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Goals
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Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany

Additive Manufacturing (AM), often referred to as 3D printing, is expected to have

a high impact on the manufacturing industry as well as on society. The inherent

characteristics of AM make it possible to help solve global challenges, which can

be explored in reference to the 17 Sustainable Development Goals (SDGs) of the

United Nations. This is the first paper that examines the connection of AM and the

17 SDGs through a literature review. In this work, it is outlined which SDGs have

a high, moderate or low potential to be fostered by AM. The SDGs are introduced

and corresponding studies relevant to the respective SDG are presented. It is found

that six out of 17 SDGs have high potential to be promoted by AM. These are SDG 1

(No poverty), SDG 3 (Good Health andWellbeing), SDG 4 (Quality Education), SDG

9 (Industry, Innovation, and Infrastructure), SDG 12 (Responsible Consumption and

Production), and SDG 14 (Life below Water). Furthermore, two SDGs have been

identified that have moderate potential to be cultivated by AM. These are SDG 7

(A�ordable and Clean Energy) and SDG 10 (Reduced Inequalities).

KEYWORDS

Additive Manufacturing, 3D printing (3DP), sustainability, Sustainable Development Goals

(SDGs), sustainable development

1. Introduction

1.1. Additive Manufacturing

Additive Manufacturing (AM), often referred to as 3D printing, is a production
technology that creates objects layer by layer and is applicable to a variety of materials such
as polymers (Zhou et al., 2020; Arefin et al., 2021), ceramic (Chen et al., 2019), metal (Murr,
2018; Buchanan and Gardner, 2019), concrete (Nehme and Abeidi, 2022), soil (Fratello and
Rael, 2020), and tissue (Richards et al., 2013).

AM is a collective term comprising several different 3D printing techniques. All these
techniques make use of a digital file, which represents an object, which is printed layer by
layer. According to ISO/ASTM 52900:2021 there are in total seven different AM process
categories (ISO/ASTM International, 2021). The four AM process categories which play
a major role in this work are outlined below by their definition according to ISO/ASTM
52900:2021.

• Binder jetting technology (BJT): liquid bonding agent is selectively deposited to join
powder materials.

• Directed energy deposition (DED): thermal energy is used to fuse materials by melting
as they are being deposited.
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• Material extrusion (MEX): material is selectively dispensed
through a nozzle or orifice.

• Powder bed fusion (PBF): thermal energy selectively fuses
regions of a powder bed.

MEX comprises several AM techniques such as fused filament
fabrication (FFF), where the material is delivered in the form of a
filament which is molten or slightly fluidized. FFF is a very common
and often low-cost AM technique, especially when referring to
so-called “desktop” 3D printers.

PBF also comprises several AM techniques such as Selective
Laser Melting (SLM) and Selective Laser Sintering (SLS). Many
other names are used to refer to techniques that ultimately are a
form of PBF. To keep things simple, as few abbreviations as possible
are used.

This paper does not focus on any particular production
technique. Rather, AM as a totality of all these techniques is
examined. This is the reason why some sections of this work do not
elaborate on the specific AM technique that is used in a respective
case study.

AM shows many advantages in contrast to conventional
manufacturing. The key advantages are:

• On-site manufacturing. Apart from a 3D printer, power
supply, and raw material, no further tools or facilities are
needed. That makes it possible to produce nearly everywhere
and anytime, thus on demand and decentralized (King et al.,
2014; Ford and Despeisse, 2016).

• Higher efficiency, e.g., through less waste material (also
referred to as a low buy-to-fly ratio) (Gebler et al., 2014).

• Shorter supply chains (Gebler et al., 2014).
• More design freedom. AM allows easy production of complex

and entirely new geometries (Olsson et al., 2017; Li et al.,
2020) and thus a high degree of customization (Attaran, 2017;
Srinivasan et al., 2018).

• Possibility to easily print spare parts (Ford and Despeisse,
2016).

• Lower production costs per piece, especially for small
quantities (Hopkinson et al., 2006).

• New materials with new or enhanced properties (Zhang et al.,
2023; Zou et al., 2023), e.g., enhanced material combinations
(Zheng et al., 2021), functionally graded materials (Zhang
et al., 2022) as well as 4D printed parts (Sheikh et al., 2023;
Wang et al., 2023).

• Potential for open source appropriate technology (Pearce
et al., 2010).

For these and other reasons, AM is expected to have a high
impact on the manufacturing industry as well as on society (Jiang
et al., 2017). Zarrabeitia-Bilbao et al. (2019) summarize the benefits
of AM as follows: “AM technologies have been identified as
revolutionary because of their power to change, among other
things, productive systems, skills and wellbeing; and they will have
major implications for society.”

The inherent characteristics of AMmake it possible to solve not
only specific problems but fundamental global challenges as well.
One prominent summary of the most important global challenges
are the 17 Sustainable Development Goals (SDGs) of the United
Nations.

1.2. The Sustainable Development Goals

The 17 Sustainable Development Goals (SDGs) have been
adopted by the United Nations in 2015 as part of the 2030 Agenda
for Sustainable Development. The 17 SDGs are to be achieved by
the year 2030 and formulated as follows (cited fromUnitedNations,
2015):

• SDG 1: No poverty
• SDG 2: Zero hunger
• SDG 3: Good health and wellbeing
• SDG 4: Quality education
• SDG 5: Gender equality
• SDG 6: Clean water and sanitation
• SDG 7: Affordable and clean energy
• SDG 8: Decent work and economic growth
• SDG 9: Industry, innovation, and infrastrucure
• SDG 10: Reduced inequalities
• SDG 11: Sustainable cities and communities
• SDG 12: Responsible consumption and production
• SDG 13: Climate action
• SDG 14: Life below water
• SDG 15: Life on land
• SDG 16: Peace, justice, and strong institutions
• SDG 17: Partnerships for the goals

Each SDG has so-called targets which specify the objective of
the respective SDG. These targets will be used to examine if AM
can foster a certain SDG.

