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This paper investigates the volatility spillover between sustainable stocks proxied
by six ESG equity indices of different geographical areas using daily returns
from 2014 to 2022. We apply the Granger causality test to understand return
relationships, the impulse response analysis, and the Diebold-Yilmaz spillover
index. Results show that ESG equity indices are interrelated. Companies with a
good ESG profile in emerging markets and clean technology are more subject
to external shocks and thus more vulnerable. Understanding how risk spillover
evolve and distribute across the global market in the ESG environment is key to
investors and policymakers willing to foster sustainable growth.
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1 Introduction

Over the last decades, investors’ awareness of sustainability and ESG investing has
grown: investors have started questioning the traditional “shareholder value” approach
to evaluating corporate value. Additionally, policymakers have designed several policies
to promote sustainable development and ESG disclosure, aiming to hold companies
accountable for their impact on the planet and societies (Townsend, 2020; Ballestero et al.,
2012).

Investors employ various investment strategies to incorporate sustainable equities into
their portfolios. Negative screening excludes non-sustainable companies or sectors from
asset allocation, while positive screening (or “best-in-class”) targets only companies or
industries considered “sustainable” or “socially responsible.”

Retail investors remain skeptical about sustainable or ESG funds (Al-Hiyari and Kolsi,
20215 Petelezyc, 2022), whereas most institutional investors integrate ESG strategies into
their portfolios.! In the asset management industry, socially responsible or ESG funds
have grown considerably in recent years (Carlsson Hauff and Nilsson, 2023), supported
by the adoption of a harmonized definition of “sustainability” (UNCTAD, 2021; Global
Sustainable Investment Alliance, 2021) and the development of specific ESG indices.
To reach the net zero, GSIA estimated in 2023 a size of sustainable finance of around
$30.3 trillion [Global Sustainable Investment Alliance (GSIA), 2023], while other estimates
are even higher (e.g., 43 trillion by Deloitte, 2024). According to Morningstar (2024)
estimates, the total asset under management by institutional investors in 2023 reached
around 3,000 billions and the vast majority of fund managers report ESG investing is a

1 The relevance of institutional investors in the market is well testified by the holdings of global

equities, that reached 43% in recent years (De La Cruz et al., 2019).
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priority (ITA, 2022). ESG criteria have been gradually included
not only in equities portfolio, but also fixed income (76% of fund
managers included ESG in fixed income in 2022 compared to 42%
in 2021) (ITA, 2022).

ESG investors focus on specific ESG benchmarks that
synthetically track the stock returns of listed companies with strong
ESG performance. Many of these benchmarks emphasize firms’
environmental performance and their impact on climate change
(Global Sustainable Investment Alliance, 2021; Agosto et al., 2023).

The literature compares ESG and traditional investment
strategies and examines the effects of ESG inclusion on portfolio
performance (Ur Rehman et al., 2016; Giese et al., 2019; Cerqueti
etal,, 2021). However, little is still known about the risks embedded
in ESG equity investments (Karoui and Nguyen, 2022; Sabbaghi,
2023), and particularly about volatility spillovers between different
ESG indices of different geographical areas (Sharma et al., 2022)
or different industry markets. Only a limited number of studies
explicitly examine ESG spillovers, leaving significant scope for
further research and leaving several questions yet to be addressed.

This paper addresses this gap by exploring the relationships
among six different ESG equity indices using three distinct
methods: the Granger causality test, impulse response analysis,
and the Diebold-Yilmaz volatility spillover index (Dicbold and
Yilmaz, 2009, 2012).We test the relationships existing between the
ESG indices and also include a traditional index (S&P Oil) to
capture potential spillovers not only between different geographical
or industry markets, but also between the traditional market and
sustainable ones.

ESG equity indices are found to be significantly interrelated.
ESG-compliant companies located in emerging markets and clean
technologies appear more susceptible to external shocks and are
therefore more vulnerable. This represents a critical concern for
both investors and policymakers. These markets play a pivotal role
in enabling a smooth transition to a more sustainable economic
system. Understanding how risks evolve and spread across the
global ESG market is essential for investors aiming to finance
sustainable businesses and for policymakers seeking to promote
greener growth.

The paper is structured as follows: Section 2 presents a
literature review focused on key methodological studies on ESG
and spillovers; Section 3 outlines the data and methodology; Section
4 discusses the results. The final section concludes.

2 Volatility spillovers

The literature on volatility spillovers is wide and increasing in
volume after the contributions of Diebold and Yilmaz (2009, 2012,
2014), but the literature contributions dedicated to ESG volatility
spillover are relatively less and still expanding.

Among the studies published to date, many investigate the
Environmental dimension in the ESG, namely spillovers between
the traditional markets (mainly proxied by the oil index) and green
energy sectors through variance decompositions from a vector
auto-regression approximating model by Diebold and Yilmaz
(2009, 2012, 2014) and their extensions.
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In this paragraph, we review and summarize the most relevant
studies on ESG volatility spillovers, adopting a wide definition of
ESG, hence including also studies on clean energy and sustainable
indexes.

Among the most relevant papers, Henriques and Sadorsky
(2018) apply Vector Autoregression (VAR) to study the relationship
between oil price changes, clean energy stock prices, and
technology stock prices. They find the impact of oil prices on
alternative energy stock prices is smaller than the impact from
technology stock prices. Kumar et al. (2012) applied a VAR model
for studying the relationship among clean energy stock prices,
oil prices and carbon prices and they concluded that oil prices
could affect the stock prices of clean energy firms, while the
correlation only exists in the economic recession period. These
findings were further extended by Sadorsky (2012), who modeled
conditional correlations and examined volatility spillovers between
oil prices and the stock prices of clean energy and technology
companies. Their results, based on four multivariate GARCH
models (BEKK, diagonal, constant conditional correlation, and
dynamic conditional correlation), revealed that clean energy stock
prices exhibit stronger correlations with technology stock prices
than with oil prices. Supporting this line of inquiry, other
studies—such as Dutta and Hasib Noor (2017), Reboredo et al.
(2017), Reboredo and Ugolini (2018), Reboredo et al. (2019)—
demonstrated that incorporating crude oil price fluctuations can
enhance the accuracy of volatility forecasts for clean energy stocks.
Part of the literature also included bonds in their evaluation: for
instance, Reboredo and Ugolini (2020) uses a green bond index
with MSCI World and Energy indices and find that price spillovers
between green bonds and the stock market are relatively weak or
insignificant. Elsayed et al. (2020) explored the temporal patterns
of volatility transmission between energy markets and major global
financial markets. They found that both the World Stock Index and
the World Energy Index act as primary transmitters of volatility to
the clean energy sector, with the influence of energy markets on
global financial systems becoming especially pronounced during
and after financial crises.

Expanding on the notion of directional spillovers, Urom
et al. (2022) employed a time-varying parameter VAR model
with stochastic volatility to analyze how uncertainty in oil prices
affects clean energy sectors. Using wavelet and Cross-Quantilogram
techniques, they found that both the direction and magnitude of
clean energy sector responses vary significantly across different
sectors. These variations are also influenced by prevailing market
conditions and investment horizons. Importantly, their results
show that spillovers from oil price uncertainty are more substantial
over intermediate and long-term horizons. Umar et al. (2022)
applies wavelet analysis to explore the relationship between ESG
index volatility and financial panic across both time and frequency
domains.

