) RGB optical image obtained by the hyperspectral camera,

(B) the hyperspectral image overlayed with the classification color (yellow: PE, blue: PLA, pink: PP, crimson red: PBAT green: palm leaf, purple:

sugarcane, brown: PET).

FIGURE 8

PLS-DA model applied to detect compostable materials in the market (plastic plate, plastic lid and cutleries). (A) RGB optical image obtained by the

hyperspectral camera (HySpex Baldur S-640i N), (B) the hyperspectral image overlayed with the classification color (purple: sugarcane, blue: PLA and

pink: PP).

by the computing power. However, the cost of hyperspectral

imaging technology is higher than current sorting technologies.

The estimated price of hyperspectral cameras currently range from

$45,000 to $49,800 (Optosky, 2022).

4. Discussion and conclusions

The combination of HSI in the SWIR range (950–1,730 nm)

and multivariate data analysis (MDA) were applied to distinguish

types of materials. The dataset comprises various size of

compostable materials (sugarcane and palm leaf derived),

compostable plastic (PLA, PBAT) and conventional plastics (PP,

LDPE and PET).

The approach in this work was to differentiate between 7 types

ofmaterials (sugarcane, palm, PP, LDPE, PET, PBAT, and PLA) with

various size (50 x 50mm, 40 x 40mm, 30 x 30mm, 20 x 20mm, 10

x 10mm, and 5 x 5mm) and predict types of materials as well as

determine the performance of the model. For training datasets, the

sizes of materials were larger than the testing dataset as mentioned

in the methods section. The PCA score plot was developed on

the training dataset. The result clearly illustrated that the model

built can perfectly differentiate between types of materials. There

is also no overlap among the classes. It can be concluded that

the variation among types of samples can be attributed to the
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FIGURE 9

PLS-DA model applied to detect small size (10mm) of materials. (A) RGB optical image obtained by the hyperspectral camera, (B) the hyperspectral

image overlayed with the classification color.

TABLE 5 Accuracy and misclassification rate of overlapping small materials.

Accuracy Misclassification rate Specificity Sensitivity

Testing dataset

Palm leaf derived packaging 40% 60% 1 0.6

Sugarcane derived packaging 60% 40% 1 0.4

LDPE 90% 10% 1 0.9

PLA 100% 0% 1 1

PBAT 90% 10% 1 0.9

PP 100% 0% 1 1

PET 100% 0% 1 1

chemical structure of the materials. After that, a PLS-DA model

with pre-processed MSC and SNV was developed to classify types

of materials. The accuracy, misclassification rate, sensitivity and

specificity values were calculated tomeasure the performance of the

classification model. It gave a satisfactory result where the accuracy

and misclassification of the model was 100 and 0% for all types of

materials. Furthermore, both sensitivity and specificity were 1.

Since the performance of the model on training datasets was

very good, the model was applied to classify types of materials

on the testing dataset. The performance of the model was also

measured. It gave an excellent classification result. The partial least

squares discriminant analysis (PLS-DA) model pre-processed with

MSC and SNV was successful and achieved with 100% accuracy

for PP, PET, PLA. The accuracy for LDPE and PBAT classification

was 90%, while the accuracy level for palm and sugarcane-based

packaging classification was 40 and 60% respectively. A few errors

in misclassification occurred due to the roughness of surface and

scattering of light.

The model has also been applied to overlapping samples and

real-world compostable packaging. The model also gave good

results. For overlapping small samples, the misclassification rate

of palm leaf derived packaging was 20% while other types of

material were 0%. However, the hyperspectral imaging system has

a limitation in common with other IR detection systems, in cannot

reliably detect dark materials because of light absorbance effects.

The classification technique that we have developed is different

to the approach reported by Moroni and Mei (2020). Both systems

are able to identify compostable plastic (PLA) with very high

accuracy. While the accuracy of their model was more than 95%,

our classification model was 100%. The results of Maroni and Mei

study also demonstrated that the spectral indices had a tremendous

impact on performance of the separation system, where accuracy

of the system dropped from 100 to 96% when the spectral indices

(λ1 / λ2) changed to 1,120/1,370. While our study focused on

size resolution, the accuracy decreased with sample size for certain

materials (e.g., palm-leaf derived packaging).

Our system is capable of accurately sorting compostable plastics

at the typical product scale (compostable spoons, forks, coffee

lids) and differentiating them from identical looking conventional

plastic items with high accuracy. For the system to be adopted by

industrial composters, the classification speed needs to be increased

to match the conveyor speeds in use, and real-time robotic removal

of the plastics needs to be demonstrated.

The compostable plastic market worldwide is predicted to reach

$3,102.6 million by 2027. The full environmental advantages of

compostable plastic will only be realized if these plastics does not
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pollute other waste streams and do not enter the open unmanaged

environment. HSI is a promising technology due to real time

sorting: it has high accuracy (99%), low power consumption and

no additional chemicals or water are needed. Some recycling

plants are interested in HSI because it is able to enhance sorting

purity of plastics recycling collections and industrial composting.

Nevertheless, the operational costs of this sorting technology are

significant and can only be justified by higher revenues from

the increased performance of recycling and industrial composting

facilities (Taneepanichskul et al., 2022).
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