For achieving the SDGs and their targets, several aspects of
modern reality can make a contribution, also a technology like
AM. Many different studies have investigated specific effects of
AM on particular sustainability aspects, but only one paper has
yet been published about AM and its importance for sustainable
development in general: Pearce et al. (2010) determined that AM
has “enourmous potential” in stimulating sustainable development
and many other articles support this statement. However, no paper
has yet been published that investigates the connection of AM and
each of the 17 SDGs. This paper is the first one to do so. It reviews
and assesses the impact of AM on the abovementioned SDGs and
their targets and therefore presents a summary of publications and
findings. Furthermore, this paper may also serve as a guide to
researchers across all disciplines who are interested in meaningful
work related to 3D printing.

2. Method

This work subsumes the findings of a detailed literature
research about AM in connection with the SDGs. All results have
been obtained by means of the search engines Web of Science and
Semanticscholar using the keywords “3D Printing” or “Additive
Manufacturing” in connection with the keywords mentioned or
indicated by the SDGs or their respective targets. In each section
of this article, one SDG will be introduced and the main aspects
of AM and their contribution to the achievement of the SDG will
be outlined, evidenced by studies. At the end of each section, the
potential of AM to contribute to the achievement of the SDG will
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be evaluated, using the qualitative grades “high”, “moderate”, and
“low”. These grades have been defined as follows:

• High potential: AM could foster at least one target of the
respective SDG, if deployed accordingly.

• Moderate potential: AM could foster one target of the
respective SDG, if deployed accordingly. However, the
connection between AM and the target is rather indirect
and/or the evidence is not as strong.

• Low potential: No or not enough evidence could be found
indicating that AM can foster any target of the respective SDG.

It is hereby underlined that this work assesses the potential of
certain SDGs to be stimulated by AM. In many cases, this potential
is not realized. If certain benefits of AM are not (yet) applied
widely because of high costs, lack of infrastructure, or other external
reasons, this is not interpreted as a lower potential.

This literature review does not focus on any particular
AM technique. Furthermore, the differences of the various AM
techniques are not considered in this work. Every study is taken
into account which is suitable to establish a connection between
any aspect, technique, or application of AM and a target of an SDG.

Because this work mentions efficiency improvements and
related environmental gains, it is hereby underlined that the
rebound effect has to be kept in mind when evaluating the
resulting environmental gains. However, a detailed calculation
on all mentioned AM-driven efficiency improvements and their
rebound-adjusted amounts is not performed in this work.

3. Qualitative results

3.1. SDG 1: no poverty

The aim of SDG 1 is stated as follows: “End poverty in all its
forms everywhere” (UnitedNations, 2015). Regarding SDG 1, it was
found that AM benefits two independent areas: Disaster relief and
economic poverty reduction.

Disaster relief is addressed by Target 1.5 of SDG 1, which aims
to “build the resilience of the poor [...] and reduce their exposure
and vulnerability to [...] disasters”. AM can directly stimulate this
target because many benefits of AM in a commercial setting apply
in disaster relief and humanitarian aid as well (Tatham et al., 2015;
Raeymaekers et al., 2021).

The benefits of AM for disaster relief and humanitarian aid
are

• On-site production (James and Gilman, 2015; Tatham et al.,
2015; Saripalle et al., 2016; Corsini et al., 2020; Raeymaekers
et al., 2021),

• Simpler, faster or more robust supply chain (James and
Gilman, 2015; Tatham et al., 2015; Corsini et al., 2020;
Rodríguez-Espíndola et al., 2020; Raeymaekers et al., 2021),

• On demand production, obviating the need for warehousing
(James and Gilman, 2015; Tatham et al., 2015; Saripalle et al.,
2016),

• High mass:volume ratio of the filament, leading to efficient
shipping (James and Gilman, 2015; Tatham et al., 2015),

FIGURE 1

The printer developed by Savonen et al. (2018). Image source:

Savonen et al. (2018), Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

• Higher ability to meet unanticipated demands for certain
goods or operations (Tatham et al., 2015; Kieslinger et al.,
2021; Raeymaekers et al., 2021),

• High ability to print spare parts and other customized parts
(James and Gilman, 2015; Tatham et al., 2015; Corsini et al.,
2020), and

• Possibility to print post-disaster homes/shelters (Gregory
et al., 2016; Venturi et al., 2019).

The benefits lead to an enhanced logistic efficiency. This
directly implies high financial savings because “60 to 80 percent of
humanitarian aid is spent on logistics and shipping” (Saripalle et al.,
2016). The sources mentioned in this context refer to FFF printers
in most but not all of the cases.

Many further (case) studies have proven that AM already
is a very useful and feasible way to improve disaster relief and
humanitarian aid (James and Gilman, 2015; James and James,
2016; Saripalle et al., 2016; Rodríguez-Espíndola et al., 2020;
Tönissen and Schlicher, 2021) and that vulnerable communities
in particular can be helped by AM-supported disaster relief (Yu
and Khan, 2015; Mohammed et al., 2018b). Examples of additive
manufactured goods in humanitarian aid are spare parts for
hospital equipment (Saripalle et al., 2016) and pipe fittings for water
supply (Mohammed et al., 2018b).

One further application example of AM in humanitarian
aid has been given by Savonen et al. (2018) who successfully
developed an open hardware, self-replicating FFF 3D printer
specially designed for humanitarian aid. The printer is robust,
portable, easy to repair and applicable with a variety of materials
and geometries (see Figure 1).

Moreover, two studies indicate that AM could help in
addressing the need of post-disaster housing by 3D-printing
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shelters of soil or concrete (Venturi et al., 2019; Akeila et al., 2021),
which could be understood as a way to reduce the “exposure and
vulnerability to [...] disaster” as mentioned in Target 1.5.

A second way in which AM could benefit SDG 1 is economic
poverty reduction. Target 1.1 aims to “eradicate extreme poverty for
all people everywhere, currently measured as people living on <$
1.25 a day.” Gwamuri et al. (2016) state: “[FFF] 3D printers powered
by affordable mobile PV solar systems have a great potential to
reduce poverty through employment creation, as well as ensuring
a constant supply of scarce products for isolated communities.” In
another study, King et al. (2014) conclude that “The ability to easily
fabricate custom and complex parts or products at exceptionally
low-cost offers people anywhere in the world the ability to print
themselves out of poverty as they can print items to meet their
own needs, those of their community, and export items to sell”.
Two studies also examined the effects of so-called “plastic banks,”
where waste plastic can be exchanged for money. The waste plastic
is subsequently turned into flakes, pellets or 3D printing filament
which is mostly used in FFF printers. Both studies conclude that the
plastic banks can help in reducing poverty (Feeley et al., 2014; Katz,
2019) by giving waste pickers a financial perspective. However, AM
is not the only application possibility for the produced rawmaterial
so it cannot be deduced that all socio-economic advantages of the
plastic banks can be connected to AM.