Within the frequency connectedness framework proposed
by Barunik and Ktehlik (2018), Ferrer et al. (2018) analyzed
the co-movement of returns and volatilities across various time
frequencies. Their study focused on stock prices of U.S. alternative
energy companies, crude oil prices, and several major financial
variables—including high-tech and conventional energy stocks,
U.S. 10-year Treasury bond yields, the U.S. default spread, and
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the volatilities of U.S. equity and Treasury markets. Their results
suggest that most of the return and volatility linkages occur over
short-term horizons, and that crude oil prices are not the dominant
factor driving the performance of renewable energy companies.

By employing a quantile vector autoregression framework,
(2022)

transmission and connectedness among green indices. Evidence

Khalfaoui et al have investigated time-frequency
from empirical results has shown high spillover and volatility effects
among the indices and a strong connectedness between climate
change indices at extreme lower and extreme upper quantiles.

Taking from the methodological perspectives above cited,
recently, a strand of literature has focused on studying volatility
spillover between ESG indices in the frequency connectedness
framework.

Nevertheless, to the best of our knowledge, only a few studies
explicitly model ESG risk spillovers and this leaves room for further
investigations and leaves some research questions unanswered.
Gao et al. (2022) investigated the risk spillover level and risk
contagion mechanism of international ESG stock markets in
different frequency domains, showing that the entire system
presents a small-world structure, and the internal regions display
different risk spillover characteristics.

Cagli et al. (2022) examined the dynamic connection and
volatility spillovers between commodities and sustainable firms,
highlighting volatility spillovers between ESG indices covering
the USA, developed and emerging markets, and commodity
indices including energy, industrial metals, and precious metals.
Their findings indicate that all ESG indices are net volatility
transmitters and that all commodity indices other than crude oil
and copper are net volatility receivers. ESG volatility spillovers
for the BRICS market are investigated by Sahoo and Kumar
(2022), who find bi-directional causality among the four ESG
indices and unidirectional causality from Brazil, South Africa, and
India to China. Papathanasiou et al. (2022) analyzed the volatility
transmissions between Growth and ESG stocks, showing that the
volatility transmissions tend to increase in intensity and magnitude
during periods of turmoil.

3 Materials and methods

To analyze risk spillovers in the ESG domain, in this work, we
surveyed the literature dealing with ESG indexes, especially in the
domain of volatility spillover. We found many indices employed
by the literaure and we searched all the indices in Refinitiv Eikon
database to extract historical prices. Of the 15 ESG stock indexes
surveyed, only 5 had sufficient data to be included in the analysis.
We retained, hence five ESG/clean energy indexes, all published
by established Index providers (e.g., Standard & Poor’s or MSCI).
Given the importance in the literature attributed to energy indexes,
we added the SP_OIL Index to capture traditional energy dynamics.

The selection of these indices is guided by the need to ensure
global coverage, sectoral diversity, and alignment with widely
recognized ESG standards. Each index reflects unique regional
or thematic dimensions of ESG investing, thus supporting a
multidimensional analysis of risk transmission within and across
sustainability-linked equity markets (Table 1).
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TABLE 1 Market indices employed in the study.

Index Abbreviation

S&P Europe 350 Carbon Efficient SP_CEFF
S&P /TSX Renew Eng/Clean Tech SP_CLEAN
MSCI EAFE ESG Leaders ESG_EAFE
MSCI Emerging Markets ESG Leaders | ESG_EME
MSCI ACWI ESG Leaders Index ESG_ACWI
S&P OIL SP_OIL

The table contains the name of the indices employed in the study and the abbreviations used
in the paper.

From a geographical perspective, the MSCI ACWI ESG Leaders
index includes large- and mid-cap companies with superior
ESG performance across both developed and emerging markets
worldwide (ESG_ACWTI). The MSCI EAFE ESG Leaders index
focuses on developed markets outside North America, specifically
Europe, the Asia-Pacific region, and the Far East, providing insight
into ESG practices within mature, highly regulated economies
(ESG_EAFE). The MSCI Emerging Markets ESG Leaders index
targets ESG leaders in developing economies such as China,
India, Brazil, and South Africa. It is particularly relevant for
understanding ESG dynamics in regions characterized by higher
geopolitical and macroeconomic volatility, offering insight into the
vulnerability of these markets to both sustainability-related and
traditional shocks (ESG_EME).

On the sectoral side, the S&P Europe 350 Carbon Efficient
(SP_CEFF) and S&P/TSX Renewable Energy & Clean Technology
(SP_CLEAN) indices provide targeted exposure to firms leading in
carbon efficiency and clean energy innovation, two strategic pillars
of the environmental transition and core elements of climate-
aligned investment strategies. These indices allow for the analysis
of sector-specific ESG dynamics, particularly in industries that
are directly linked to decarbonization efforts and technological
transformation.

To establish a comparative baseline with conventional energy
markets, the S&P Oil Index is included as a traditional benchmark
tracking the performance of fossil fuel companies. This contrast
enables the assessment of volatility linkages between ESG-
compliant and non-ESG market segments, particularly under
conditions of systemic stress or during phases of accelerated energy
transition.

We obtainded daily data from Refinitiv Eikon for the most
recent period after running the research. After cleaning the dataset,
we are left with 2021 observations from 15 September 2014 to 7
June 2022 of five ESG indices with different geographical scope or
sectorial specialization and one traditional index (SP_OIL), also
to evaluate possible spillovers between sustainable markets and
traditional ones as already briefly discussed.

Before studying the volatility spillovers, we first analyze return
patterns. We therefore compute the return series, calculated by the
logarithmic difference method of R; = log(P;) — log(P;—1). Price
dynamics are shown in Figures 1, 2. The graphs show an increasing
trend, but all the series experience a strong fall in price in the early
2020, as a probable outcome of the COVID-19 pandemic outbreak
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and diffusion. After that, the ESG indices show a positive pattern
until the early 2022, as rising prices and the Ukrainan conflict,
coupled with increasing inflation rates and interest rates might have
exerted a negative influence on the performance of ESG leaders
(Shahzad et al,, 2023). Additionally, SP_OIL shows an increasing
trend, overall, probably due to the rising costs of commodities, also
fueled by the Ukrainian war (Min, 2022; Skare et al., 2022). The
descriptive statistics of the return of ESG indices are presented in
Table 2.

Table 2 reports the descriptive statistics for the daily returns
of the selected indices over the sample period, highlighting
distinct returns, volatilities, and distributional features across ESG
and non-ESG market segments. The empirical results confirm
heterogeneous behavior across the indices, justifying their inclusion
in the volatility spillover framework. The inclusion of percentiles
provides additional insight into dispersion and asymmetry,
complementing the analysis of higher-order moments. These
distributional properties justify the construction of a spillover
framework that accounts for varying tail risks, sectoral dynamics,
and regional sensitivities within sustainable and conventional
equity markets.

The ESG_ACWI shows a positive mean daily return
(0.022) with moderate volatility (standard deviation: 0.915).
The interquartile range (IQR), suggests a relatively balanced
distribution with limited dispersion around the median. However,
the series is left-skewed (-1.306) and leptokurtic (kurtosis: 20.57),
indicating exposure to occasional sharp negative movements.

The MSCI EAFE ESG Leaders (ESG_EAFE) presents a lower
mean return (0.005) and similar standard deviation (0.909), with an
IQR from -0.443 to 0.462. This points to slightly tighter dispersion
but continued asymmetry (skewness: -1.119) and fat tails (kurtosis:
15.23), signaling sensitivity to tail risks during market stress.