Interim Conclusion: AM has many advantages that pay off
very well in humanitarian aid. A variety of studies and case
studies observe that AM is a useful and feasible way to improve
disaster relief and humanitarian aid. Even post-disaster shelters
could be made by AM. Two studies also indicate that vulnerable
communities in particular can be helped by AM-supported disaster
relief. For this reason, we conclude that AM can stimulate target
1.5, which aims to “build the resilience of the poor [...] and reduce
their exposure and vulnerability to [...] disasters”. Additionally, AM
could also have some bearing on economic poverty reduction and
thus could contribute at least in a small way to target 1.1, which
aims to “eradicate extreme poverty for all people everywhere”. All
in all, there is a robust body of evidence to support the thesis that
AM could cultivate at least one target of SDG 1 (target 1.5), if
deployed accordingly. According to our definitions, this leads to the
conclusion that SDG 1 has high potential to be encouraged by AM.

3.2. SDG 2: zero hunger

SDG 2 is formulated as to “[e]nd hunger, achieve food security
and improved nutrition and promote sustainable agriculture”
(United Nations, 2015). As AM can in some cases give support to
farmers, two targets of SDG 2 are relevant in the context of farming:
Firstly, target 2.4 aims to “ensure sustainable food production
systems and implement resilient [and sustainable] agricultural
practices” (United Nations, 2015). Secondly, target 2.a mentions
“technology development [...] to enhance agricultural productive
capacity” (United Nations, 2015).

For food production in general and sustainable agriculture in
particular, small-scale farms are of particular importance (Willer
et al., 2019; United Nations, 2020). AM can support resource-
poor landholders by enabling production of cheap, durable and

customizable farming tools (Gebremedhin et al., 2015; Pearce, 2015;
Koslow, 2016; NUI Galway, 2017) and by supporting prototyping
and fabrication of spare parts for agricultural machinery (Gummert
et al., 2019).

Another topic that links AM and SDG 2 is the ability 3D
print food products which, if texture or shape-modified, may
enhance nutrition and quality of living of people with swallowing
disabilities (Chen et al., 2022). This aspect touches upon target 2.1
which aims among other things to “[...] ensure access by people
in vulnerable situations [...] to safe, nutritious and sufficient food”
(United Nations, 2015).

Interim conclusion: It seems that AM could give some support
for farmers in special cases, but there is no clear evidence that
AM can help implementing “sustainable food production systems”
or “practices” as mentioned in target 2.4 or that the technological
support by AM can “enhance agricultural productive capacity”
as mentioned in target 2.a. The most reliable link between AM
and any target of SDG 2 seems to be given by 3D printed food
products. These may contribute to the quality of live of people with
swallowing disabilities and thus touch upon target 2.1. However,
it cannot be evaluated whether AM can enhance the access to
sufficient and suitable food. For this reason, SDG 2 is concluded
to have only low potential to be stimulated by AM.

3.3. SDG 3: good health and wellbeing

SDG 3 is formulated as to “[e]nsure healthy lives and promote
wellbeing for all at all ages” (United Nations, 2015). In terms of
AM, target 3.8 is of special interest. It is verbalized as to “[a]chieve
universal health coverage, including financial risk protection, access
to quality essential health-care services and access to safe, effective,
quality and affordable essential medicines and vaccines for all”
(United Nations, 2015). The medical and healthcare sector is
experiencing a number of advances enabled by AM (Trenfield
et al., 2019). Because there is such a large number of publications
dealing with AM in the medical sector, this work focuses on some
prominent examples: medical devices and instruments, prosthetics
and orthotics, surgical simulators and personalized medicine.

In the field of medical devices, AM is already about to establish
itself (Culmone et al., 2019; 3D LifePrints UK Ltd, 2020). During
the first two years of the COVID-19-pandemic, a vast amount of
papers report or investigate AM of personal-protective equipment
such as face shields, face masks and respiratory filters (Bharti and
Singh, 2020; Celik et al., 2020; Fillat-Goma et al., 2020; Gomes
et al., 2020; Rendeki et al., 2020; Sinha et al., 2020; Wierzbicki
et al., 2020; Zhang et al., 2020; Aydin et al., 2021; Li S. et al.,
2021; Longhitano et al., 2021; Mathew et al., 2021; Sherborne and
Claeyssens, 2021; Singh et al., 2021; Spake et al., 2021; Sterman et al.,
2021;Wang Y. et al., 2021). Onemain advantage in themedical field
is that AM can strongly help overcome shortage (Bishop and Leigh,
2020; Tarfaoui et al., 2020), amongst other things by supporting or
changing the supply chain (Guttridge et al., 2021; Guvener et al.,
2021; Ibrahim et al., 2021; Singh et al., 2021). Another advantage
pays off best in remote regions, where cheap and on-site production
(e.g., of prostheses) can facilitate access to healthcare (Ishengoma
and Mtaho, 2014; Culmone et al., 2019). Additionally, AM allows
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FIGURE 2

A 3D printed skull, which is part of a surgical simulator for brain

surgery (A). A piece of the skull can be removed as in an operation

(B). Image source: Chen et al. (2020), Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

production of medical instruments and devices with previously
unachievable shapes, sizes and degrees of customization (Culmone
et al., 2019; Haleem and Javaid, 2020), e.g., surgical guides (Zadpoor
and Malda, 2016), which in turn can increase surgical accuracy and
hence bring forth the state of the art in medicine generally. Another
medical field benefiting from AM is the domain of prosthetics and
orthotics with a variety of application examples (South et al., 2010;
Zadpoor and Malda, 2016; Zuniga et al., 2016; Enabling the Future,
2019; Team UnLimbited, 2019; Projeto de Extensão Mao3D, 2020;
Ribeiro et al., 2021).

With AM, not only solid objects can be printed, but soft objects
as well. This simplifies the production of mockups of the human
body, so-called surgical simulators (see Figure 2). So far, a variety
of realistic 3D printed simulators have been developed, e.g., for

• Ear surgery (Barber et al., 2016),
• Brain surgery (Ryan et al., 2016; Weinstock et al., 2017; Ding

et al., 2019; Chen et al., 2020; Licci et al., 2020; Hong et al.,
2021; Thiong’o et al., 2021),

• Ear, nose and throat surgery (Shcheglov et al., 2020),
• And other specific kinds of surgery (Barber et al., 2018; Murr

et al., 2021).

Some of the studies mentioned above suggest positive learning
outcomes of prospective or active surgeons through training with
these simulators, some studies also mention the possibility of
manufacturing patient-customized simulators. The studies in their
entirety suggest that AM will enhance the state of the art in
medicine by enabling riskless and realistic surgical training.

The ability of AM to produce highly customizable items in
small quantities is also of special interest to the domain of medicine.
3D printed wound dressings with patient-specific drug dosage and
drug release are being explored and found feasible (Teoh et al.,
2021, 2022), however, AM of oral drugs is studied more widely. The
main benefits of oral drugs produced via AM are as follows:

• Many different materials and AM techniques can be used for
this purpose (Jamróz et al., 2018; Azad et al., 2020; Li et al.,
2020; Vaz and Kumar, 2021).

• A variety of dosage forms is possible (Afsana et al., 2018).
• Customized dosing and drug release profile can be realized,

tailored to the genetic profile, physiology and other individual
requirements of each patient (Afsana et al., 2018; Aquino et al.,
2018; Mathew et al., 2020; Vaz and Kumar, 2021). This is
mainly because many complicated, elaborate structures can be
achieved by AM that are hard or only cost-intensive to achieve
in conventional ways (Li et al., 2020).

• Through AM, several different drugs can be combined in one
tablet (Afsana et al., 2018; Vaz and Kumar, 2021). Besides,
it is assumed that AM could possibly help make patient-
specific medication smarter and more sustainable (Aquino
et al., 2018).

Furthermore, it is expected that 3D printed food could improve
the “physical and emotional health of older people with swallowing
disability” (Chen et al., 2022).

Interim conclusion: There is profound evidence that AM
changes andwill continue to change the state of the art in healthcare
systems worldwide. Besides, AM is considered to be a “great
opportunity to provide easy access to healthcare in [countries of
the global south]” (Culmone et al., 2019), which directly addresses
target 3.8 of SDG 3. This allows the conclusion that AM can foster
at least one target of SDG 3, if deployed accordingly, which means
that SDG 3 has high potential to be cultivated by AM (according to
our definition).

3.4. SDG 4: quality education

SDG 4 aims at “[e]nsur[ing] inclusive and equitable quality
education and promote lifelong learning opportunities for all”
(United Nations, 2015). One group that has to be considered
especially in this context are physically impaired students as
they are particularly at risk of being excluded from education
(UNESCO, 2020). SDG 4 has two targets that address inclusion
of disabled students: Firstly, target 4.5 is dedicated to—amongst
other things—“equal access to all levels of education [...] for
the vulnerable, including persons with disabilities”. Secondly,
target 4.a aims at “inclusive and effective learning environments
for all”.

In general, the targets of SDG 4 address education in schools
as well as higher education. For this reason also studies dealing
with AM in higher education will be taken into account. Two
main aspects have been identified in which AM can enhance
education: As an assistive technology in education in general and
as a supportive technology for blind or low-vision students.

AM has been proven as an assistive technology in schools many
times. There is profound evidence that AM can improve learning
processes in a variety of school subjects (Ford and Despeisse, 2016;
Pinger et al., 2020; Asempapa and Love, 2021; Lin et al., 2021;
Monkovic et al., 2021; Novak et al., 2021; Pearson and Dube, 2022).
Furthermore, results indicate that AM can
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• Promote creativity and analytical thinking (Kostakis et al.,
2015; Ford and Minshall, 2019; Novak and Wisdom, 2020;
Levin and Verner, 2021),

• Increase student motivation/engagement (Kostakis et al.,
2015; Ford and Minshall, 2019; Jones and Mendez, 2021;
Monkovic et al., 2021),

• Raise students’ confidence (Ford and Minshall, 2019) and
• Support interdisciplinary teaching by connecting STEM

subjects with non-STEM subjects (Novak andWisdom, 2020).

In chemistry class, AM enables the fabrication of customized
devices for laboratory which are difficult or very costly to fabricate
with conventional manufacturing technologies (Pinger et al.,
2020). Also integrating AM into the curriculum of engineering
undergraduate seems to hold positive potential in various ways,
e.g., by enabling fast testing of designs and thus enhancing iterative
design processes (Ford and Minshall, 2019).

Children with disabilities are one of the main groups to be
included in the school context and beyond (UNESCO, 2020). As
teaching material in schools is often accessible only in a visual
way, the inclusion of students needs new learning environments
and materials to be made available. AM provides some solutions,
as is has been found to be very supporting for blind or low-
vision students in different subjects such as maths (Willemsen,
2015), chemistry (Singhal and Balaji, 2020), programming (Kane
and Bigham, 2014) or for learning Braille language (Samonte et al.,
2019). In most of these cases, AM is supportive by enabling cheap
and fast production of tactile objects (See and Advincula, 2021).

Interim conclusion: There is evidence that AMhas the potential
to enhance classroom learning in many ways. However, the
advantages of AM can pay off more in the context of inclusive
education as mentioned in target 4.5 and 4.a. There is profound
evidence that AM could highly enhance education for blind or low-
vision pupils because it enables cheap, fast and highly individual
production of tactile objects in many different kinds of school
subjects, hence providing a cheap way to increase accessability of
learning materials. This way, AM could contribute to “inclusive
and effective learning environments for all”. This suggests that AM
could support at least target 4.a, if deployed accordingly. For this
reason, it is concluded that SDG 4 has high potential to be fostered
by AM.