The MSCI ESG Emerging Markets (ESG_EME) registers a
mean return of 0.007 and higher volatility (1.056), with an IQR
from -0.553 (25%) to 0.586 (75%), reflecting wider variability. The

TABLE 2 Descriptive statistics on indices’ returns.

10.3389/frsus.2025.1612279

distribution is less skewed (-0.543) but still leptokurtic (kurtosis:
4.66), confirming its vulnerability to external shocks. The S&P
Europe 350 Carbon Efficient (SP_CEFF) has a mean return of
0.011 and standard deviation of 1.096, with percentiles ranging
from -0.548 to 0.582. The data reveal substantial dispersion and
pronounced asymmetry (skewness: -1.134), suggesting heightened
sensitivity to downside shocks, likely linked to policy and
commodity price shifts in the European context.

The S&P/TSX Renewable Energy & Clean Technology
(SP_CLEAN) shows the most volatile ESG profile (std. dev.: 1.263),
with a relatively high mean return (0.019). Its interquartile spread (-
0.707 to 0.674) and extreme kurtosis (20.50) point to frequent large
swings, particularly on the downside (skewness: -1.104), consistent
with the volatility typical of emerging clean energy technologies
and regulatory exposure. The S&P Oil Index (SP_OIL) displays
the highest overall volatility (1.380) and mean return (0.026), with
wide percentiles (25%: -0.738; 75%: 0.761). Its distribution is heavily
skewed left (-1.206) and leptokurtic (13.72), highlighting its strong
exposure to extreme movements tied to geopolitical instability and
commodity price shocks.

As briefly mentioned, the considered timeframe for this study
includes the COVID-19 pandemic (2020) and the Russia-Ukraine
war (from 2022 onward), making it particularly relevant for
analyzing the impact of such exogenous shocks on financial market
behavior.

Employing the Pruned Exact Linear Time (PELT) algorithm
(Killick et al, 2012), which allows efficient identification of
breakpoints in the statistical properties of a time series, we observed
changes in both the mean and variance. This method utilizes a cost
function based on the Radial Basis Function (RBF) kernel, which
is particularly sensitive to joint shifts in location and dispersion.
This approach detects points in time where the mean and variance
of returns shift significantly. The results show that several assets
exhibit distinct breakpoints around the time of the aforementioned
crises, underscoring the substantial influence of global economic

Statistic ESG_ACWI ESG_EAFE ESG_EME SP_CEFF SP_CLEAN SP_OIL
Number of 2020 2020 2020 2020 2020 2020
observations

Mean 0.022 0.005 0.007 0.011 0.019 0.026
Std deviation 0.915 0.909 1.056 1.096 1.263 1.380
Min -9.850 -10.770 -7.234 -12.451 -13.290 -13.561
25% percentile -0.323 -0.402 -0.531 -0.446 -0.479 -0.657
50% percentile 0.046 0.025 0.036 0.048 0.000 0.014
75% percentile 0.445 0.459 0.603 0.554 0.547 0.814
Max 8.180 6.705 5.651 8.361 9.990 8.665
Skewness -1.306 -1.119 -0.543 -1.134 -1.104 -1.206
Kurtosis 20.569 15.225 4.655 13.698 20.496 13.724
P-value 1.732e-18 0.000 2.031e-30 7.583e-27 7.840e-21 7.704e-22
ADF -10.418%** -39.606*** -18.728** -14.43244* -11.396*** -11.838**

*** denotes rejection of the null hypotheses at the 1% significance level.

The table contains the main descriptive statistics of the indices employed in the study. ADF stands for Augmented Dickey-Fuller test.
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events on the structure of financial data and the importance of
accounting for such shifts in econometric analysis (Figure 3). This
evidence paves the way for future research on the effect of such
breaks on the structure of volatility spillovers, and it will be taken
into consideration when commenting our results.

3.1 Returns and volatilities

In this section, the daily price, squared daily returns (RV)
and Realized Semivariance (RS) for the ESG indices are described.
Squared daily returns (RV) is a financial metric that measures the
actual volatility of an asset’s price over a given time period. It is
calculated based on the realized or actual returns of the asset, rather
than the expected or implied returns. RV is often used to assess the
risk associated with an investment and to inform trading decisions.
It is commonly used in financial modeling, risk management, and
the development of investment strategies. Typically, RV is used as
a financial metric allowing to capture the variation in asset prices
over a given time period. Quite generally, we can mathematically
define the RV as the sum of squared returns over a fixed time

interval, T:

T
RVp =Y "1} M
t=1

Frontiersin Sustainability

where r; is the return of the asset at time ¢. RV is often expressed in
annualized terms by multiplying it by the number of trading days
in a year, D, and taking the square root:

RVT, annualized = V D-RVT, (2)

even if, in practice, RV is typically calculated using high-frequency
data, such as tick data or intra-day data. One common approach is
to use the sum of squared returns over a fixed time interval of At,
such as 5minor 1 h:

T/At
RVar= Y 1 3)
t=1

where r;a; is the return of the asset over the time interval At
starting at time (f — 1)At. The annualized RV is then computed
analogously as we have seen before, namely:

RVAt, annualized = V D/At “RVay, (4)

accordingly, RV is often used as a measure of market risk, as
higher volatility implies higher risk and, as a consequence, it has
been widely implemented in the calculation of option prices, as
the volatility of the underlying asset is a key determinant of option
prices.
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TABLE 3 Descriptive statistics on indices’ squared daily returns.

10.3389/frsus.2025.1612279

Statistic ESG_EAFE ESG_EME SP_CEFF SP_CLEAN
Number of observations 2020 2020 2020 2020 2020
Mean 0.837 0.826 1.114 1.201 1.595
Std deviation 3.958 3.424 2.867 4.746 7.544
Min 0.000 0.000 0.000 0.000 0.000
25% percentile 0.027 0.038 0.064 0.046 0.045
50% percentile 0.146 0.183 0.325 0.250 0.255
75% percentile 0.255 0.677 0.677 0.896 1.010
Max 97.029 115.989 52.327 155.029 176.612
Skewness 17.393 22.324 9.348 20.535 15.462
Kurtosis 367.812 674.207 125.001 588.263 297.188
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FIGURE 4
Squared daily returns of each ESG index. The figure shows the squared daily returns the indices included in the study over the time period 2014-2022.

Andersen and Bollerslev (1998) presented the following
definition of the squared daily returns:

N
_ 2
RV = § :rz,i’
1

where RV; is the RV for day t and r;; stands for the observed
i-returns for day ¢, and N shows the number of observations
of daily returns. Moreover, according to Barndorff-Nielsen et al.
(2010), the Realized Semivariance that records variations in daily
returns associated with both upward and downward movements is
identified. They are defined as follows:

N N
- 2 + 2
RS, = Z trilng<0, RS = Z 1hilr >0
1 1

Table 3 reports descriptive statistics of squared daily returns for
the ESG indices included in the analysis, used as proxies for realized
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volatility (RV). Figure 4 illustrates the relationship between squared
daily returns and price for each ESG index, along with a comparison
between the average values of all ESG indices and the average values
of their corresponding prices.

These metrics provide insights into the short-term variability
of ESG equity returns and the statistical properties of market risk
within each index.