3.5. SDG 5: gender equality

SDG 5 reads: “Achieve gender equality and empower all women
and girls” (United Nations, 2015). Most targets of SDG 5 aim
at closing the gender gap by means of policies and laws. One
characteristic manifestation of the gender gap is a significantly
low share of female and non-binary persons in decision-making
positions, certain degree courses, or occupational fields. Currently,
women are underrepresented in the engineering occupation
(World Economic Forum, 2022) and also in AM-related occupation
(Women in 3D Printing, 2020b; Sculpteo, 2021). However, AM is
considered to help narrowing the gender gap in certain engineering
fields because “With every new technology, social power relations
and thus gender relations are negotiated” (Carstensen et al., 2014).

Two initiatives could be identified that are related to AM and the
empowerment of women as well. These will be introduced and
evaluated in the following.

Women in 3D Printing is a global organization with the goal to
promote women in the AM sector. The community of this initiative
aims to increase the visibility of women who work or do research
in the AM sector and to encourage women to make use of AM
(Women in 3D Printing, 2020a). These intentions are implemented
by networking events, chapters, and annual conferences (Women
in 3D Printing, 2020a). Women in 3D Printing describes itself as
“one of the largest Additive Manufacturing community worldwide”
(Tipe 3D Printing, 2021). With initiatives like these, AM is part of
a movement that already is successfully starting to alleviate gender
inequality. Nevertheless, it is hard to verify a direct link between
AM and an increase in gender equality on a bigger scale.

FabLabs are maker spaces and a community that provides open
access to certain technology and knowledge (FabFoundationUK,
2016). As outlined by De Filippi and Troxler (2016), AM “plays a
central role” in FabLabs. The diversity aspect in FabLabs has been
examined by Voigt et al. (2017). Amongst other things, it was found
that FabLabs have “a huge potential for technological action—
without implying technology determinism—where communities of
any gender, race or age can be empowered” (Voigt et al., 2017).
One example for an inclusive working atmosphere was given
by “‘WeMake’ FabLab in Milan, which is managed by a female
maker [and has] gender ratios of 40% female makers vs. 60% male
makers” according to personal communication (Voigt et al., 2017).
Nevertheless, the majority of all FabLabs is male-dominated (Voigt
et al., 2017). Even though AM plays an important role in FabLabs
and FabLabs in turn are considered being empowering to people of
every gender, it is hard to deduce a direct link between AM and an
increase in gender equality.

Another promising consideration is the number of female
authorships in AM-related studies, research papers and technical
reports. Studies about the number of female authorships in AM-
related research are lacking. For this reason, no conclusions can be
drawn regarding this aspect.

Interim conclusion: There are AM-related initiatives that may
stimulate gender equality, and they give hope but no robust
evidence yet. The connection between AM and gender equality
via these initiatives is too indirect and too unexplored to be
considered as evidence for medium or high potential. According
to our definitions, a lack of evidence for medium or high potential
is considered as low potential. For this reason, it is concluded that
SDG 5 has low potential to be promoted by AM. More research in
this field is needed.

3.6. SDG 6: clean water and sanitation

SDG 6 reads as follows: “Ensure availability and sustainable
management of water and sanitation for all” (United Nations,
2015). There are different methods to prepare drinking water
by using solar radiation, a few of which are highly suitable
for remote regions. AM can push forward the efficiency of the
following methods:
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• Solar disinfection of drinking water (Vyatskikh et al., 2018)
• Passive solar still (Li et al., 2017)
• Water processing through membranes and filters

(Beloshenko et al., 2019; Dommati et al., 2019; Issac and
Kandasubramanian, 2020; Kim et al., 2020; König et al., 2020;
Luukkonen et al., 2020; Tijing et al., 2020; Wang Z. et al.,
2021).

Because most of these methods are highly suitable for remote
areas with the need for better access to drinking water, it seems
that there could be a link between AM and “universal and equitable
access to safe and affordable drinking water for all” as mentioned
in target 6.1. However, even if AM could increase the efficiency
of drinking water preparation, there is no reliable evidence that
this could increase access to or lower the price of drinking water.
For this reason it is concluded that SDG 6 has low potential to be
cultivated by AM.

3.7. SDG 7: a�ordable and clean energy

SDG 7 is formulated as to “[e]nsure access to affordable,
reliable, sustainable and modern energy for all” (United Nations,
2015). The only target of SDG 7 that can be connected to AM in
any way is target 7.2 which aims to “increase substantially the share
of renewable energy in the global energy mix”.

The connection between AM and target 7.2 can be drawn via
energy storage systems which are crucial for the integration of (a
higher share of) renewable energy. Energy storage can be classified
into two types:

• Electrical energy storage to provide buffers for the highly
varying electrical energy produced by some of the renewable
sources.

• Thermal energy storage, e.g., for utilizing industrial waste
heat (Miró et al., 2016) or better integrate wind power
(Heidar Esfehani, 2020).

Electrical energy storage uses batteries or similar kinds of
electrochemical energy storage devices. A variety of research groups
used AM to fabricate battery parts or entire batteries. Many of them
achieved better battery performance due to the use of AM and,most
notably, stated that AM will strongly push forward the efficiency or
overall performance of batteries (Rocha et al., 2017; Tian et al., 2017;
Down et al., 2019; Singh et al., 2019; Pang et al., 2020).

Thermal energy storage systems represent another type of
energy storage which can be enhanced by AM (Dada et al., 2020).
Especially in the field of phase change materials AM enables some
major advancements, e.g., in the heat transfer performance (Dada
et al., 2020; Ge et al., 2020; Moon et al., 2020).

Apart from energy storage, clean energy supply is another
major topic regarding SDG 7. One of the most promising examples
as well for stationary and for mobile energy supply is the fuel
cell (Tai et al., 2019). In the last years of research, a variety of
AM technologies have been utilized on different types of fuel cells.
Most of all, the so-called microbial fuel cell has been made by
AM in parts or entirely, achieving different types of improvements
(Calignano et al., 2015; Bermúdez-Agudelo et al., 2020; You et al.,

FIGURE 3

A microbial fuel cell completely made by AM. Image source: You

et al. (2020), Creative Commons Attribution (CC BY) license (http://

creativecommons.org/licenses/by/4.0/).

2020). One microbial fuel cell completely made by AM can be
seen in Figure 3. The potential of AM for the field of fuel cells has
been underlined by all research groups mentioned above. Various
studies state that AM is important for further fuel cell development
and that AM enables to improve the performance of fuel cells and
their commercialization (Calignano et al., 2015; Tai et al., 2019;
Bermúdez-Agudelo et al., 2020; You et al., 2020; Jang and Kelsall,
2022; Jia et al., 2022; Sapkota et al., 2022; Tarancon et al., 2022).

Interim conclusion: Due to the facts that AM is expected to
enhance the efficiency of batteries and it could push forward the
efficiency of thermal energy storage, it is concluded that AM is
involved and can be involved more in the improvement of energy
storage, which in turn is crucial for a higher share of renewables in
the global energy mix. This means that AM could encourage some
domains related to target 7.2, but only indirectly. According to our
definitions, it is deduced that SDG 7 has a moderate potential to be
fostered by AM.

3.8. SDG 8: decent work and economic
growth

SDG 8 is formulated as to “[p]romote sustained, inclusive
and sustainable economic growth, full and productive employment
and decent work for all”. The targets of SDG 8 mainly deal
with economic growth, a high employment rate, and labor
rights/conditions. Even though there are studies examining the
impact of AM and AM-related production systems on the labor
market (Kianian et al., 2015; Pérez-Pérez et al., 2018; Ben-Ner et al.,
2019; Freeman and McMahon, 2020), none of them could draw a
conclusion about whether AM will have a rather positive or rather
negative effect on either the job market or labor conditions. No
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further studies could be found that yield further information related
to AM in connection to SDG 8. For this reason, it is concluded that
SDG 8 has no or low potential to be promoted by AM.

3.9. SDG 9: industry, innovation, and
infrastructure

SDG 9 aims to “[b]uild resilient infrastructure, promote
inclusive and sustainable industrialization and foster innovation”
(United Nations, 2015). The topic of resilient infrastructure is
considered too remote from AM. However, two bigger topics
remain that have a close connection to AM: Distributed
Manufacturing and Innovation. Target 9.2 aims to, inter
alia, “[p]romote inclusive and sustainable industrialization”
(United Nations, 2015). This keyword leads to the topic
of Distributed Manufacturing, which is a new approach to
organize manufacturing. It works through a broad geographic
dispersion (decentralization) of smaller, regional, inter-connected
manufacturing sites (Johansson et al., 2005) and exhibits a
variety of benefits like shorter lead time, more flexible supply
chains, positive sustainability aspects and job creation (Ford
and Despeisse, 2016; Huang et al., 2017; Nagarajan et al., 2018;
Freeman and McMahon, 2020). Distributed AM is a specific type
of Distributed Manufacturing. Its key benefits are:

• Financial savings for the producer and/or for the customers
(Huang et al., 2017; Turner et al., 2019), in special cases more
than 94% (Gallup et al., 2018),

• 12–60% less lead time (Huang et al., 2017),
• Suitability for spare parts production (Durão et al., 2016), and
• Reduced primary energy use and green house gas emissions

(Baechler et al., 2013; Kreiger and Pearce, 2013; Huang et al.,
2017)

Most of these benefits can be seen as a hint toward AM
supporting inclusive and sustainable industrialization.

One objective of target 9.5 and 9.b is to support innovation in
general (United Nations, 2015). AM itself can be described as an
innovation (Gebhardt et al., 2018), but it also enables innovations.
Almost every section of this work deals with innovations enabled
by AM and there are many more AM-enabled innovations that
are not being mentioned in this work. In general, AM provides
many benefits that inherently enable new or significantly improved
characteristics of produced parts. A few of these benefits are:

• More design freedom. AM allows easy production of complex
and entirely new geometries (Olsson et al., 2017) and a high
degree of customization (Attaran, 2017).

• On-site manufacturing. Apart from a 3D printer, power
supply, and raw material, no further tools or facilities are
needed. That makes it possible to produce nearly everywhere
and anytime, thus on demand and decentralized (Ford and
Despeisse, 2016). In theory, this also gives everyone with
a 3D printer the possibility to innovate at home, which is
pointing toward the topic of “user innovators” (Backstrom and
Bengtsson, 2020)

• Higher efficiency, e.g., through less waste material and shorter
supply chains (Gebler et al., 2014; Sun et al., 2021).

• Possibility to easily print spare parts (Ford and Despeisse,
2016).

• Lower production costs per piece, especially for small
quantities (Hopkinson et al., 2006).

• Potential for open source appropriate technology (Pearce
et al., 2010).

Woodson et al. (2019) examined if AM enables innovations
in an inclusive way. It was found that AM is inclusive in some
aspects (higher accessibility due to its open source nature) while
being exclusive in other aspects (design requires preknowledge).

Interim conclusion: Apart from Distributed AM possibly
fostering “inclusive and sustainable industrialization” asmentioned
in target 9.2, the main benefit of AM with regard to SDG 9 is
its deep connection to innovations. AM enables the production of
new, previously hard to achieve designs (Olsson et al., 2017) and it
changes the way innovations can assume shape, namely at home.
This way, AM can deeply encourage innovations as indicated in
targets 9.5 and 9.b. For this reason, it is concluded that AM has a
high potential to support the achievement of SDG 9.

3.10. SDG 10: reduced inequalities

The aim of SDG 10 is to “[r]educe inequality within and among
countries” (United Nations, 2015). Most of the targets of SDG
10 are thematically quite remote from AM and mostly concern
economics, policies or management. This section will highlight
only those two targets of SDG 10 where a connection to AM can
be drawn. Target 10.1 is stated as follows: “By 2030, progressively
achieve and sustain income growth of the bottom 40% of the
population at a rate higher than the national average” (United
Nations, 2015). In low-income countries, AM could help reducing
poverty (Feeley et al., 2014; King et al., 2014; Gwamuri et al., 2016)
(see section about SDG 1). This suggests the assumption that AM
could possibly contribute to the achievement of target 10.1.