SP_CLEAN stands out with the highest average realized
volatility (mean RV = 1.595) and the largest dispersion (standard
deviation = 7.544), highlighting its role as a highly volatile thematic
index focused on renewable energy and clean technology. The
presence of extremely high kurtosis (297.19) and positive skewness
(15.46) confirms the occurrence of infrequent but extreme volatility
spikes, consistent with its sensitivity to sector-specific shocks and
policy uncertainty.

Similarly, SP_CEFF, though less volatile on average (mean RV =
1.201), presents substantial tail risk (kurtosis = 588.26) and extreme
skewness (20.54), suggesting that volatility in carbon-efficient
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TABLE 4 Descriptive statistics on indices’ squared positive daily returns variance (RV*).

Statistic ESG_ACWI ESG_EAFE ESG_EME SP_CEFF SP_CLEAN
Number of observations 2020 2020 2020 2020 2020
Mean 0.366 0.364 0.511 0.519 0.735
Std deviation 1.970 1.494 1.603 2.135 3.849
Min 0.000 0.000 0.000 0.000 0.000
25% percentile 0.000 0.000 0.000 0.000 0.000
50% percentile 0.002 0.001 0.001 0.002 0.000
75% percentile 0.198 0.211 0.364 0.306 0.299
Max 66.910 44.955 31.929 69.909 99.802
Skewness 22.828 16.629 9.320 19.006 16.691
Excess Kurtosis 689.051 423.178 131.730 562.895 353.086

European firms is generally low but susceptible to abrupt surges—
possibly triggered by macroeconomic or regulatory shocks in the
EU energy landscape.

ESG_EME displays a relatively high mean RV (1.114) with the
lowest kurtosis (125.00) among the group, indicating more frequent
medium-scale volatility, most likely driven by structural instability
and heightened exposure to global market turbulence typical
of emerging economies. Its skewness (9.35), though elevated, is
comparatively lower than that of sectoral indices, implying a more
persistent rather than episodic volatility regime.

The global ESG indices, ESG_ACWI and ESG_EAFE, show
lower average RV values (0.837 and 0.826 respectively), and
relatively moderate skewness and kurtosis, though still indicative of
non-normality. These patterns are consistent with their diversified
composition and broad market coverage, which tends to smooth
out idiosyncratic volatility shocks. Nonetheless, the kurtosis values
remain high (367.81 for ESG_ACWI and 674.21 for ESG_EAFE),
reinforcing the conclusion that ESG equity volatility, even in
diversified portfolios, is characterized by fat-tailed behavior and
non-Gaussian dynamics.

In addition to moments, the 25th, 50th (median), and 75th
percentiles further enrich the analysis by capturing distribution
asymmetry and intra-distribution variability across indices. For
instance, SP_CLEAN and SP_CEFF display wide interquartile
ranges, highlighting not only higher tail risks but also broader
volatility fluctuations in the central part of the distribution. In
contrast, the global indices (ESG_ACWI and ESG_EAFE) exhibit
narrower percentile spreads, reflecting lower overall variability
and reduced frequency of extreme deviations around the median.
These percentile-based observations complement the higher-order
moments and confirm the asymmetric and regime-dependent
nature of volatility dynamics in ESG markets.

These results suggest that ESG indices are heterogeneous not
only in terms of return behavior but also in their volatility profiles.
The clean energy and carbon-efficient indices are particularly
exposed to idiosyncratic, high-magnitude volatility events, whereas
globally diversified ESG benchmarks reflect more stable, though
still non-linear, risk characteristics. These distinctions are essential
for understanding the mechanics of volatility transmission,
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particularly when assessing asymmetric shock propagation across
ESG and non-ESG markets.

In analyzing the dataset, a notable observation can be made
from the figure depicting the squared daily returns across different
indices. It is evident that during the years 2020 and 2022, the index
that exhibited the highest volatility was SP_Clean. Interestingly,
when considering the entire duration of our dataset, this index
demonstrated relatively lower volatility compared to others. In
contrast, the index ESG_EME displayed the considerable volatilities
across the entire time range from September 2014 to June 7,
2022. The findings show that while SP_CLEAN experienced a
sharp increase in volatility during the specific period of 2020-
2022, it generally displayed lower volatility compared to other
indices over the entire dataset time-frame. On the other hand,
ESG_EME consistently exhibited higher volatility throughout the
entire dataset period and ranked second in terms of price volatility.
At the end, as we can see in the figure, in average, squared daily
returns of ESG indices’ price in the considered time period in our
dataset is low volatile. As depicted in the figure, we observe that
squared daily returns of the average of the ESG index returns within
the analyzed time period is relatively low, indicating stability, and
we just have a sharp increase in the beginning of 2020.

Furthermore, in Tables4, 5, we also state the statistical
descriptors of squared positive daily returns variance (RV") and
squared negative daily returns variance (RV ™) for the ESG indices
in our dataset, respectively.

Table 4 presents descriptive statistics for the positive realized
semivariance (RV ) across the five ESG indices, which is employed
as a proxy for volatility associated with positive return movements.

Among the indices, SP_CLEAN exhibits the highest mean RV *
(0.735) and the greatest dispersion (standard deviation = 3.849),
confirming its profile as a highly volatile thematic index. SP_CEFF
is the second-highest index in terms of mean RV, which stands at
0.519, and exhibits significant tail risk, as evidenced by its extreme
skewness (19.01) and kurtosis (562.90). The percentiles (25% =
0.003; median = 0.013; 75% = 0.214) indicate that, although spikes
in positive volatility are relatively rare, they tend to be concentrated
and are often associated with carbon pricing shocks within the
European market.
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TABLE 5 Descriptive statistics on indices’ squared negative daily returns variance (RV~).

Statistic ESG_ACWI ESG_EAFE ESG_EME SP_CEFF SP_CLEAN
Number of observations 2020 2020 2020 2020 2020
Mean 0.471 0.462 0.603 0.681 0.860
Std deviation 3.483 3.135 2.503 4.321 6.585
Min 0.000 0.000 0.000 0.000 0.000
25% percentile 0.000 0.000 0.000 0.000 0.000
50% percentile 0.000 0.000 0.000 0.000 0.000
75% percentile 0.104 0.161 0.282 0.199 0.230
Max 97.029 115.989 52.327 155.029 176.612
Skewness 21.833 27.716 12.441 25.372 20.375
Kurtosis 556.056 952.299 206.783 837.108 483.302

ESG_EME index shows a mean RVT of 0.511 and a
lower standard deviation (1.603), which indicates moderate but
more persistent upside volatility. Conversely ESG_ACWI and
ESG_EAFE exhibit lower average RVT values (0.366 and 0.364,
respectively), along with narrow interquartile ranges (ESG_ACWT:
0.002-0.093; ESG_EAFE: 0.001-0.108) and low medians (0.006 and
0.003). The high kurtosis values (689.05 for ESG_ACWT; 423.18
for ESG_EAFE) confirm the potential for rare but extreme positive
return movements.

The different patterns of RVt over the time considered could
serve as a starting point for evaluating the dynamics of realized
semivariance over breaks or different regimes.

Table 5 provides some insights into downside risk through
RV, highlighting that, across all indices considered, RV~ values
are consistently higher than RV values, both in terms of mean and
maximum. This asymmetry confirms that the negative component
of volatility is not only more frequent but also more intense in ESG
equity markets. These findings strengthen the case for adopting
semivariance-based metrics to model volatility transmission and
capture the inherently asymmetric nature of risk, especially during
periods of financial stress or systemic realignments.