Target 10.2 reads: “By 2030, empower and promote the social,
economic and political inclusion of all [...]” (United Nations, 2015).
A link between political or economic inclusion and AM could not
be found. However, two connections between social inclusion and
AM could be found:

• For assistive devices for people with certain physical
impairments, AM strongly supports development / design (see
Figure 4) as well as enabling people to produce the assistive
devices themselves on very low costs (Gallup et al., 2018;
Gherardini et al., 2020). The assistive devices can in turn
help impaired people to manage their daily life and enable
more autonomy. This way, social inclusion might possibly be
enhanced as well.

• AM can enhance the accessibility of cultural heritage: It
enables an easier production of enhanced and scaled replicas
(e.g., of sculptures) that can be touched and examined at
close range. This way, certain groups can encounter art and
cultural heritage in amuch better way than before, e.g., visually
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FIGURE 4

Selection of adaptive aids for arthritic patients. Clockwise: pen

holder aid, typing aid, knife guide aid, zipper pull aid. Image source:

Gallup et al. (2018), Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

impaired people or children (Neumüller et al., 2014). It can be
deduced that this aspect possibly enhances social inclusion.

Interim conclusion: AM as a technology cannot replace or
compensate for the measures needed in policy to eradicate
inequality. However, AM can possibly support social inclusion in
an indirect way (see above) and thus foster target 10.2. Due to the
fact that AM can promote this target only in an indirect way, it is
assessed that SDG 10 has only moderate potential to be cultivated
by AM.

3.11. SDG 11: sustainable cities and
communities

SDG 11 aims to “[m]ake cities and human settlements
inclusive, safe, resilient and sustainable” (United Nations, 2015).
The following sections mention a few aspects of SDG 11 that can
be addressed a little bit by AM.

Noise is one of the main problems in cities. In terms of sound
absorption, especially low-frequency noise cannot yet be controlled
effectively. For this case of application, so-called “acoustic
metamaterials” are a relatively new and promising technique both
for the improvement of acoustics in and around buildings/road
noise mitigation (Kumar and Lee, 2019). Several studies have
shown that AM can enable new acoustic metamaterials with
higher absorption rates and/or otherwise better sound absorption
properties (Haberman and Guild, 2016; Gao and Hou, 2018; Guild
et al., 2018; Yang et al., 2020). However, sound absorption is only the
alleviation of symptoms and not the elimination of causes, which
would be more effective.

AM gives the opportunity to build large-scale objects as well,
such as buildings. It has been found that buildings or building
components made of AM are likely to exhibit a higher energy

efficiency than conventionally manufactured buildings (Mrazović
et al., 2018). AM of concrete buildings is also a topic of research
(Kaszynska et al., 2020). Furthermore, AM was used by architect
Deena El-Mahdy for building houses of local material in the
Western Desert of Egypt. This directly relates to target 11.c which
addresses “buildings utilizing local materials” (United Nations,
2015).

Interim conclusion: The aspects connected to AM and
sustainable cities are rather vague hints than robust evidence.
Furthermore, no single target of SDG 11 could be found for
which a convincing connection with AM could be established.
Hence, it is assessed that SDG 11 has no or low potential to be
promoted by AM.

3.12. SDG 12: responsible consumption and
production

SDG 12 aims to “[e]nsure sustainable consumption and
production patterns” (United Nations, 2015). AM can support
this goal in many ways, e.g., through fostering Circular Economy,
Distributed Recycling and spare parts production.

Target 12.5 aims to “substantially reduce waste generation
through prevention, reduction, recycling and reuse” (United
Nations, 2015), as does the concept of Circular Economy
(CE). The CE concept is based on a closed-loop of resources,
repairable and durable products, waste reduction, and renewable
energy (Kristensen and Mosgaard, 2020). CE practices have
been found to be potentially directly beneficial for the
achievement of several SDGs, such as SDG 6, 7, 8, 12, and 15
(Schroeder et al., 2019).

AM exhibits some aspects that potentially could benefit CE,
for example

• Possibility to enhance product lifetime by printing spare parts
(Durão et al., 2016; Ford and Despeisse, 2016) or by specific
repair of critical sections via DED (Saboori et al., 2019; Li L.
et al., 2021; Jamieson et al., 2022; Arai et al., 2023),

• Recycling of waste through waste-to-filament processes
(Feeley et al., 2014; Ponis et al., 2021; Romani et al., 2021), and

• More efficient use of resources through complex structures
that need less material (Gebler et al., 2014; Sauerwein et al.,
2019; Sun et al., 2021).

For these and other reasons, many studies come to the
conclusion that AM and CE are compatible with each other
(Despeisse et al., 2017; Sauerwein et al., 2019; Sanchez et al., 2020;
Wilts and Long, 2020; de Mattos Nascimento et al., 2022; Kromoser
et al., 2022).

A key concept of CE is recycling. One specific kind of recycling
that involves AM is called distributed recycling for additive
manufacturing (DRAM). The DRAM concept is often understood
as a system where consumers collect their household or AM waste
plastic, and subsequently, the waste plastic is recycled by the
consumers themselves or in a nearby small-scale recycling site
(Pavlo et al., 2018; Little et al., 2020).

The key advantages of DRAM are as follows:
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• DRAM requires less energy than centralized recycling as it can
significantly lower transportation emissions or in some cases
can be solar powered (Baechler et al., 2013; Mohammed et al.,
2018a; Monnet et al., 2018).

• Economic savings or income for consumers: Waste can be
understood as raw material. When consumers have the means
available to process this raw material, DRAM opens up a way
for them to produce goods on their own and save or earn
money (King et al., 2014; Dertinger et al., 2020).

DRAM has been proven to be feasible by various studies
(Dertinger et al., 2020; Ong et al., 2020; Tanney et al., 2020), also
regarding the mechanical strength of recycled material (Mägi et al.,
2016; Anderson, 2017; Mohammed et al., 2017; Sanchez et al., 2017;
Woern et al., 2018; Little et al., 2020; Ong et al., 2020; Vidakis et al.,
2021).

In addition to that, AM supports resource efficiency in general,
mainly through the following aspects:

• AM facilitates shorter delivery channels and shorter supply
chains (Gebler et al., 2014; Ford and Despeisse, 2016; Freeman
and McMahon, 2020). This increases logistic sustainability of
parts or products made by AM (Pilz et al., 2020) as almost
every kind of transport is accompanied by CO2 emissions.