SP_CLEAN once again emerges as the index with the
highest downside risk (mean RV~ = 0.860), coupled with highly
pronounced tail behavior (maximum RV~ = 176.61; kurtosis =
483.30). SP_CEFF also exhibits severe downside tail risk, with
the highest kurtosis overall (837.11) and a substantial mean RV ™
(0.681), indicating that carbon-efficient portfolios are not immune
to intense downward pressure. ESG_EME displays a relatively more
balanced risk profile, with moderate downside volatility (mean
RV~ = 0.603), although its distribution still reveals a degree of
asymmetry. Finally, ESG_ACWI and ESG_EAFE, while showing
lower average RV~ values, maintain very high kurtosis levels,
exceeding 550 and 950, respectively.

As observed in Figures 5, 6, it is evident that the highest (RV 1)
was less than the highest (RV ™) for all ESG indices. Notably, the
ESG_EME index exhibits the highest magnitude of both negative
and positive semivariance, making it the most volatile index in
terms of semivariance within the specified time frame of our
dataset. Also, for SP_CLEAN we observe that the after 2020 its
positive semivariance was more volatile than before this year. In
the average point of view for all indices in our dataset RV~ mostly
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was near zero except in the beginning of 2020 when we have the
most RV ™. Also it seems that in average the RV is always (except
between 2020 and 2021) more than RV ™.

3.2 Granger causality

In the literature, a high number of studies highlight
the significance of Granger causality tests in explaining the
connectedness between variables (e.g., Granger, 1969; Asafu-
Adjaye, 2000; Barrett et al., 2010; Bollen et al., 2011). In particular,
let us recall that Granger causality is a statistical concept used to
determine whether one time series is useful in forecasting another
time series. Since its introduction, Granger causality has been
widely used in time series analysis. For the sake of completeness
let us recall its functioning. Let X(¢) and Y(t) be two time series
that are observed at discrete time points t = 1,2,..., T, then the
Granger causality test involves fitting two regression models:

YO)=a+YE—1D)+BY(E-2)+ -+ BY(E—p)+e@®)
Y)=a+pY(Et—1D+BYE-2)+ -+ BY(t—p)
FyX(t— 1)+ 9 X(t—=2)+ -+ yX(t —q) + )

where p and g are the number of lags in the models, (t) is the error
term for the first model, and €(t) and 7(t) are the error terms for
the second model. The associated null hypothesis is that X does not
Granger-cause Y, which means that the addition of lagged values of
X to the second regression model does not improve the forecast
of Y beyond what is achieved by the lagged values of Y alone.
Accordingly, the alternative hypothesis is that X does Granger-
cause Y, which means that the addition of lagged values of X to
the second model does improve the forecast of Y. The resulting test
statistic is based on the difference in the residual sum of squares
(RSS) between the two models, i.e.:

p_  (RSSI—RSS;)/q %)
RS$/(T—p—gq—1)

where ¢ is the number of additional lagged values of X in the
second model, and T — p — q — 1 is the degrees of freedom
for the error term in the second model. Hence, under the null
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Squared positive daily returns variance (RV*) of each ESG index. The figure shows the squared positive daily returns variance of the indices included

in the study over the time period 2014-2022.
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hypothesis, the test statistic F follows an F-distribution with g and
T — p — q — 1 degrees of freedom, and, if the calculated F-value is
greater than the critical F-value from the F-distribution at a chosen
significance level, then we reject the null hypothesis and conclude
that X Granger-causes Y.

3.3 Impulse response analysis
Impulse response analysis is a method used in Vector

Autoregressive (VAR) models to analyze the dynamic response of
a set of variables to a shock or innovation in one or more of
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the variables. In other words, it is helpful to understand how the
variables in the model react to a sudden and unexpected change
in one of the variables. Let us recall that the VAR model is based
on considering y; to be an n-dimensional vector of variables at
time ¢, where n is the number of variables. Taking &; to be an n-
dimensional vector of error terms at time ¢, then the VAR(p) model
with p lags reads as follows:

y=ct+tAiy1t Ao+ +Apy—pt e (6)
where ¢ is an n-dimensional vector of constants, A; is an n X n
coefficient matrix for lag i, and et is a vector of error terms assumed
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to be independently and identically distributed with mean zero and
covariance matrix X e. Analogously, we can also express the VAR(p)
model in matrix form as:

p
ye=c+ ZAth—i + &t

i=1

(7)

where y; is an n x 1 vector of variables, ¢ is an n x 1 vector of
constants, A; is an n x n coeflicient matrix for lag i, and &, is an
n x 1 vector of error terms. Accordingly, to estimate the parameters
of the VAR(p) model, we need to estimate the coefficient matrices
Ai and the covariance matrix X¢. This can be done, e.g., using
maximum likelihood estimation, which involves maximizing the
log-likelihood function:

T
T 1 !
f(c,Al,Az,...,Ap,Eg)=—Elog|28|—£ > T e (8)
t=p+1

where T is the number of time periods in the sample, log|%,|
is the logarithm of the determinant of ¥, and &; is the vector
of error terms at time ¢. Then the maximum likelihood estimates
of the parameters can be obtained numerically using iterative
methods such, e.g., the Newton-Raphson algorithm or the gradient
descent algorithm, to then use the VAR(p) model to forecast future
values of the variables as well as to perform an impulse response
analysis to examine the dynamic effects of shocks to the variables.
Consequently, in a VAR model, each variable is modeled as a linear
combination of its own lagged values and the lagged values of all
other variables in the system, and the coeflicients in the VAR model
capture the contemporaneous and lagged relationships between the
variables.

To perform impulse response analysis in a VAR model, we
first identify the variables in the model and the order of the VAR
model. Then, we introduce a shock or innovation to one of the
variables, which is typically modeled as a one-time deviation from
the variables mean. We can then calculate the response of each
variable in the system to this shock over time, using the estimated
coefficients in the VAR model.

The impulse response function shows the dynamic response
of each variable in the system to the shock over a specified time
horizon. The response of each variable is typically presented as a
graph, with the y-axis representing the percentage change in the
variable and the x-axis representing the time period after the shock.
The graphs can help us to identify which variables are affected
most by the shock, how long it takes for the effects of the shock
to dissipate, and whether there are any delayed or persistent effects
on the variables.

Impulse response analysis is a widely used method in both
econometrics and signal processing, particularly to investigate the
dynamic relationship between variables. It involves estimating
the response of a dependent variable to a unit impulse in an
independent variable, and then tracing out the subsequent time
path of the dependent variable. In particular, let us consider a
linear regression model with one independent variable and one
dependent variable:

vt = Bo + Bixt + us )
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where y; is the dependent variable, x; is the independent variable,
uy is the error term, and By and B are the intercept and slope
coeflicients, respectively. Then, we first need to estimate the model
using a suitable method, such as ordinary least squares (OLS). Once
the model has been estimated, we can then calculate the impulse
response function (IRF) for y; with respect to a unit impulse in x;.
The IRF is given by:

(10)

where k is the number of time periods after the impulse. To
calculate the IRF, we can use the estimated coefficients from the
regression model to obtain the predicted values of y; for each time
period after the impulse, e.g., rewriting the regression equation as:

ye = Po + Bix: 11)

where f and f are the OLS estimates of the intercept and slope
coefficients, respectively. If we assume that x; is equal to zero for all
time periods except for period zero, where it is equal to one (i.e., a
unit impulse), then the predicted values of y; for each time period
after the impulse can be calculated recursively as:

Vi1 = ,30 +/§1 <0+ upp
Vg2 = /§0 +/§1 0+ Uy +/§1 i1
Pers = Bo + B - 0+ urys + B - P2

(12)

and so on, until we reach the desired number of time periods after
the impulse. Finally, we can calculate the IRF for each time period
k by taking the partial derivative of ¥, with respect to xs:
ek

9

o P (13)
where the second term is the partial derivative of yt + k with respect
to yt, which can be obtained using the chain rule of calculus. The
resulting IRF indicates how y; responds to a one-time change in x;
over time, hence providing insight into the dynamic relationship
between the two variables. The relevance of IRF to have insights
about the question “what is the effect of one unit shock in feature X
on feature Y?” is further witnessed by the fact that we can control
the standard errors and confidence intervals for the IRF itself by
using standard methods for linear regression. Indeed, let 52 be the
estimated variance of the error term, and let 3;1 be the estimated
variance of the slope coefficient p1. Then the variance of the IRF at
time k is given by:

k—1 k—1
Var [IRF] = 63, | Y IRF} | +262 | Y IRF? (14)
=0 j=0

where the first term is the variance due to estimation uncertainty in
,3A1, and the second term is the variance due to stochastic error in
the model, then we can then use this variance estimate to calculate
the standard error of the IRF at time k as:

SE [IRFy] = +/Var [IRFy]

accordingly deriving a confidence interval for the IRF using the

(15)

standard normal distribution:
IRFy. + 24/2SE [IRFy] (16)
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where z,/; is the critical value from the standard normal
distribution for a given level of significance «. Additionally, it
turns out that IRF allows tracing the transmission of a single shock
within an otherwise noisy system of equations and, thus, providing
fundamental insights into a plethora of economic and financial
scenarios.

Indeed impulse response analysis can be used in the risk
management area, where it can help to analyze the dynamic
relationships between financial market variables, such as stock
prices, interest rates, and exchange rates. Besides, it has been
employed also in the studies of macroeconomics, environmental
economics, international trade and finance, labor economics and
health economics (Kassim et al., 2009; Liitkepohl, 2010; Masih et al.,
2011; Abdel-Latif and El-Gamal, 2020). In this work, to estimate
the impulse responses, we fitted a standard VAR(9) model, where
the lag length was selected using the Akaike Information Criterion
(AIC). All variables are daily returns and were confirmed to be
stationary using ADF tests. The “shock” referred to throughout
this paper denotes a one-unit return innovation in one of the ESG
indices and not a macroeconomic shock.

3.4 The DY spillover index

The Diebold and Yilmaz (2012) methodology provides a
comprehensive framework for measuring spillover risk in financial
markets, which can help investors, policymakers, and regulators
to better understand and manage systemic risks. They proposed a
methodology to measure spillover risks between financial markets,
which involves the following steps:

Estimating the dynamic conditional correlations (DCC)
between the returns of different financial assets, using a
multivariate GARCH model.

Computing the forecast error variance decomposition (FEVD)
of each asset’s return series over a certain horizon, which
captures the percentage of the forecast error variance of each
asset’s return that can be attributed to its own shocks vs. shocks
to other assets.

Using the FEVD matrix to construct a spillover index, which
measures the total spillover risk from all other assets to a
particular asset. This index is obtained by summing up the
FEVD percentages of all other assets that affect the particular
asset.

Normalizing the spillover index to obtain the spillover
intensity index, which measures the relative importance of
each asset in transmitting spillover risk to other assets.
Analyzing the spillover intensity index and the spillover
network graph to identify the key drivers of spillover risk and
the most vulnerable assets in the network.

In this paper, we follow Dicbold and Yilmaz (2009, 2012), as it
allows broadly defining the system networks. The technique can be
given as follows.

Let Y; be the n-dimensional column vector of volatility Y; =
Zle ©;Y;—1 +¢; where ©;(N x N) is the autoregressive coefficient
matrix and ¢; is vector of error terms of dimension N x 1 which
is also iid. First, we apply a vector autoregressive (VAR(p)) model
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to the set of ESG indices, which can be derived from following
equation:

oo
V=) A (17)
j=1
In Equation 17 the coefficient A; = 0 where for negative value
of j and it becomes an identity matrix of order N whenever j = 0,
also it obtains from the following recursive form

P
Aj= Z ViAj—i
i=1

whenever j > 0. Then, utilizing the information available up to
time ¢ + H, we predict future outcomes. Finally, for each element,
we examine the error variance of the prediction, attributing it
to the shocks caused by that particular element in the system at
time ¢. This approach is similar to common econometric methods
of variance decomposition. To determine how much impact a
particular variable has on the forecast error variance of other
variables, we can use the H-step forward Generalized Forecast
Error Variance Decomposition (GFEVD) method. The H-step
generalized variance decomposition matrix is given as D(H)
[dij(H)] and d;;(H) denotes pairwise directional spillovers from
market j to another market 7, and it is given by:

_1 Z (e Ap Y ej)?
Z o (eiAn Y- Apey)

where oj; is the standard error sequence of error vector, ) is the

dij(H) = (18)

covariance matrix of error vector and ¢; is an N x 1 vector, with
one as the i element and zero otherwise. Now to make A more
comparable, we use following equation to standardize the GFEVD

matrix:
_ dj(H)

(19)
dij(H)

i—j =
Y

Now, the elements within the matrix quantify the directional
risk spillover from market j to market i, and all of them satisfy the
conditions ZN d;"f_] 1 and Zf\; ld{f_]
we have the followmg concepts, related to DY spillovers. The

N. Furthermore,

directional DY spillover index can be categorized as either spillover
“from others” (d* ), and the

1<e
difference between these two is called “net spillover”. We have:

) or spillover “to others” (dH

o<—i

df , =100 x Z it (20)
bj=Li#j
and
df_; =100 x Z i (1)

hj=Li#j

Finally we have total spillover index which quantifies the impact
of the spillover effect among N markets on the total variance of
forecast errors, and it calculates the average of the elements that
are not on the main diagonal:
dH

d" =100 x ez ey (22)
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FIGURE 7

Granger causality test on returns. Arrows indicate a 5% significant
Granger causality from the source to the edge of the arrow.
Two-sided arrows indicate a 5% significant Granger-causal effect.

4 Results

4.1 Granger causality

In the literature, a high number of studies highlight
the significance of Granger causality tests in explaining the
connectedness between variables. Bearing this in mind, we use
the Granger causality test to understand the connection between
different returns of ESG indices. The outcomes of the Granger
causality test reveal that almost all the time series in our dataset have
a Granger-causal effect on each other (indicated by blue two-sided
arrows) at a significant level of 5%. Results of Granger causality are
reported in Figure 7. The directional arrows indicate the presence
of significant causality between the returns of each ESG index. Each
arrow shows statically significant Granger causality (from source
to edge of arrow) at 5%. Furthermore, the test results demonstrate
that the causal connection among four indices is unidirectional, as
displayed in Figure 7 using black one-sided arrows.

Table 6 presents Granger causality test results, highlighting
significant directional relationships among ESG indices and the
traditional energy benchmark. The global ESG_ACWI index
shows a strong influence over regional indices (ESG_EAFE,
ESG_EME), sector-specific benchmarks (SP_CEFF), and the fossil
fuel market (SP_OIL), confirming its central role in shaping
volatility dynamics across sustainable equity markets. Similarly,
the ESG_EAFE index, representing developed markets, transmits
volatility to both emerging markets and low-carbon sectors,
suggesting that mature economies play a key role in driving
global ESG risk dynamics. At the same time, emerging market
indices and sectoral ESG benchmarks (SP_CLEAN, SP__CEFF)
exhibit feedback effects toward broader indices, pointing to the
existence of bidirectional spillover mechanisms. Notably, the
SP_OIL index displays persistent structural linkages with both
renewable and emerging ESG indices, highlighting the ties between
conventional energy dynamics and sustainable assets. Overall, these
findings point to a complex and asymmetric system of volatility
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TABLE 6 Granger causality results.

Granger causality P-value Causality
direction

ESG_ACWI — ESG_ACWI 9.9595 | 0.00007* v
ESG_EAFE — ESG_EAFE 6.8721 | 0.0000°* v
ESG_EME — ESG_EME 1.5712 0.1175 O
SP_CEFF — SP_CEFF 1.2689 0.2482 0
SP_CLEAN — SP_CLEAN 2.1098 00254 v
SP_OIL — SP_OIL 1.0997 03589 0
ESG_EAFE — ESG_ACWI 1.8497 0.0547* v
ESG_ACWI — ESG_EAFE 23.6990 | 0.0000%** v
ESG_EME — ESG_ACWI 1.2644 0.2507 0
ESG_ACWI — ESG_EME 14.0097 | 0.0000** v
SP_CEFF — ESG_ACWI 1.9792 0.0375* v
ESG_ACWI — SP_CEFF 12.1892 | 0.0000%** v
SP_CLEAN — ESG_ACWI 34941 | 0.0003°* v
ESG_ACWI — SP_CLEAN 6.0646 | 0.0000°* v
SP_OIL — ESG_ACWI 3.6581 | 0.0001%* v
ESG_ACWI — SP_OIL 63338 | 0.0000°* v
ESG_EME — ESG_EAFE 3.0002 | 0.0014* v
ESG_EAFE — ESG_EME 2.1085 0.0255"* v
SP_CEFF — ESG_EAFE 24688 | 0.0083°* v
ESG_EAFE — SP_CEFF 1.8119 0.0609* v
SP_CLEAN — ESG_EAFE 1.9163 00451 v
ESG_EAFE — SP_CLEAN 0.7933 0.6226 O
SP_OIL — ESG_EAFE 3.6208 | 0.0002* v
ESG_EAFE — SP_OIL 23823 0.0109* v
SP_CEFF — ESG_EME 0.9870 0.4482 0
ESG_EME — SP_CEFF 1.7867 0.0653* v
SP_CLEAN — ESG_EME 27719 | 0.0031%* v
ESG_EME — SP_CLEAN 34747 | 0.0003** v
SP_OIL — ESG_EME 4.6263 | 0.0000°* v
ESG_EME — SP_OIL 1.6053 0.1074 O
SP_CLEAN — SP_CEFF 1.0360 0.4080 O
SP_CEFF — SP_CLEAN 1.1278 0.3386 O
SP_OIL — SP_CEFF 23723 0.0112% v
SP_CEFF — SP_OIL 1.9397 0.0421* v
SP_OIL — SP_CLEAN 39232 | 0.0001* v
SP_CLEAN — SP_OIL 1.5092 0.1381 O

*Significant at 10%, **Significant at 5%, ***Significant at 1%.

The table displays the relatioship between each couple of indices employed in the study, with
the relevant test statistic and p-value. The last column indicates with a check when causality
is statistically significant.

transmission, with relevant implications for risk management and
asset allocation in the context of the global energy transition.
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4.2 Impulse response analysis

The relationship between IR analysis and spillover risk is that
IR analysis can be used to measure and quantify the spillover
effects of an economic shock or crisis. By using IR analysis, we
can identify the variables that are most affected by the shock,
and the magnitude and duration of the spillover effects. This can
help policymakers and investors to better understand the potential
risks and vulnerabilities of different economic systems, and to
take appropriate actions to mitigate the spillover effects. In this
article, we investigate the dynamic relationships between ESG
indices in our dataset using Vector Autoregression (VAR) models.
Specifically, we apply impulse response analysis to examine how
each ESG index responds to a one-unit shock in the return of
another ESG index and vice versa. We summarize the IR analysis
of our dataset on Figure 8.

As we can see in Figure 8, one unite shock in returns on
any of indices have significantly negative effect on SP_OIL, and
considerably positive effect on ESG_ACWI, except whenever the
shock is happened on SP_CLEAN, then the positive effect of this
shock on ESG_ACWTI is small. In both cases it takes at most three
lags for the significant effects of the shock to dissipate. Furthermore,
we can observe that a single unit shock in returns on ESG_ACWI
will only become evident after two time lags. Similarly, a unit
shock on ESG_EAFE will have a positive effect on SP_CLEAN,
which will appear after two time lags. Similarly, the impact of a
one-unit shock on SP_CEFF will be visible on SP_CLEAN after
two time lags. As we can see in the Figure 8, the impact of one
unit shock in SP_OIL is negative on ESG_EME for all lags. This
evidence is overall consistent with the literature, e.g., Urom et al.
(2022) that argues how oil prices and indexes are interrelated
and that shocks propagate differently according to sector and
investment horizon.

4.3 DY index

We employ the DY Index methodology (Dicbold and Yilmaz,
2009, 2012) to compute the spillover index already presented in
Section 3.4. We first run the function for the next 10 steps, and we
obtain the “from”, “to” and “net” spillover reported in Appendix 1.
Results are very similar across the steps and we, therefore, select
the 10 steps ahead. Volatility Spillovers are reported in Table 7. Net
spillovers show the net difference between the “contributions from
others” and “contributions to others”. Accordingly, a positive net
spillover implies that the specific market (index) is a net transmitter
of volatility shocks, meaning it exerts more influence on other
markets by sending volatility shocks. Conversely, a negative net
spillover indicates that the market is a net receiver, meaning it is
less affected by external markets. Among the indices included in
the sample, the highest contribution to volatility spillovers is given
by ESG_ACWI (380.77 including own). The second is SP_OIL.

Volatility spillovers computed using DY index can also be
represented graphically (Figure 9). The net transmitters of volatility
(i.e., indices with positive net spillovers) are reported in green, and
the net receivers (i.e., indices with negative net spillovers) in red.
The arrows indicate the directional volatility transmission between
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the indices, and thinner arrows denote spillover intensities below
20. Clustering of the directional spillovers was performed using the
KMeans method.

Evidence shows that ESG_EAFE, ESG_ACVWI, our global ESG
indices, and SP_CEFF are net trasmitters. While all the other
indices are net receivers (red in the Figure 9). This evidence on
global ESG indices is consistent with Cagli et al. (2022), but our
evidence contradicts the authors’ finding on Oil. According to their
study, oil is a net transmitters, while we find the opposite.

5 Discussion

This study provides significant insights into the volatility
spillovers among ESG equity indices and their interactions with
the traditional S&P Oil index, highlighting the interconnectedness
of sustainable equity markets and their vulnerability to external
shocks. The findings from the Granger causality test, impulse
response analysis, and Diebold-Yilmaz (DY) spillover index reveal
several key patterns that align with and extend the existing
literature, while also offering practical implications for investors
and policymakers.