• In contrast to conventional manufacturing techniques like
milling or casting only as much raw material as needed is used
and less material waste is produced (Gebler et al., 2014; Ford
and Despeisse, 2016; Sauerwein et al., 2019).

• AM enables an extended product life, e.g., through easy
production of replacement parts (Ford and Despeisse,
2016; Sauerwein et al., 2019). On various different websites
websites such as yeggi.com, thingiverse.com,
pinshape.com, myminifactory.com, or
cults3d.com, an immense number of files of replacement
parts for household goods, machinery, and electronic devices
can be downloaded and printed at home. Apart from this
DIY approach, AM is also promising for industrial-made
replacement parts: Jiang et al. (2017) evaluate that it is likely
that in 2030, all commercial spare parts will be 3D printed.

Hence, AM can significantly increase resource efficiency and
thus sustainable practices. These sustainable practices are addressed
in target 12.6 which is formulated as to “[e]ncourage companies,
especially large and transnational companies, to adopt sustainable
practices and to integrate sustainability information into their
reporting cycle” (United Nations, 2015).

Interim conclusion: If AM would be deployed accordingly, it
could stimulate sustainable consumption and production patterns
in various ways. In particular, target 12.5 and 12.6 could be
promoted by AM under favorable conditions. Hence, it is
concluded that SDG 12 has high potential to be cultivated by AM.

3.13. SDG 13: climate action

SDG 13 directly addresses climate change, aiming to “[t]ake
urgent action to combat climate change and its impacts” (United

Nations, 2015), but the means for achieving this target are not
specified very detailed. For this reason, this section will be oriented
toward the targets of SDG 13.

Target 13.1 approaches resilience to climate-related hazards and
disasters, target 13.2 covers climate change measures, target 13.a
aims to ensure climate change-related financial aid to developing
countries, and target 13.b mainly addresses inclusive climate
change-related management in the least developed countries and
small island developing countries (United Nations, 2015).

Even though AM might lead to a more resource-efficient
production and consumption, no way could be found how AM
can effectively help to “combat climate change and its impacts”
as framed in SDG 13 (United Nations, 2015). No evidence could
be found indicating that AM-related efficiency enhancements
are extensive enough to considerably combat climate change via
emission reduction or in another way. Hence, it is concluded that
the potential of SDG 13 to be stimulated by AM is low.

3.14. SDG 14: life below water

SDG 14 is formulated as follows: “Conserve and sustainably use
the oceans, seas andmarine resources for sustainable development”
(United Nations, 2015).

Target 14.2 intends to “sustainably manage and protect marine
and coastal ecosystems to avoid significant adverse impacts,
including by strengthening their resilience, and take action for
their restoration in order to achieve healthy and productive oceans”
(United Nations, 2015). For the restoration of coral reefs, 3D
printed fake reefs have been successfully produced via ceramic
MEX and installed under the sea. The geometrical shape and
surface structure provide sufficient habitat conditions for coral
polyps and fish (Albalawi et al., 2021; Oren et al., 2023). Over
the first years of testing, these measures appear to be a successful
approach to restore coral reefs (Berman et al., 2023), thereby
directly facilitating target 14.2. According to our definition, it is
concluded that SDG 14 has high potential to be fostered by AM.

3.15. SDGs 15, 16, 17

For the following SDGs no or only low potential has been
identified:

• SDG 15 (Life on Land) is dedicated to “protect, restore and
promote sustainable use of terrestrial ecosystems, sustainably
manage forests, combat desertification, and halt and reverse
land degradation and halt biodiversity loss” (United Nations,
2015). For this SDG and its targets, no noteworthy AM-related
publication could be found.

• SDG 16 (Peace, Justice, and strong Institutions) aims to
“promote peaceful and inclusive societies for sustainable
development, provide access to justice for all and build
effective, accountable and inclusive institutions at all levels”
(United Nations, 2015). This SDG cannot be fostered by any
manufacturing technology.
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• SDG 17 (Partnerships for the Goals) is formulated as to
“strengthen the means of implementation and revitalize
the Global Partnership for Sustainable Development”. This
goal clearly cannot be supported by any manufacturing
technology, either.

Due to the absence of meaningful publications establishing a
connection between AM and any of these SDGs, the potential of all
these SDGs has been assessed as low.

4. Concluding discussion

This paper is the first to examine the relationship between
Additive Manufacturing and all 17 SDGs. Based on a literature
review, sources were sought for each SDG that prove whether AM
can contribute to the achievement of this SDG. In the course of
the research, it became apparent that some SDGs seem to be very
predestined to be promoted by AM, others little or not at all. Our
classification of all SDGs into the categories “high,” “moderate,” and
“low” showed that six out of 17 SDGs have great potential to be
promoted by AM: These are:

• SDG 1 (No poverty),
• SDG 3 (Good health and wellbeing),
• SDG 4 (Quality education),
• SDG 9 (Industry, innovation, and infrastructure),
• SDG 12 (Responsible consumption, and production), and
• SDG 14 (Life below water).

Furthermore, two SDGs have been identified that have
moderate potential to be fostered by AM. These are:

• SDG 7 (Affordable and clean energy), and
• SDG 10 (Reduced inequalities).

The potential of SDG 5 was hard to estimate because studies
about the number of female authorships in AM-related research
are lacking. Furthermore, studies about the general connection
between AM and an increase in gender equality are missing. This
research gap is waiting to be dealt with.

It has been shown that in some areas AM has great potential to
benefit the SDGs. However, several of the papers mentioned above
point to the fact that this potential is far from being fully realized.
The results of our research suggest the assumption that each high
potential SDG could be promoted much more strongly by AM if

this would be wanted and planned. Future research is needed about
how exactly these SDGs could be fostered by AM.

5. Remark: about the citations in this
work

Engineering-related articles tend to underrepresent women
scientists in the citation. After writing this work, the female quota
of all persons mentioned in the bibliography was evaluated by
a python script—see Huber (2022) for further information. The
female scientist quota of all cited persons in this work is roughly
23%. The aim of this paragraph is to raise awareness to this topic
and to increase the number of female authors in science.
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