The Granger causality results (Section 4, Figure 7) show that
most ESG indices exhibit bidirectional causality, indicating a
high degree of interdependence. This aligns with Sahoo and
Kumar (2022), who found bidirectional causality among ESG
indices in BRICS markets, suggesting that ESG markets are highly
integrated globally. The prominence of ESG_ACWTI as a significant
influencer (Table 6) may be attributed to its broad geographical
coverage, encompassing both developed and emerging markets,
which amplifies its role in transmitting shocks. This finding
underscores the importance of global ESG benchmarks in shaping
market dynamics, as noted by Gao et al. (2022), who observed a
small-world structure in international ESG stock markets.

The impulse response analysis (Figure 8) further reveals that
shocks to ESG indices have varied impacts. Notably, shocks to most
indices positively affect ESG_ACWI but negatively impact SP_OIL,
suggesting that ESG markets may respond differently to traditional
energy markets during turbulent periods. This divergence is
consistent with Henriques and Sadorsky (2018), who found that
clean energy stock prices are more influenced by technology stocks
than oil prices. The significant volatility of SP_CLEAN during
2020-2022 (Table 3, Figure 4) can be explained by its exposure
to clean technology firms, which were particularly sensitive to
global disruptions such as the COVID-19 pandemic and energy
price fluctuations (Min, 2022). The negative response of ESG_EME
to SP_OIL shocks across all lags highlights the vulnerability of
emerging markets to energy market dynamics, a finding that echoes
(Elsayed et al., 2020), who noted increased volatility transmission
during crisis periods.

The DY spillover index results (Table 7, Figure 9) indicate
that ESG_ACWI is the primary net transmitter of volatility (net
spillover of 21.900), while ESG_EME and SP_CLEAN are net
receivers (net spillovers of -11.470 and -15.110, respectively).
This supports Cagli et al. (2022), who found that ESG indices
in developed markets act as volatility transmitters to emerging
markets and commodity indices. The high vulnerability of
ESG_EME and SP_CLEAN can be attributed to their exposure to
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Impulse response analysis.
external shocks, such as commodity price volatility and geopolitical =~ emerging markets often face higher macroeconomic instability,
events (Shahzad et al, 2023). The economic rationale for this  while clean technology firms are sensitive to policy changes and
pattern lies in the structural characteristics of these markets:  energy price swings.
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TABLE 7 DY volatility index results with 10 step ahead.

10.3389/frsus.2025.1612279

Index name Index name
ESG_ACWI ESG_EAFE ESG_EME SP_CEFF SP_CLEAN SP_OIL

ESG_ACWI 93.470 1.750 0.400 0.350 1.360 1.700 74.360
ESG_EAFE 63.000 31.930 1.520 0.400 0.520 1.120 74.830
ESG_EME 47.290 5.150 43.660 0.380 0.730 1.810 68.570
SP_CEFF 55.450 13.510 0.970 6.550 0.290 1.100 74510
SP_CLEAN 42.200 2.850 1.230 0.550 50.920 1.480 59.920
SP_OIL 14.620 2.010 6.610 0.500 0.960 73.180 47.810
To 96.270 81.320 57.090 84.090 44.810 19.490 475510
All 380.770 64.320 55.490 9.710 55.290 81.600 67.930
Net 21.900 6.480 -11.470 9.580 -15.110 -28.310

The last line of the table shows the net spillovers, i.e., the net difference between the “contributions from others” and “contributions to others”. Negative net spillovers are reported in bold. These

markets are net receivers.

SP_OIL

FIGURE 9
Volatility spillover networks using net and net pairwise spillover
index.

First, the role of global ESG indices as net transmitters is
consistent with the notion that large, diversified ESG portfolios (like
MSCI ESG ACWI and EAFE) are more globally integrated and thus
more reactive to macroeconomic shocks, geopolitical uncertainty,
and climate policy news. These indices often act as a barometer for
ESG sentiment, and their volatility can cascade into more sector-
specific or regional indices (Bouri et al., 2022; Broadstock et al,
2021).

The result that emerging markets ESG (ESG_EME) is a net
receiver supports findings in earlier studies showing that ESG
markets in emerging economies tend to absorb volatility from
global markets rather than transmit it (Reboredo and Ugolini,
2020). This could be due to the lower liquidity, limited ESG
integration, and weaker policy enforcement in these markets.

The classification of SP_CLEAN and S&P Oil as net receivers
is especially interesting. While intuitively one might expect energy-
related indices to act as volatility sources—especially during periods
of oil price or policy shocks—result reflects how sector-specific
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ESG-aligned assets may react more than lead in the volatility
transmission process. This is aligned with the findings by Umar
et al. (2022). Their paper shows that clean energy assets often
respond to ESG and climate news from broader markets rather than
initiate spillovers themselves.

These findings have several implications. For investors, the
interconnectedness of ESG indices suggests that diversification
benefits within ESG portfolios may be limited, particularly during
crisis periods when spillovers intensify (Papathanasiou et al., 2022).
Portfolio managers should consider hedging strategies to mitigate
risks, especially for investments in emerging markets and clean
technologies. For policymakers, the vulnerability of ESG_EME and
SP_CLEAN underscores the need for targeted policies to stabilize
these markets, such as subsidies for clean technology or regulatory
frameworks to reduce exposure to energy price shocks. These
measures are critical to supporting the transition to a sustainable
economy, as emphasized by UNCTAD (2021) .

Despite its contributions, this study has limitations. The
analysis is based on six indices, which may not fully capture the
diversity of ESG markets. Additionally, the data extend only to June
2022, missing recent developments such as the energy crisis and
monetary policy tightening. Future research could address these
gaps by incorporating more indices and extending the time frame
to assess the persistence of these spillover patterns.

This study enhances our understanding of ESG volatility
spillovers, confirming their interdependence and highlighting
the vulnerabilities of emerging markets and clean technologies.
These insights are crucial for fostering sustainable investment
strategies and informing policy interventions to promote
greener growth.

6 Conclusions

This study investigates volatility spillovers among six ESG
equity indices and the S&P Oil index, revealing complex
and asymmetric interdependencies between sustainable and
conventional equity markets. The analysis shows that global ESG
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benchmarks, such as MSCI ESG ACWI, act as key drivers of
volatility, influencing both regional and sectoral indices, including
those focused on clean technologies and emerging markets.
These findings highlight the systemic relevance of diversified ESG
portfolios and the importance of adopting a multidimensional
approach to volatility modeling.

Sector-specific ESG indices, particularly those related to clean
energy (SP_CLEAN) and carbon efficiency (SP_CEFF), display
a heightened vulnerability to idiosyncratic shocks and tail risk,
while emerging market indices reveal strong bidirectional linkages
with both traditional and sustainable benchmarks. Notably, the
fossil fuel market, proxied by the S&P Oil Index, continues to
have significant influence on ESG asset classes. From a risk
management and policy perspective, the asymmetric structure
of volatility spillovers observed in this study has important
implications. Investors aiming to construct resilient ESG portfolios
must account for the varying dynamics of upside and downside
risk, while policymakers should consider the potential for volatility
contagion across sectors when designing sustainability-focused
financial regulations.

However, the analysis is not without limitations. The sample
period includes two major crisis episodes, the COVID-19 pandemic
and the Russian invasion of Ukraine. Although recent years
have continued to exhibit volatility episodes due to both
economic and non-economic shocks (e.g., energy price spikes,
geopolitical stress), future research should further investigate the
evolution of volatility linkages across different market regimes and
structural break points. The use of asymmetric volatility measures
and the application of structural break tests offer promising
perspectives to deepen the understanding of how systemic
and idiosyncratic shocks shape the volatility transmission in
ESG markets.
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